When developing a new chemical, investigating its long-term influences on the environment is crucial to prevent harm. Unfortunately, these experiments are time-consuming. In silico methods can learn from already obtained data to predict biotransformation pathways, and thereby help focus all development efforts on only the most promising chemicals. As all data-based models, these predictors will output pathway predictions for all input compounds in a suitable format, however, these predictions will be faulty unless the model has seen similar compounds during the training process.
A common approach to prevent this for other types of models is to define an Applicability Domain for the model that makes predictions only for in-domain compounds and rejects out-of-domain ones. Nonetheless, although exploration of the compound space is particularly interesting in the development of new chemicals, no applicability Domain method has been tailored to the specific data structure of pathway predictions yet.
In this paper, we are the first to define Applicability Domain specialized in biodegradation pathway prediction. Assessing a model’s reliability from different angles, we suggest a three-stage approach that checks for applicability, reliability, and decidability of the model for a queried compound and only allows it to output a prediction if all three stages are passed. Experiments confirm that our proposed technique reliably rejects unsuitable compounds and therefore improves the safety of the biotransformation pathway predictor.