1 Lake, M. A. What we know so far: COVID-19 current clinical knowledge and research. Clinical Medicine 20, 124-127 (2020).
2 Sunstein, C. R. & Vermeule, A. Conspiracy theories: Causes and cures. The Journal of Political Philosophy 17, 202-227 (2009).
3 Mian, A. & Khan, S. Coronavirus: The spread of misinformation. BMC Medicine 18, 89 (2020).
4 Kouzy, R. et al. Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus 12, e7255 (2020).
5 Brennen, J. S., Simon, F. M., Howard, P. N. & Nielsen, R. K. Types, sources, and claims of COVID-19 misinformation. 1-13 (The Reuters Institute for the Study of Journalism, 2020).
6 Lima, D. L., Lopes, M. A. A. A. d. M. & Brito, A. M. Social media: Friend or foe in the COVID-19 pandemic? Clinics 75, e1953 (2020).
7 Agley, J. Assessing changes in US public trust in science amid the Covid-19 pandemic. Public Health, doi:https://doi.org/10.1016/j.puhe.2020.05.004 (2020).
8 Oliver, J. E. & Wood, T. Medical conspiracy theories and health behaviors in the United States. JAMA Internal Medicine 174, 817-818 (2014).
9 Hagen, K. Should academics debunk conspiracy theories? Social Epistemology, doi:https://doi.org/10.1080/02691728.2020.1747118 (2020).
10 Prooijen, J.-W. v. & Douglas, K. M. Conspiracy Theories as Part of History: The Role of Societal Crisis Situations. Memory Studies 10, 323-333 (2017).
11 Leman, P. J. & Cinnirella, M. A major event has a major cause: Evidence for the role of heuristics in reasoning about conspiracy theories. Social Psychological Review 9, 18-28 (2007).
12 Oliver, J. E. & Wood, T. J. Conspiracy Theories and the Paranoid Style(s) of Mass Opinion. American Journal of Political Science 58, 952-966 (2014).
13 Miller, J. M. Do COVID-19 conspiracy theory beliefs form a monological belief system? Canadian Journal of Political Science, doi:https://doi.org/10.1017/S0008423920000517 (2020).
14 Freeman, D. & Bentall, R. P. The concomitants of conspiracy concerns. Social Psychiatry and Psychiatric Epidemiology 52, 595-604 (2017).
15 Galliford, N. & Furnham, A. Individual difference factors and beliefs in medical and political conspiracy theories. Scandinavian Journal of Psychology 58, 422-428 (2017).
16 Douglas, K. M. et al. Understanding conspiracy theories. Political Psychology 40, 3-35 (2019).
17 Guess, A., Nagler, J. & Trucker, J. Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Science Advances 5, eeau4586 (2020).
18 Sutton, R. M. & Douglas, K. M. Conspiracy theories and the conspiracy mindset: implications for political ideology. Current Opinion in Behavioral Sciences 34, 118-122 (2020).
19 Miller, J. M., Saunders, K. L. & Farhart, C. E. Conspiracy endorsement as motivated reasoning: The moderating roles of political knowledge and trust. American Journal of Political Science 60, 824-844 (2015).
20 Pennycook, G., McPhetres, J., Bago, B. & Rand, D. G. Predictors of attitudes and misperceptions about COVID-19 in Canada, the U.K., and the U.S.A. PsyArxiv, doi:https://doi.org/10.31234/osf.io/zhjkp (2020).
21 Pennycook, G. & Rand, D. G. Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality 88, 185-200 (2020).
22 Jasinskaja-Lahti, I. & Jetten, J. Unpacking the relationship between religiosity and conspiracy beliefs in Australia. British Journal of Social Psychology 58, 938-954 (2019).
23 Lynas, M. COVID: Top 10 current conspiarcy theories, <https://allianceforscience.cornell.edu/blog/2020/04/covid-top-10-current-conspiracy-theories/> (2020).
24 Ahmed, W., Vidal-Alaball, J., Downing, J. & Seguí, F. L. COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data. Journal of Medical Internet Research 22, e19458 (2020).
25 Reichert, C. 5G coronavirus conspiracy theory leads to 77 mobile towers burned in UK, report says. CNet Health and Wellness (2020). <https://www.cnet.com/health/5g-coronavirus-conspiracy-theory-sees-77-mobile-towers-burned-report-says/>.
26 Wakabayashi, D., Alba, D. & Tracy, M. Bill Gates, at Odds With Trump on Virus, Becomes a Right-Wing Target. The New York Times (2020). <https://www.nytimes.com/2020/04/17/technology/bill-gates-virus-conspiracy-theories.html>.
27 Parker, B. How a tech NGO got sucked into a COVID-19 conspiracy theory. The New Humanitarian (2020). <https://www.thenewhumanitarian.org/news/2020/04/15/id2020-coronavirus-vaccine-misinformation>.
28 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273 (2020).
29 Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nature Medicine 26, 450-452 (2020).
30 Huang, J. Chinese Diplomat Accuses US of Spreading Coronavirus. VOA News (2020). <https://www.voanews.com/science-health/coronavirus-outbreak/chinese-diplomat-accuses-us-spreading-coronavirus>.
31 Stevenson, A. Senator Tom Cotton Repeats Fringe Theory of Coronavirus Origins. The New York Times (2020). <https://www.nytimes.com/2020/02/17/business/media/coronavirus-tom-cotton-china.html>.
32 Vigdor, N. Pastor Who Defied Social Distancing Dies After Contracting Covid-19, Church Says. The New York Times (2020). <https://www.nytimes.com/2020/04/14/us/bishop-gerald-glenn-coronavirus.html>.
33 Ladd, S. Kentucky Gov. Andy Beshear hanged in effigy as Second Amendment supporters protest coronavirus restrictions. Louisville Courier Journal (2020). <https://www.courier-journal.com/story/news/politics/2020/05/24/second-amendment-supporters-protest-covid-19-restrictions-capitol/5250571002/>.
34 Hutchinson, B. 'Incomprehensible': Confrontations over masks erupt amid COVID-19 crisis. abc News (2020). <https://abcnews.go.com/US/incomprehensible-confrontations-masks-erupt-amid-covid-19-crisis/story?id=70494577>.
35 Jaiswal, J., LoSchiavo, C. & Perlman, D. C. Disinformation, Misinformation and Inequality-Driven Mistrust in the Time of COVID-19: Lessons Unlearned from AIDS Denialism. AIDS and Behavior, doi:https://doi.org/10.1007/s10461-020-02925-y (2020).
36 Krause, N. M., Freiling, I., Beets, B. & Brossard, D. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. Journal of Risk Research, doi:https://doi.org/10.1080/13669877.2020.1756385 (2020).
37 Jolley, D. & Douglas, K. M. Prevention is better than cure: Addressing anti‐vaccine conspiracy theories. Journal of Applied Social Psychology 47, 459-469 (2017).
38 Banas, J. A. & Rains, S. A. A meta-analysis of research on inoculation theory. Communication Monographs 77, 281-311 (2010).
39 Zollo, F. et al. Debunking in a world of tribes. PLoS One 12, e0181821 (2017).
40 Ferguson, S. L., G. Moore, E. W. & Hull, D. M. Finding latent groups in observed data: A primer on latent profile analysis in Mplus for applied researchers. Int J Behav Dev, 0165025419881721 (2019).
41 Nadelson, L. et al. I just don't trust them: The development and validation of an assessment instrument to measure trust in science and scientists. School Science and Mathematics 114, 76-86 (2014).
42 Johnson, D. R. & Borden, L. A. Participants at Your Fingertips: Using Amazon’s Mechanical Turk to Increase Student–Faculty Collaborative Research. Teaching of Psychology 39, 245-251 (2012).
43 Buhrmester, M., Kwang, T. & Gosling, S. D. Amazon's Mechanical Turk: A New Source of Inexpensive, Yet High-Quality Data? Perspectives on Psychological Science 6, 3-5 (2011).
44 Chandler, J. & Shapiro, D. Conducting clinical research using crowdsourced convenience samples. Annual Review of Clinical Psychology 12, 53-81 (2016).
45 Merz, Z. C., Lace, J. W. & Einstein, A. M. Examining broad intellectual abilities obtained within an mTurk internet sample. Current Psychology, doi:https://doi.org/10.1007/s12144-020-00741-0 (2020).
46 Keith, M. G., Tay, L. & Harms, P. D. Systems perspective of Amazon Mechanical Turk for Organizational Research: Review and Recommendations. Frontiers in Psychology 8, 1359 (2017).
47 Kim, H. S. & Hodgins, D. C. Are you for real? Maximizing participant eligibility on Amazon's Mechanical Turk. Addiction, doi:https://doi.org/10.1111/add.15065 (2020).
48 Herzberg, K. N. et al. The believability of anxious feelings and thoughts questionnaire (BAFT): A psychometric evaluation of cognitive fusion in a nonclinical and highly anxious community sample. Psychological Assessment 24, 877-891 (2012).
49 Berlin, K. S., Parra, G. R. & Williams, N. A. An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models. J. Pediatr. Psychol. 39, 188-203, doi:10.1093/jpepsy/jst085 (2013).
50 Xiao, Y., Romanelli, M. & Lindsey, M. A. A latent class analysis of health lifestyles and suicidal behaviors among US adolescents. J. Affect. Disord. 255, 116-126, doi:10.1016/j.jad.2019.05.031 (2019).
51 Nylund, K. L., Asparouhov, T. & Muthén, B. O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Modeling 14, 535-569, doi:10.1080/10705510701575396 (2007).
52 Asparouhov, T. & Muthen, B. Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Struct Equ Modeling 21, 329-341, doi:10.1080/10705511.2014.915181 (2014).
53 Nagin, D. Group-Based Modeling of Development. (Harvard University Press, 2005).
54 Nagin, D. S. Analyzing developmental trajectories: A semiparametric, group-based approach. Psychol. Methods 4, 139-157, doi:10.1037//1082-989x.4.2.139 (1999).
55 Nagin, D. S. & Tremblay, R. E. Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychol. Methods 6, 18-34, doi:10.1037//1082-989x.6.1.18 (2001).
56 Muthen, B. in The SAGE Handbook of Quantitative Methodology for the Social Sciences (ed D. Kaplan) Ch. 18, 345-368 (Sage Publications, 2004).
57 Finch, H. & Bolin, J. Multilevel Modeling using Mplus. (CRC Press, Taylor & Francis Group, 2017).
58 Lo, Y. T., Mendell, N. R. & Rubin, D. B. Testing the number of components in a normal mixture. Biometrika 88, 767-778, doi:10.1093/biomet/88.3.767 (2001).
59 Muthen, B. & Shedden, K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 55, 463-469, doi:10.1111/j.0006-341X.1999.00463.x (1999).
60 Curran, P. J. & Hussong, A. M. in Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (eds D. S. Moskowitz & S. L. Hershberger) 59–85 (Lawrence Erlbaum Associates Publishers, 2002).
61 Bollen, K. A. & Curran, P. J. in Latent Curve Models: A Structural Equation Perspective Wiley Series in Probability and Statistics 1-293 (2006).
62 Imhoff, R. & Lamberty, P. How paranoid are conspiracy believers? Toward a more fine‐grained understanding of the connect and disconnect between paranoia and belief in conspiracy theories. European Journal of Social Psychology 48, 909-926 (2018).
63 Cope, M. B. & Allison, D. B. White hat bias: examples of its presence in obesity research and a call for renewed commitment to faithfulness in research reporting. International Journal of Obesity 34, 84-88 (2010).
64 Godlee, F., Smith, J. & Marcovitch, H. Wakefield's article linking MMR vaccine and autism was fraudulent. BMJ 342, c7452 (2011).
65 Titus, S. L., Wells, J. A. & Rhoades, L. J. Repairing research integrity. Nature 453, 980-982 (2008).
66 Mehra, M. R., Ruschitzka, F. & Patel, A. N. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet, doi:https://doi.org/10.1016/S0140-6736(20)31324-6 (2020).
67 Alberts, B. et al. Self-correction is science at work. Science 348, 1420-1422 (2015).
68 Aguinis, H., Banks, G. C., Rogelberg, S. G. & Cascio, W. F. Actional recommendations for narrowing the science-practice gap in open science. Organizational Behavior and Human Decision Processes 158, 27-35 (2020).
69 Jargowsky, P. A. in Encyclopedia of Social Measurement Vol. 2 919-924 (Elsevier, New York, 2005).
70 Jolley, D. & Douglas, K. M. The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS One 9, e89177 (2014).