Temperature-induced performance variation is one of the main concerns of the conventional stack gate oxide double gate tunnel field-effect transistor (SGO-DG-TFET). In this regard, we investigate the temperature sensitivity of extended source double gate tunnel field-effect transistor (ESDG-TFET). For this, we have analyzed the effect of temperature variations on the transfer characteristics, analog/RF, linearity and distortion figure of merits (FOMs) using technology computer aided design (TCAD) simulations. Further, the temperature sensitivity performance is compared with conventional SGO-DG-TFET. The comparative analysis shows that ESDG-TFET is less sensitive to temperature variations compared to the conventional SGO-DG-TFET. Therefore, this indicates that ESDG-TFET is more reliable for low-power, high-frequency applications at a higher temperature compared to conventional SGO-DG-TFET.