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Abstract
Background: COVID-19 is a complex, multi-system disease with varying severity and symptoms.
Identifying changes in critically ill COVID-19 patients’ proteomes enables a better understanding of
markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody
microarray and machine learning analyses to identify novel biomarkers of COVID-19.

Methods: A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-
matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects.  Machine
learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was
correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days
1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language
processing (NLP) to determine organ- and cell-speci�c expression.

Results: Machine learning identi�ed a 28-protein model that accurately differentiated COVID-19 patients
from the other cohorts (balanced accuracy=0.95, AUC=1.00, F1=0.93), as well as an optimal nine-protein
model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) that maintained high
classi�cation ability (balanced accuracy=0.92, AUC=0.98, F1=0.93). Speci�c proteins correlated with
hemoglobin, coagulation factors, hypertension, and high-�ow nasal cannula intervention (P<0.01). Time-
course analysis of the 28 leading proteins demonstrated no signi�cant temporal changes within the
COVID-19 cohort. NLP analysis identi�ed multi-system expression of the key proteins, with the digestive
and nervous systems being the leading systems.

Conclusions: The plasma proteome of critically ill COVID-19 patients was distinguishable from that of
non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9
proteins yielded accurate classi�cation models and are expressed in multiple organ systems. The
identi�ed COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future
COVID-19 treatment development.

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019
(COVID-19), a pandemic disease affecting more than 750 million individuals with over 6.8 million deaths
(1, 2). COVID-19 vaccinations and alternative variants in�uence the incidence and severity of new COVID-
19 cases (3–5); consequently, an improved understanding of the disease is necessary to counteract
possible vaccine breakthroughs (6, 7). Individuals with COVID-19 present with heterogeneous symptoms
and severity due to the complex, multi-system pathophysiological impact of the SARS-CoV-2 virus (8–
11). COVID-19 severity is also complicated by various demographic and clinical risk factors, including
age, sex, and pre-existing comorbidities (12–15).

SARS-CoV-2 infection triggers an innate immune response characterized by elevations in plasma pro-
in�ammatory cytokines, proteases and related proteins (16–22). Vascular injury and endothelial
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dysregulation are key components of COVID-19, often resulting in microvascular thrombosis (23–26). A
humoral immune response follows the innate reaction, with robust production of SARS-CoV-2-speci�c
antibodies (27–29). In critically ill patients, COVID-19 results in impaired immune cell homing and
programmed cell death. Speci�cally, antigen presentation and B/T-cell function is reduced, neutrophils
and M1-type macrophages are repurposed, endothelia and �broblasts are disrupted, myeloid lines
become reactive, and the extracellular matrix is altered (30). Despite a wealth of knowledge on COVID-19
pathophysiology, a unique biomarker signature that (1) includes proteins expressed across multiple
systems and (2) that can be used to identify novel connected pathways, remains elusive.

This study aims to identify plasma protein concentrations speci�c to critically ill COVID-19 patients
relative to age- and sex-matched non-COVID-19 sepsis patients and healthy control subjects. Our speci�c
objectives were: 1) to measure the concentrations of 2,000 plasma proteins with antibody microarrays
from the three cohorts; 2) to determine the relative importance of the plasma proteins in identifying
COVID-19 patients to develop classi�cation models; 3) to correlate the leading proteins to clinically
relevant variables; 4) to investigate changes in the leading proteins on hospitalization days 1, 3, 7, and 10;
and 5) to determine the cell type and organ system expression patterns of the leading proteins.

METHODS

Study Participants, Blood Sampling, and Cohort Matching
Patients admitted to our intensive care unit (ICU) were screened using Sepsis 3.0 criteria (31). Two SARS-
CoV-2 viral genes were detected using a polymerase chain reaction to con�rm or refute COVID-19 status
(32). Blood was drawn on ICU days 1, 3, 7, and 10 for COVID-19 patients and on ICU days 1 and 3 for ICU
non-COVID-19 patients, depending on their continued admission in the ICU. Blood was obtained via
indwelling catheters, and if a venipuncture was required, research blood draws were coordinated with a
clinically indicated blood draw. In keeping with accepted research phlebotomy protocols for adult
patients, blood draws did not exceed maximal volumes (33). Blood was centrifuged and plasma isolated,
aliquoted at 250 µL, and frozen at − 80°C. All samples remained frozen until use, and freeze/thaw cycles
were avoided. The healthy control subjects were individuals without disease, acute illness, or prescription
medications and whose samples were collected prior to the emergence of SARS-CoV-2 (Translational
Research Centre, London, ON (Directed by Dr. D.D. Fraser) (34, 35). Final participant groups were
constructed by age- and sex-matching ICU COVID-19 patients with ICU non-COVID-19 sepsis controls and
healthy control subjects.

Patient Demographics and Clinical Data
Baseline characteristics for COVID-19 and non-COVID-19 sepsis controls were recorded, including age,
sex, comorbidities, standard hospital laboratory measurements, PaO2 to FiO2 ratio, and chest radiograph
�ndings. Also, the Multiple Organ Dysfunction Score (MODS) and Sequential Organ Failure Assessment
Score (SOFA) were calculated (31, 36). Clinical interventions received during the observation period were
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also recorded, including the use of antibiotics, antiviral agents, systemic corticosteroids, vasoactive
medications, antiplatelet treatment, anticoagulation treatment, renal replacement therapy, high-�ow
oxygen therapy, and mechanical ventilation (both invasive and non-invasive).

Antibody Microarray
The RayBio® L-Series Human Antibody Array 2000 kit (RayBiotech Life Inc., GA, USA) was used to
measure a total of 2000 plasma proteins in the plasma of age- and sex-matched COVID-19 and non-
COVID-19 sepsis controls, as well as healthy control subjects. The kit detects a broad range of proteins,
including, but not limited to, cytokines, growth factors, receptors, signalling proteins, metabolic enzymes,
and epigenetic markers. The plasma proteins were �rst biotinylated and then applied randomly to the
array to block the corresponding antibodies. A Streptavidin-conjugated �uorescent dye was applied, and
protein expression was measured via laser �uorescence scanning. After background subtraction,
expression levels were normalized as follows: X(Ny) = X(y) * P1/P(y); where: P1 = mean signal intensity of
POS spots on reference array, P(y) = mean signal intensity of POS spots on Array "y"; X(y) = mean signal
intensity for spot "X" on Array "y"; and X(Ny) = normalized signal intensity for spot "X" on Array "y".
Following proteomic quality control, all 45 subjects were deemed suitable for analysis. The median
protein expression was similar after sample randomization, background subtraction and normalization
(Supplemental Fig. 1).

Conventional Statistics
Patient baseline clinical characteristics were reported as median (IQR) for continuous variables and
frequency (%) for categorical variables. The individual biomarkers of COVID-19 were compared to a
combined group of non-COVID-19 sepsis controls and healthy control subjects using a Mann-Whitney U
test. A paired comparison of protein expression on multiple days was conducted using the Wilcoxon
Signed-Rank test to assess changes during the ICU stay. A Bonferroni correction was applied to avoid
multiple comparison complications, with only Bonferroni-corrected P-values being reported and those
below 0.05 considered statistically signi�cant.

Machine Learning
For machine learning, a Random Forest classi�er based on decision trees was used to classify the COVID-
19 patients in comparison to a combined cohort of non-COVID-19 sepsis controls and healthy control
subjects by their proteins. The Boruta feature reduction algorithm, based on Random Forest classi�ers,
was used to identify the most important proteins (37). It individually compares each protein to randomly
arranged versions of the data to determine if the protein is better at classifying than chance. The results
from the Boruta feature reduction identi�ed the most relevant proteins for classifying COVID-19 (a
“reduced protein signature”).

The following steps were undertaken to conduct a conservative analysis that mitigates small sample
sizes and over�tting concerns. First, the data was split into a feature reduction dataset (70%) and a
testing dataset (30%), strati�ed by subject groups. The Boruta algorithm was run on the feature reduction
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dataset to determine the most relevant features. The testing dataset was modi�ed to contain only the
identi�ed relevant features. The reduced testing dataset was then used for the classi�cation of COVID-19.
To reduce over�tting and maintain a conservative model, three-fold cross-validation was used with a
Random Forest of 10 trees and a maximum depth of three (38).

As a Random Forest is a set of decision trees, we were able to interrogate this collection of trees to
identify the features that have the highest predictive value (viz., those features that frequently appear
near the top of the decision tree). Based on this characteristic, recursive feature elimination (RFE) was
used to prepare an optimal model. RFE started with the reduced dataset, �t a Random Forest classi�er,
dropped the least important feature, and repeated the process until only ten features remained. Due to the
randomness of the algorithm and Random Forest models, 10,000 runs of RFE were conducted. Those
features in the top 10 for more than a speci�ed threshold of the 10,000 runs were determined to be the
optimal features. An optimal dataset containing only these optimal features was generated from the
reduced dataset. The same classi�cation process for the reduced dataset was used on the optimal
dataset.

Receiver operating characteristic (ROC) curves using Logistic Regression were conducted to determine
the sensitivity and speci�city of individual proteins for predicting COVID-19 status in comparison to non-
COVID-19 sepsis controls and healthy control subjects. Area-under-the-curve (AUC) was calculated as an
aggregate measure of protein performance across all possible classi�cation thresholds (39). For the
Random Forest models with multiple biomarkers, the balanced accuracy, AUC, Precision, and Recall were
determined with the latter two represented as their combined harmonic mean, F1 score. A high F1 score
indicated that both, Precision and Recall are high. The biomarker data was visualized with a nonlinear
dimensionality reduction on the leading and optimal datasets using the t-distributed stochastic nearest
neighbour embedding (t-SNE) algorithm. A t-SNE assumes that the ‘optimal’ representation of the data
lies on a manifold with complex geometry, but in a low dimension, embedded in the full-dimensional
space of the raw data (40).

A pairwise comparison, using cosine similarity, was conducted to determine the similarity between
subjects across the selected proteins and time points (41). As such, subjects similar across their selected
biomarker pro�le have a score closer to 1, while dissimilar subjects have a score closer to 0. The analysis
was done with data Min-Max scaled between 0 and 1, and the cosine similarities were visualized using a
heatmap. The machine learning analysis was conducted using Python version 3.10.11 and Scikit-Learn
version 1.2.2 (42).

Natural Language Processing
Exploratory expression analysis was also conducted to determine physiological areas of interest in
COVID-19 subjects. Protein expression tissue speci�city was parsed from the UniProt Knowledgebase
using the UniProt website REST API (43). The tissue speci�city was unstructured text on the expression at
the mRNA or protein level in cells or tissues gathered manually by experts. The expression information
was processed by Natural Language Processing (NLP) using the Stanza python package implemented
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with spaCy (Python v. 3.10.11; spaCy v. 3.3.1; spaCy-Stanza v. 1.0.2; negspaCy v. 1.0.3) (44–46). An NLP
named-entity recognition (NER) pipeline was con�gured with the MIMIC package for preprocessing,
negation detection, and the pretrained Stanza BioNLP13CG Biomedical model. The negation detection
was done using the NegEx-based negspaCy implementation with a modi�ed English clinical term set to
�lter negative expression terms. Although the BioNLP13CG biomedical model was based on Cancer
Genetics and publicly available PubMed abstracts, compared to the other Stanza models, it provided the
most granular entity classi�cation, including anatomical system, organ, tissue, multi-level tissue, and cell
type entities. The detected organ and cell type entities were manually classi�ed into keyword-based
groups separately. The manual expression curation process relies on existing literature and is not easily
structured into speci�c organ systems. The organ, tissue, multi-tissue, and anatomical system entity
types were combined and manually sorted into organ systems to include the maximum expression
information in the analysis. The frequency of the keyword-based categories with respect to the relevant
proteins was determined to identify physiological patterns of expression.

RESULTS
A total of three age- and sex-matched groups were included, consisting of COVID-19 patients (median
years old = 60; IQR = 12; n = 15), non-COVID-19 sepsis controls (median years old = 57; IQR = 11; n = 15),
and healthy control subjects (median years old = 56; IQR = 10; n = 15). There were no signi�cant
differences in age (Kruskal-Wallis H-test, P = 0.87) and sex (Chi-Square, P = 1.000) between the three
cohorts. Baseline demographic characteristics, comorbidities, laboratory measurements, interventions,
and chest x-ray �ndings of COVID-19 and non-COVID-19 sepsis controls are reported in Table 1. The two
cohorts were generally similar except that COVID-19 patients were more likely to have bilateral
pneumonia, lower white blood cell and lymphocyte counts, higher INR and PTT, lower PaO2/FiO2 ratio,
longer ventilation periods, and higher mortality rate.
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Table 1
Demographics and Clinical Variables of non-COVID-19 and COVID-19 ICU patients

Variable Non-COVID-19 ICU COVID-19 ICU P Value

Age, median (IQR) 57.0 (52.0–63.0) 60.0 (53.0–65.0) 0.739

Male, no. (%) 7 (46.7) 7 (46.7) 1.000

Height (cm), median (IQR) 164.0 (159.1-172.5) 170.0 (163.5–173.0) 0.329

Weight (kg), median (IQR) 77.0 (64.6–97.8) 92.0 (81.6-107.5) 0.044

BMI, median (IQR) 28.4 (23.2–33.6) 30.7 (28.2–38.6) 0.135

SOFA, median (IQR) 7.0 (5.0–9.0) 5.0 (2.5–9.5) 0.318

MODS, median (IQR) 5.0 (3.5-8.0) 4.0 (3.5-6.0) 0.367

Sepsis Con�rmed, no. (%) 6 (40.0) 15 (100.0) < 0.001

Comorbidities, no. (%)      

Diabetes 6 (40.0) 5 (33.3) 1.000

Hypertension 10 (66.7) 7 (46.7) 0.462

Coronary Artery/Heart Disease 2 (13.3) 2 (13.3) 1.000

Chronic Heart Failure 2 (13.3) 0 (0.0) 0.483

Chronic Kidney Disease 1 (6.7) 2 (13.3) 1.000

Cancer 1 (6.7) 2 (13.3) 1.000

COPD 3 (20.0) 1 (6.7) 0.598

Pulmonary pathology, no. (%)      

Unilateral Pneumonia 8 (53.3) 1 (6.7) 0.014

Bilateral Pneumonia 1 (6.7) 14 (93.3) < 0.001

Bilateral Opacities 1 (6.7) -- --

Interstitial In�ltrate 2 (13.3) -- --

Laboratories, median (IQR)      

Hemoglobin 124.0 (104.5-138.5) 121.0 (107.0-131.0) 0.547

White Blood Cell count 16.4 (12.0-21.2) 8.7 (7.0-16.2) 0.031

Neutrophils 12.7 (9.9–15.8) 7.7 (5.7–13.3) 0.055

Note: P Value calculated with Mann-Whitney U test for continuous variables or Fisher Exact Test for
binary variables.
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Variable Non-COVID-19 ICU COVID-19 ICU P Value

Lymphocytes 1.4 (0.8–1.8) 0.8 (0.6-1.0) 0.030

Platelets 212.0 (173.0-262.0) 209.0 (163.5-301.5) 0.917

Creatinine 79.0 (53.5–98.5) 82.0 (63.0-190.0) 0.340

International Normalized Ratio 1.0 (1.0-1.1) 1.2 (1.2–1.3) 0.006

Lactate 1.5 (1.0-3.3) 1.7 (1.1–1.9) 0.803

Partial thromboplastin time (PTT) 23.0 (21.5–24.5) 28.0 (25.5–31.0) < 0.001

PaO2/FiO2 Ratio 172.0 (137.8-290.8) 120.0 (69.5–153.0) 0.026

Intervention, no. (%)      

Renal Replacement Therapy 1 (6.7) 3 (20.0) 0.598

High-Flow Nasal Cannula 4 (26.7) 9 (60.0) 0.139

Non-Invasive Mechanical Ventilation 4 (26.7) 6 (40.0) 0.700

Invasive Mechanical Ventilation 14 (93.3) 11 (73.3) 0.330

Days Intubated, median (IQR) 4.0 (2.5-5.0) 14.0 (2.5–18.0) 0.046

Steroids 7 (46.7) 4 (26.7) 0.450

Vasoactive Medications 10 (66.7) 12 (80.0) 0.682

Antibiotics 15 (100.0) 15 (100.0) 1.000

Anti-virals 2 (13.3) 3 (20.0) 1.000

Antiplatelet 7 (46.7) 5 (33.3) 0.710

Anticoagulation 15 (100.0) 14 (93.3) 1.000

Outcome      

Death, no. (%) 2 (13.3) 7 (46.7) 0.109

ICU Days, median (IQR) 5.0 (4.5-6.0) 17.0 (11.0-24.5) < 0.001

Note: P Value calculated with Mann-Whitney U test for continuous variables or Fisher Exact Test for
binary variables.

The expression levels of 2,000 proteins (1,968 unique proteins) were measured. Using Boruta Feature
reduction machine learning, a leading protein model containing 28 proteins was developed to classify
COVID-19 patients from non-COVID-19 sepsis controls and healthy control subjects. The leading 28-
protein model had high classi�cation ability (balanced accuracy = 0.95, AUC = 1.00, F1 = 0.93) and the
relative importance of the proteins is provided in Table 2. Individually, each of the 28 proteins was
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signi�cantly different in COVID-19 patients (Bonferroni adjusted P < 0.05) compared to non-COVID-19
sepsis controls and healthy control subjects. Of the 28 proteins, only four had elevated levels in the
COVID-19 patients (Fyn, Fen1, Azurocidin, and NET1), while each of the 28 proteins individually had high
individual classi�cation ability (0.81 ≥ AUC ≥ 0.98; Table 2). Visualizing the 28 protein classi�cation
ability using a t-SNE plot demonstrated a distinct COVID-19 patient cluster separation (one outlier) from
non-COVID-19 sepsis controls and healthy control subjects (Fig. 1A). The functions of the 28 proteins are
described in Supplemental Table 2.
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Table 2
ROC Area-Under-the-Curve Analysis and Feature Importance of the 28 Proteins

Protein Healthy Control
Subjects and non-
COVID-19 ICU

COVID-19

ICU

Bonferroni
Adjusted

P Value

ROC
Logistic
AUC

Feature
Importance
%

Nucleobindin1/NUCB1 2478.2 (2093.0-
3139.7)

1715.6
(1500.7-
1977.1)

< 0.001 0.90 8.86

Fibronectin 46756.3 (40515.2-
54484.4)

29829.7
(25145.5-
32101.9)

< 0.001 0.90 8.61

SerpinB5 31821.6 (25319.6-
38540.1)

18502.8
(14779.7-
21861.6)

0.001 0.88 8.42

HSPA8 5477.7 (4670.8-
6343.5)

2951.1
(2420.5-
4056.6)

< 0.001 0.89 8.12

ERRa 3438.6 (3283.6-
4170.2)

1301.7
(1107.9-
1780.1)

< 0.001 0.98 7.91

SerpinA12 42026.8 (31876.2-
55580.0)

21207.7
(17283.3-
26846.4)

< 0.001 0.91 7.84

Fyn 2148.5 (1707.1–
2479.0)

3838.5
(3208.9-
4700.4)

< 0.001 0.94 7.41

GATA-4 1136.4 (987.2-
1394.6)

606.8
(485.2-
660.6)

< 0.001 0.93 7.06

MammaglobinA 4617.2 (4121.4-
5575.3)

2944.7
(2434.6-
3529.7)

0.001 0.90 4.54

SerpinD1 2553.8 (2062.2-
2919.8)

766.5
(623.2-
1239.1)

< 0.001 0.96 4.21

Presenilin2 989.5 (881.1-
1120.5)

629.2
(571.3-
727.1)

0.001 0.88 2.99

SerpinA4 46256.2 (38949.8-
49359.9)

19742.5
(18351.1-
24913.0)

< 0.001 0.93 2.87

PARK7 987.1 (747.2-
1234.6)

390.1
(235.5-
486.8)

< 0.001 0.92 2.55
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Protein Healthy Control
Subjects and non-
COVID-19 ICU

COVID-19

ICU

Bonferroni
Adjusted

P Value

ROC
Logistic
AUC

Feature
Importance
%

IGFBP-5 1370.8 (1246.4-
1748.7)

808.3
(681.8-
977.9)

0.004 0.84 2.48

HPR 4455.0 (3672.7–
6287.0)

2559.9
(1905.0-
2956.7)

< 0.001 0.89 2.07

EphB4 2160.3 (1519.7-
2573.3)

781.8
(661.0-
1212.6)

< 0.001 0.92 1.84

Fen1 1863.7 (1432.0-
2302.9)

3452.5
(3196.2-
3699.9)

0.001 0.88 1.82

SHANK1 2534.9 (2046.7-
3547.1)

1646.0
(1420.8–
1958.0)

0.001 0.84 1.46

CrkL 11962.1 (7709.6-
17517.1)

3775.9
(3093.4-
7097.2)

0.002 0.87 1.43

Azurocidin 742.3 (485.3-955.5) 1249.0
(1041.2-
1458.9)

0.002 0.90 1.33

PCMT1 2767.4 (2059.7-
3429.3)

1699.3
(1395.0-
1943.7)

0.001 0.90 1.22

SerpinA1 67434.5 (53366.3-
90681.9)

38358.2
(35020.4-
47527.1)

0.001 0.90 1.18

Proteasome26SS5 2765.6 (2272.7-
3178.7)

1827.8
(1709.8-
1996.8)

0.002 0.83 0.93

PF4V1 3574.6 (2889.6-
4357.6)

2172.4
(2067.1–
2461.0)

0.001 0.88 0.81

Galanin 74115.0 (62637.4-
96144.1)

46296.2
(34583.3-
55448.2)

0.002 0.81 0.75

ProSAAS 91911.6 (78518.7-
122533.1)

43001.7
(36282.0-
79197.1)

0.024 0.82 0.59
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Protein Healthy Control
Subjects and non-
COVID-19 ICU

COVID-19

ICU

Bonferroni
Adjusted

P Value

ROC
Logistic
AUC

Feature
Importance
%

VimentinB 1617.6 (1342.9-
2410.4)

1082.3
(757.1-
1418.7)

0.005 0.89 0.37

NET1 4433.9 (2953.0-
6546.5)

7573.7
(6916.4-
8694.5)

0.008 0.82 0.33

Recursive feature elimination was used to determine a set of optimal proteins. Those proteins in the top
10 for at least 5,000 of the 10,000 RFE repetitions (50%) were selected as the optimal protein model. Nine
of the 28 proteins were optimal: PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and
NET1 (Supplemental Fig. 2). The optimal set of proteins maintained a high classi�cation ability
(balanced accuracy = 0.92, AUC = 0.98, F1 = 0.93). All proteins were signi�cantly different in COVID-19
patients, while only Fen1 and NET1 were elevated (P < 0.01). A t-SNE plot based on the nine optimal
biomarkers illustrates a separation between the COVID-19 patients and the other cohorts, with two
outliers (Fig. 1B).

Pairwise cosine similarity between all subjects and available time points was calculated to compare the
cohorts in terms of their leading and optimal protein pro�les, presented in Fig. 1C and Fig. 1D,
respectively. The healthy control subjects have the most homogenous protein pro�les in both the 28 and
9 protein models. The non-COVID-19 sepsis controls were relatively homogenous across ICU Days 1 and
3, with observable differences from healthy control subjects. The COVID-19 patients are distinct at all
time points from the other cohorts. Compared to the 28 protein pro�le, the COVID-19 patients are more
homogenous across time points with the 9 protein pro�le. The expression of the leading proteins in
COVID-19 patients on ICU Days 3, 7, and 10 were compared to their ICU Day 1 expression and
demonstrated no signi�cant differences over time (P > 0.05; data not shown).

The relevant leading 28 protein measurements of the COVID-19 patients were compared to their clinical
variables. A total of seven signi�cant associations (P < 0.01) were identi�ed and are presented in Fig. 3
and Fig. 4. Fibronectin levels in all COVID-19 patients were below healthy control subjects and
demonstrated a negative correlation with hemoglobin (Fig. 3A). Most COVID-19 patients’ PCTM1
measurements were below healthy control subjects and negatively correlated with INR (Fig. 3B).
SerpinB5, ERRa, and IGFBP-5 in COVID-19 patients were all positively correlated with PTT, and most
patients had measurement levels below healthy control subjects (Figs. 3C-E). MammaglobinA was lower
in COVID-19 patients who received high-�ow nasal cannula intervention (Fig. 4A). ProSAAS was lower in
patients with hypertension comorbidity (Fig. 4B).

Named-entity recognition was conducted on the tissue expression information provided by the UniProt
Knowledgebase. Out of the 28 leading proteins, 14 (50%) had organ expression information
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(Supplemental Table 2), and 8 (29%) had cell type expression information (Supplemental Table 3). The
percentage of the 14 proteins expressed in speci�c organ systems, led by the digestive and nervous
systems, is shown in Fig. 2. The percentage of the eight proteins expressed in speci�c cell types is shown
in Supplemental Fig. 3.

DISCUSSION
In this study, we measured the expression of 2,000 plasma proteins with antibody micro-array technology
from age- and sex-matched COVID-19 patients, non-COVID-19 sepsis controls, and healthy control
subjects. Using machine learning-based protein subset identi�cation, we identi�ed a 28-protein model
that accurately differentiated COVID-19 patients from their comparison cohorts. Furthermore, we
determined an optimal 9-protein subset model that maintained high classi�cation ability. Some identi�ed
proteins were associated with clinical and demographic characteristics in the COVID-19 patients. NLP of
expert-curated expression information identi�ed multi-system expression of the leading proteins. This
study has identi�ed a reduced protein signature for COVID-19 patients that contributes to COVID-19
pathophysiology characterization and may inform the development of therapeutic interventions upon
further investigation.

Our critically ill COVID-19 cohort was similar to other reported cohorts, with only minor differences (8, 47–
50). For example, the mortality rate in our COVID-19 patients was higher than reported by other studies
and may suggest a greater illness burden in our patients (8, 47, 51). The platelet count in our COVID-19
patients was lower than reported in the literature (52–54), perhaps re�ecting greater microvascular injury
and overall microclot risk (55). Similarly, the PaO2/FiO2 ratio was also lower in our COVID-19 patients (8,
54), indicating higher levels of acute lung injury. Although COVID-19 lymphocyte counts, INR, and bilateral
pulmonary complications were signi�cantly different than in non-COVID-19 sepsis controls, they were
similar to those in COVID-19 patients reported in the literature (50, 53, 54).

A unique 28-protein signature that differentiated COVID-19 patients from non-COVID-19 sepsis controls
and healthy control subjects was determined. Each of the identi�ed proteins was individually different in
the COVID-19 cohort with high discrimination power, further positioning them as possible disease
biomarkers. Time-based analysis and inspection of the pairwise subject comparison demonstrated no
changes in COVID-19 protein expression over multiple ICU days and interventions, suggesting that the
reduced protein signature is robust, reproducible and remains highly predictive of COVID-19 disease
status over 10 hospitalization days. In addition, an optimal model consisting of 9 proteins (PF4V1,
NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained the high classi�cation
ability found in the superset 28-protein model. The pairwise comparison analysis suggests that the nine-
protein model may be more consistent across multiple days than the 28-protein model.

Correlation analysis comparing the expression of the 28-protein in COVID-19 patients with their respective
clinical characteristics identi�ed seven associations. Interestingly, four proteins correlated with measures
of blood clotting, including the INR and PTT. The COVID-19 patients had signi�cantly higher INR and PTT
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measurements compared to non-COVID-19 sepsis controls; however, the measurements were within the
normal clinical range. Almost all patients across the two ICU cohorts had anticoagulation interventions.
PCMT1 was negatively correlated with INR in COVID-19 patients but not linked to thrombosis in the
literature. SerpinB5, ERRa, and IGFBP-5 measurements in COVID-19 patients were mainly lower than
healthy controls and exhibited a positive correlation with PTT; however, similar to PCMT1, none of the
correlated biomarkers have been linked to thrombosis previously. Hemoglobin was negatively correlated
with �bronectin in COVID-19 patients, with all patients having �bronectin levels lower than healthy
controls. MammaglobinA, a secreted glycosylated proteins involved in cell signalling and the immune
response, differentiated COVID-19 patients who received high-�ow nasal cannula oxygen therapy as an
intervention (56, 57). Lastly, ProSAAS, a neuroendocrine hormone, was lower in those patients with pre-
existing hypertension (58).

Serpins are a family of protease inhibitors that use conformational changes to inhibit target enzymes
(59). Four of the 28 proteins that changed in COVID-19 were Serpins (A1, D1, A4, and A12), and all were
downregulated. In line with a previous study, SerpinA1 was downregulated in our COVID-19 cohort (60).
SerpinA1 is proposed to limit SARS-CoV-2 cell entry via inhibition of cell surface transmembrane protease
2 (TMPRSS2) function, a critical step in the required processing of the SARS-CoV-2 spike protein (61). In
addition, SerpinA1 was associated with decreased COVID-19 severity (62, 63), and suggested as a
potential COVID-19 treatment. Indeed, COVID-19 patients with moderate to severe acute respiratory
distress syndrome improved in a phase 2 randomized control trial after SerpinA1 intervention (64).
Administration of SerpinA1 is also suggested as a therapy for alpha-1-antitrypsin de�ciency (AATD), in
which there is an increased risk of emphysema, obstructive lung disease, and liver disease (65–70);
however, it is unclear if AATD mutations are associated with COVID-19 severity (63, 71, 72). SerpinD1, a
thrombosis inhibitor (73), competes with the SARS-CoV-2 spike protein to bind heparin, resulting in
increased thrombosis risk (74). The regulation of SerpinD1 in COVID-19 is controversial, as a study has
shown that SerpinD1 was higher in moderate and severe cases (75). SerpinA4, also known as kallistatin,
exerts multiple effects on in�ammation, angiogenesis, and tumor growth. A single nucleotide
polymorphism in the SerpinA4 gene was linked to acute kidney injury in COVID-19 patients (76). Down-
regulation of SerpinA4 was noted in COVID-19 non-survivors, indicating a persistent pro-in�ammatory
signature (77). SerpinA12 is an adipokine that has been linked to the development of insulin resistance,
obesity, and in�ammation (78). In COVID-19, the downregulation of SerpinA12 may heighten
in�ammation via the kallikrein–kinin system (79).

NLP analysis processed expert-curated expression information from the UniProt Knowledgebase to
identify organ- and cell-speci�c biomarkers. Of the 28 proteins, 14 (50%) had organ system expression
information, with most proteins linked to expression in the digestive and nervous systems. NLP cell-type
analysis results were inconclusive, as only eight proteins had cell-type expression information.

Gastrointestinal system complications are prevalent in COVID-19 patients, including diarrhea,
nausea/vomiting, and abdominal pain (9, 80, 81). Fen1, involved in critical DNA synthesis and repair
mechanisms, was overexpressed in our COVID-19 cohort. Fen1 is reported to be involved in hepatocellular
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and gastrointestinal cancers (82, 83), and a novel antiviral strategy that utilizes FEN1 to decrease SARS-
CoV-2 cellular functions has been proposed (84). The expression of both CrkL and �bronectin was
decreased in our COVID-19 cohort. The former, which is associated with gastrointestinal cancers, has
been suggested as a potential COVID-19 drug target (85–87). The latter is a widely expressed
extracellular matrix protein associated with liver regeneration, �brogenesis, and intestinal in�ammation
(88–90).

Nervous system symptoms in COVID-19 patients are prevalent, with COVID-19 severity being associated
with increased neurological complications (91–93). Our NLP analysis identi�ed proteins, mainly down-
regulated, from our COVID-19 cohort that are linked to the nervous system. SHANK1, downregulated in
COVID-19 patients, facilitates protein-protein interactions in excitatory synapses (94), and its
downregulation may hinder neuronal communication (95). Our COVID-19 patients had decreased
expression of PCMT1, a carboxyl methyltransferase. PCMT1 downregulation is linked to
neurodegenerative diseases and may increase ß-amyloid production (96, 97). PARK7 is decreased in our
COVID-19 patients and may not effectively perform its protective role against neurotoxicity and neuronal
viability (98–100). PARK7 performs various cellular functions, including acting as a chaperone,
interacting with transcription factors, and being involved in anti-oxidative properties under oxidative
stress conditions (101–103). PARK7 is a critical protein involved in the gut-brain axis and related to
altered gut microbiomes (104, 105). Nucleobinding 1 (NUCB1) is widely expressed in brain neurons and
stabilizes amyloid proto�brils before they mature and become harmful in neurodegenerative diseases
(106, 107); however, its downregulation in our COVID-19 patients suggests decreased neurological
protective mechanisms. Presenilin2 is a crucial protein in neurodegenerative disease and was decreased
in our COVID-19 patients. Presenilin2 is responsible for the cleaving enzymatic action required to form
amyloid plaques and also forms Ca2+ leak channels that support the calcium hypothesis of AD (108–
111). Similar to Presenillin2, ProSAAS, an amyloid anti-aggregant in Alzheimer’s disease, is decreased in
our COVID-19 patients (112). ProSAAS is a neuroendocrine chaperone protein with protective effects
against neurodegeneration, such that increased endocrine and neurological cell stressors are associated
with elevated expression (113, 114). Galanin was downregulated in our COVID-19 patients and operates
on the neuroendocrine axis with various functions throughout the central and peripheral nervous and
endocrine systems (115). Fyn, elevated in our COVID-19 cohort, has a harmful role in neurological
diseases and may be a potential target for neurodegenerative disease due to its ß-amyloid signalling and
tau interactions (116–118).

NLP analysis also identi�ed the endocrine system as potentially impacted due to differential protein
expression. COVID-19 patients with hypertension had signi�cantly lower expression of ProSAAS, which
may be related to ProSAAS peptides involved in salt sensitivity (119). Diabetes diagnosis and insulin
sensitivity have been linked to COVID-19 severity and mortality (120–122), and downregulated ERRa in
our COVID-19 cohort is linked to insulin resistance, diabetes, and obesity (123–126). ERRa regulates
glycolysis and lipid metabolism in multiple organs, along with steroidogenesis in the adrenal cortex
(127–129). Similar to our cohort, lower IGFBP-5 expression was previously observed in COVID-19 patients
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(130), and IGFBPs are linked to diabetes and metabolic disorders (131–135). SerpinA12 was down-
regulated in our COVID-19 patients and is associated with diabetes and obesity due to its insulin-
sensitizing effects (136–140). The downregulated NUCB1 in our COVID-19 patients suggested a harmful
effect related to type 2 diabetes as it performs amyloid stabilization in human islet cells to prevent �brils
in the pancreas that impact type 2 diabetes (106, 141, 142). The decreased PARK7 in COVID-19 patients
could also be connected to a metabolic imbalance. PARK7 protects pancreatic beta-cells from oxidative
stress conditions, and its de�ciency is associated with decreased in�ammatory and adipogenesis
responses (143–145) and type 2 diabetes (146, 147). Lastly, Presenilin 2 is expressed in endocrine cells,
but there is insu�cient data on its role and association with diabetes (148, 149).

COVID-19 is linked with various cardiovascular changes, including vascular transformation, thrombosis,
and angiogenesis (150–155). NLP analysis revealed proteins expressed in the cardiovascular system.
GATA-4 is involved in cardiac remodelling, differentiation, and signalling by acting as a cardiogenic
transcription factor (156–158). GATA-4 was reduced in our COVID-19 patients, indicating that subsequent
remodelling pathways may be impaired. IGFBP-5 expression was reduced in COVID-19 patients (130), and
it is an inhibitor of angiogenesis and vascular smooth muscle cell proliferation (159–161). PF4V1,
decreased in our COVID-19 patients, is an angiogenesis inhibitor and may also regulate in�ammation and
thrombosis (162–165). SerpinA4 (Kallistatin) was lower in our COVID-19 patients (166), and it protects
against vascular oxidative stress and in�ammation as well as inhibiting angiogenesis (167–169). Thus,
the decreased expression of IGFBP-5, PF4V1, and SeprinA4 in COVID-19 may be cardioprotective, perhaps
via suppression of angiogenesis and vascular transformation. EphB4, also associated with angiogenesis,
was downregulated in our COVID-19 patients (170–173).

The novelties of this study include the protein biomarkers identi�ed, the immune microarray platform
utilized, and several of the analytic techniques. Previous proteomics studies have also identi�ed
biomarker models that differentiate COVID-19 patients from non-COVID-19 sepsis controls and healthy
control participants (174–177). While these studies identify a number of important biomarkers, they did
not evaluate their effectiveness in a single combined model, which decreases the likelihood of cross-
identity concerns with other diseases. The novel proteins identi�ed in our study may be attributed to our
use of an immune microarray platform, while other studies utilized mass spectrometry or proximity
extension assays (174–179). Pathway analysis was used in previous studies to help understand COVID-
19 pathophysiology (176, 178, 179); however, our approach utilized NLP to identify organ and cell
expression patterns.

In this study, we identi�ed a novel 28-protein signature and an optimal 9-protein signature that accurately
classi�es COVID-19 patients from non-COVID-19 sepsis controls and healthy control subjects; however,
our study has several limitations. First, the number of subjects in each comparison group was limited;
however, we used conservative methods to ensure appropriate analysis. Conventional statistics consisted
of only non-parametric methods with strict Bonferroni multiple comparison correction. Machine learning
classi�cation utilized cross-validation with conservative parameters and without any hyperparameter
tuning. Also, protein model building and testing consisted of separate data subsets to reduce over�tting.
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Second, not all identi�ed proteins had UniProt Knowledgebase-curated expression information, leaving
the potential for unrecognized patterns in organ and cell system expression. Similarly, there is a
possibility for missed organ/cell identi�cation with NLP; however, preprocessing of expression
information was carefully done, and NER used a state-of-the-art biomedical model. Third, static protein
measurements must be interpreted with caution as they do not always correlate with functional changes.
As one example, Serpins undergo a conformational change to elicit biological effects and therefore
require further functional analyses. Lastly, we only compared the COVID-19 biomarker signatures to other
cohorts, but there may be cross-identity concerns with other illnesses. The use of multiple biomarkers
would reduce this latter limitation. Although our exploratory study had these minor constraints, the data
provided insight into the pathophysiological changes in COVID-19 patients.

CONCLUSION
Our understanding of COVID-19 pathophysiology, especially in critically ill patients, is incomplete due to
its multi-system complications. We identi�ed 28 biomarkers that accurately differentiate COVID-19
patients from non-COVID-19 sepsis controls and healthy control subjects. The leading proteins are
expressed in multiple organ systems and are associated with various diseases and pathophysiological
functions, including diabetes, neurodegeneration, metabolic processes, and vascular transformation. The
results of our biomarker exploratory study offer insightful information about COVID-19 and might aid in
the development of future treatments.
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Figures

Figure 1

Identi�cation of important blood proteins in ICU COVID-19 patients. A) Subjects plotted in two
dimensions, following t-SNE dimensionality reduction of all 28 important proteins determined by Boruta
feature reduction. The plot shows cluster separation of ICU COVID-19 patients from ICU and healthy
control subjects. B) Subjects plotted in two dimensions, following t-SNE dimensionality reduction of top 9
important proteins determined by Recursive Feature Selection with 50% threshold. The plot shows cluster
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separation of ICU COVID-19 patients from ICU and healthy control subjects. C) A heatmap demonstrated
the pairwise cosine similarity between cohorts’ protein pro�les for the important 28 proteins. Greater
cosine similarity measure between subjects indicates similar protein pro�les, while a smaller measure
indicates large differences between pro�les.The protein pro�le of ICU COVID-19 patients is distinctively
different from ICU and healthy control participants. E) A heatmap demonstrated the pairwise cosine
similarity between cohorts’ protein pro�les with only the top 9 proteins. Greater cosine similarity measure
between subjects indicates similar protein pro�les, while a smaller measure indicates large differences
between pro�les. The protein pro�le of ICU COVID-19 patients is distinctively different from ICU and
healthy control participants, with more homogeneity within each group.

Figure 2

Frequency of protein expression in major organs/body systems. A bar plot demonstrating the percentage
of proteins that are expressed in speci�c major organs and body systems determined by Natural
Language Processing. There were 14 proteins, out of the 28 proteins (50%), with UniProt organ system
expression information.The organ system classi�cation combines NLP-identi�ed organs, tissue, multi-
level tissue and anatomical system entities. The lymphatic system did not have any associated protein
and was not shown for visualization clarity.
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Figure 3

Correlations between important 28 proteins and continuous clinical variables in ICU COVID-19 patients.
Blue points are ICU COVID-19 measurements; green �lled area represents the 5th percentile to 95th
percentile protein expression range of healthy control subjects. Only signi�cant correlations (p<0.01) are
shown. A-B) Plots demonstrating decreased protein expression in COVID-19 compared to healthy controls
for Fibronectin and PCMT1. Fibronectin is signi�cantly negatively correlated with hemoglobin (p=0.006),
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and PCMT1 is signi�cantly negatively correlated with International Normalized Ratio (p=0.006). C-E)
Plots demonstrating decreased protein expression in COVID-19 compared to healthy controls for
SerpinB5, EERa, and IGFBP-5. Each protein, SerpinB5, EERa, and IGFBP-5, is signi�cantly positively
correlated with Partial Thromboplastin Time (p=0.006, p=0.003, p=0.007, respectively).

Figure 4

Differences in the important 28 proteins respective to binary clinical variables in ICU COVID-19 patients.A)
A box plot demonstrating that MammaglobinA is signi�cantly elevated in those that didn’t receive high-
�ow nasal cannula (p=0.003). B) A box plot demonstrating that ProSAAS is signi�cantly lower in those
who had hypertension (p=0.009).
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