Abe Andes, W., Noveck, R.J., and Fleming, J.S. (1984). Inhibition of platelet production induced by an antiplatelet drug, anagrelide, in normal volunteers. Thromb Haemost 52, 325-328.
Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 74, 531-544.
Ai, Y., He, H., Chen, P., Yan, B., Zhang, W., Ding, Z., Li, D., Chen, J., Ma, Y., Cao, Y., et al. (2020). An alkaloid initiates phosphodiesterase 3A-schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat Commun 11, 3236.
An, R., Liu, J., He, J., Wang, F., Zhang, Q., and Yu, Q. (2019). PDE3A inhibitor anagrelide activates death signaling pathway genes and synergizes with cell death-inducing cytokines to selectively inhibit cancer cell growth. Am J Cancer Res 9, 1905-1921.
Aravind, L., Iyer, L.M., and Anantharaman, V. (2003). The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 4, R64.
Cheron, N., Jasty, N., and Shakhnovich, E.I. (2016). OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. J Med Chem 59, 4171-4188.
de Waal, L., Lewis, T.A., Rees, M.G., Tsherniak, A., Wu, X., Choi, P.S., Gechijian, L., Hartigan, C., Faloon, P.W., Hickey, M.J., et al. (2016). Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nat Chem Biol 12, 102-108.
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
Fleming, J.S., and Buyniski, J.P. (1979). A potent new inhibitor of platelet aggregation and experimental thrombosis, anagrelide (BL-4162A). Thromb Res 15, 373-388.
Francis, S.H., Blount, M.A., and Corbin, J.D. (2011). Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91, 651-690.
Goyal, M., Banerjee, C., Nag, S., and Bandyopadhyay, U. (2016). The Alba protein family: Structure and function. Biochim Biophys Acta 1864, 570-583.
Huang, N., Kalyanaraman, C., Bernacki, K., and Jacobson, M.P. (2006a). Molecular mechanics methods for predicting protein-ligand binding. Phys Chem Chem Phys 8, 5166-5177.
Huang, N., Kalyanaraman, C., Irwin, J.J., and Jacobson, M.P. (2006b). Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening. J Chem Inf Model 46, 243-253.
Hung, S.H., Zhang, W., Pixley, R.A., Jameson, B.A., Huang, Y.C., Colman, R.F., and Colman, R.W. (2006). New insights from the structure-function analysis of the catalytic region of human platelet phosphodiesterase 3A: a role for the unique 44-amino acid insert. J Biol Chem 281, 29236-29244.
Jacobson, M.P., Kaminski, G.A., Friesner, R.A., and Rapp, C.S. (2002). Force Field Validation Using Protein Side Chain Prediction. The Journal of Physical Chemistry B 106, 11673-11680.
Li, D., Chen, J., Ai, Y., Gu, X., Li, L., Che, D., Jiang, Z., Li, L., Chen, S., Huang, H., et al. (2019). Estrogen-Related Hormones Induce Apoptosis by Stabilizing Schlafen-12 Protein Turnover. Mol Cell 75, 1103-1116 e1109.
Manganiello, V.C., Taira, M., Degerman, E., and Belfrage, P. (1995). Type III cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE3 gene family). Cell Signal 7, 445-455.
Movsesian, M.A., and Kukreja, R.C. (2011). Phosphodiesterase inhibition in heart failure. Handb Exp Pharmacol, 237-249.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF chimera - A visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-221.
Scapin, G., Patel, S.B., Chung, C., Varnerin, J.P., Edmondson, S.D., Mastracchio, A., Parmee, E.R., Singh, S.B., Becker, J.W., Van der Ploeg, L.H., et al. (2004). Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 43, 6091-6100.
Scheres, S.H. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519-530.
Venuti, M.C., Jones, G.H., Alvarez, R., and Bruno, J.J. (1987). Inhibitors of cyclic AMP phosphodiesterase. 2. Structural variations of N-cyclohexyl-N-methyl-4-[(1,2,3,5-tetrahydro- 2-oxoimidazo[2,1-b]quinazolin-7-yl)-oxy]butyramide (RS-82856). J Med Chem 30, 303-318.
Wang, G., Franklin, R., Hong, Y., and Erusalimsky, J.D. (2005). Comparison of the biological activities of anagrelide and its major metabolites in haematopoietic cell cultures. Br J Pharmacol 146, 324-332.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303.
Yang, J.Y., Deng, X.Y., Li, Y.S., Ma, X.C., Feng, J.X., Yu, B., Chen, Y., Luo, Y.L., Wang, X., Chen, M.L., et al. (2018). Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nat Commun 9, 1165.
Zhang, W., Ke, H., and Colman, R.W. (2002). Identification of interaction sites of cyclic nucleotide phosphodiesterase type 3A with milrinone and cilostazol using molecular modeling and site-directed mutagenesis. Mol Pharmacol 62, 514-520.
Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332.