Principal findings
This meta-analysis demonstrates a survival benefit at 6 months follow-up to the administration of EPO to TBI patients. However, EPO intervention did not impact acute hospital mortality (in 10 weeks) or short-term mortality (10 weeks to 3 months). EPO therapy does not increase adverse events including thrombotic and cardiovascular complications. At the same time, EPO intervention had no significantly effect on the recovery of neurological function.
Mortality
This current study of EPO treatment in TBI patients provided a novel analysis of survival rates for different follow-up duration. The three follow-up durations included different RCTs and different numbers of participants, also no single RCT was used in all three mortality assessments. The study was well-powered enough to detect a slight but significant six-month survival benefit with EPO treatment. While the concrete mechanism of mortality reduction in patients with TBI remains unclear, studies suggest that short-term mortality is related to either brain death or treatment withdrawal due to a perceived poor prognosis, whereas long-term mortality is believed to be mainly due to infection and multi‐organ failure[15]. Our results may suggest the TBI patients may benefit from EPO treatment for its long-term effect, which may relate to its organ-protective effects[28].
Neurological recovery
Preclinical laboratory studies suggested that EPO may decrease local tissue hypoxia in the brain, improve function of the blood‐brain barrier, decrease cerebral edema, and attenuate secondary brain injury, making EPO theoretically well suited to treat TBI[29]. However, our meta-analysis demonstrated no significant neurologic improvement in TBI patients following EPO treatment. This is concordant with Liu et al’s conclusion[15]. Furthermore, our study demonstrated that there is no difference at each subgroup level of GOS and GOS-E systems.
The value of laboratory experiments for predicting the effectiveness of treatment strategies in clinical trials remains controversial. Several factors may contribute to the unguaranteed benefits in human trials compared with EPO being used in animal models. First, the characteristics of the experimental TBI tend to be simple and replicate only single factors in laboratory models[30]. None of these preclinical models adequately represents the complex situation of human TBI. The type and degree of injury can be standardized in preclinical models, in contrast, TBI in humans can result from a variety of etiologies such as the neglect of motorists, cyclists, construction workers and industrial workers in observing safety precautions, resulting in heterogeneous damage patterns including cranial fractures, intracerebral hemorrhage, cerebral contusion, cerebral edema, and soft-tissue injuries[31]. Second, there are differences pathophysiological responses to neurotrauma between rodent and human, which may lead to different rates of survival as well as differences in neurological recovery[32]. A broad spectrum of secondary events, complex cascade of molecular and cellular events is triggered by the initial injury. This all contribute to cell death and/or degeneration and worsen patient neurological outcomes but could, at least theoretically, be counteracted52. To preserve and restore the integrity, function, and connectivity of the brain cells and improve the patient’s outcome, neuroprotective drugs should be administered as soon as possible and as long as the pathological cascades occur[33]. An experimental study in mice suggested the importance of the therapeutic time-window within 6 hours after the initial TBI[34]. In laboratory studies, EPO can be administered as early as 5 minutes after injury[35], while this short time to intervention is not always possible in the clinical setting. However, the dose and timing of EPO injections varied greatly across RCTs in our study, and the current evidence is not strong enough to draw the conclusion that early intervention delivers better prognosis[36].
For optimal translation to the clinical situation for EPO treatment in TBI, preclinical studies should preferably be performed in more than one model and species to investigate the effects on both mechanistic and behavioral end points. Also, when initiating clinical studies, protocols should incorporate into early recognition and diagnosis of TBI, and timely intervention with EPO.
Complication
The EPO dose and therapeutic duration were not to reach a consensus, maybe due to the safety concerns of EPO has not been well established. Most of the evidence regarding the safety of EPO comes from its non-neurologic use; previous studies reported increased thromboembolic complications and/or mortality risks with EPO administration to cancer patients, critically-ill patients and patients with kidney disease[37]. One prior study administered EPO to acute ischemic stroke patients, which showed that EPO therapy significantly improved long-term neurological outcomes in patients after ischemic stroke, but the long-term recurrent stroke and mortality rate did not differ between the EPO-treated and placebo-control group.
Our findings suggested that the use of EPO can be safe and well tolerated in TBI patients and does not increase the risk of complications. However, the interactions between EPO and various physiologic variables as well as drugs commonly used in TBI patients are unknown. Future studies should further investigate the safety profile of EPO for TBI, especially when other commonly-used drugs involving in.
Limitations and weakness
There are a number of limitations often inherent to meta-analyses that we encountered. First, the EPO treatment regimes differed across studies. The heterogeneity of the original RCTs may have reduced our ability to discern the true differences between the intervention and control arms. Second, the inclusion criteria for TBI patients across RCTs are vague and insufficient. TBI is a highly heterogeneous injury with a broad spectrum of symptoms, different level of initial TBI injury related to different therapeutic efficacy and outcomes [38, 39]. Third, the six-month mid-term follow-up time point is still a relatively brief time-window. Our analysis was limited by the varying follow-up durations of the included RCTs; further studies should conduct longer-term follow-up to continue coursing the efficacy and safety of EPO treatment for TBI. Forth, the neurological recovery should not be represented only by GOS and GOS-E, it will be more comprehensive and persuasive if the evaluation items include motor and sensory functions to assess gross and specific neurological function to TBI patients. Finally, there are limited published data evaluating EPO treatment for TBI, publication bias was strongly suspected even though not detected.
Future aim
Further exploration of molecular biomarkers should be anticipated to indicate the appropriate patients for EPO therapy after TBI[40]. Foundation of new appraisal system to assess the clinical effect is in demand, as with the originators of the GOS and GOS-E, survival is “an imperfect yardstick” in TBI. The current study did not demonstrate differences in neurologic recovery using the GOS and GOSE, but these scales are quite coarse and future studies should further investigate EPO as a neuroprotective intervention in TBI using more sensitive indicator suggested to detect the realistic slight, but still clinically meaningful, functional improvement. The time– and dose–response relationships of EPO treatment in TBI patients also needs to be better delineated. These aims can be accomplished with better homogenization of included patients, investigation of multiple dosages, standardization of intervention time, coupled with integrated multidimensional outcomes.