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Abstract

Mendelian randomization is a powerful method for for inferring causal rela-
tionships. However, obtaining suitable genetic instrumental variables is often
challenging due to gene interaction, linkage, and pleiotropy. We propose Bayesian
Network-based Mendelian Randomization (BNMR), a Bayesian causal learning
and inference framework using individual-level data. BNMR employs the ran-
dom graph forest, an ensemble Bayesian network structural learning process, to
prioritize candidate genetic variants and select appropriate instrumental vari-
ables, and then obtains a pleiotropy-robust estimate by incorporating a shrinkage
prior in the Bayesian framework. Simulations demonstrate BNMR can efficiently
reduce the false positive discoveries in variant selection, and outperforms exist-
ing MR methods in terms of accuracy and statistical power in effect estimation.
With application to the UK Biobank, BNMR exhibits its capacity in handling
modern genomic data, and reveals the causal relationships from hematological
traits to blood pressures and psychiatric disorders. Its effectiveness in handling
complex genetic structures and modern genomic data highlight the potential to



facilitate real-world evidence studies, making it a promising tool for advancing
our understanding of causal mechanisms.

Keywords: Mendelian Randomization, Variant Prioritization, Genome-wide
Association Study, Bayesian Network, Horizontal Pleiotropy, Linkage Disequilibrium

Introduction

Identifying genuine causality is crucial to understanding physiological processes and
discovering therapeutic targets, but it is also a tricky issue. Randomized controlled
trials (RCTs) are usually regarded as the golden standard for causal inference but
are restricted due to methodological, ethical, and economic concerns. Mendelian ran-
domization (MR) is a promising approach to estimating causal effects using genetic
variants as instrumental variables (IVs) (Sanderson et al, 2022). In general, MR anal-
ysis relies on three core assumptions (Fig. 1a): (i) relevance: a reliable correlation
exists between the instrument and exposure; (i) exogeneity or exchangeability: the
instrument is independent with any confounders between the exposure and outcome
(Z L U); and (iii) exclusion restriction: the instrument should affect the outcome only
through the exposure (Z IL Y|X,U).

Unfortunately, the rigorous assumptions are often violated (Fig 1b), making it
challenging to identify appropriate genetic instruments. First, although genome-wide
association studies (GWAS) have identified numerous risk loci, in particular single
nucleotide polymorphisms (SNPs), the effect on a polygenic complex trait is usu-
ally small, leading to weak-instrument bias (Davies et al, 2015). The multiple testing
burdens, ‘winner’s curse’, linkage disequilibrium (LD), and population stratification
increase the risk of false positive signals in GWAS (Tam et al, 2019). It can be improved
by applying multiple instruments (Dudbridge, 2020), whereas correlated instruments
will also lead to unstable estimates and introduce additional genetic confoundings
when including non-causal variants (Gkatzionis et al, 2022). Proposed strategies such
as LD stepwise pruning (Yang et al, 2012), principal components analysis (PCA)
(Burgess et al, 2017), and penalization aim to extract a suitable number of indepen-
dent instruments from a large set of correlated weak variants, but confront criticism
on robustness (Gkatzionis et al, 2022).

Another problem is that many IVs are actually invalid due to horizontal pleiotropy
(a variant affects the outcome via alternative pathways other than the exposure of
interest). Gene interactions, such as LD and epistasis, can also violate exclusion
restrictions analogous to pleiotropy. For individual-level data, lasso-type methods like
sisVIVE (Kang et al, 2016) and post-adaptive Lasso (Windmeijer et al, 2019) help
to control the influence of the pleiotropic effect. Recent approaches like TSHT (Guo
et al, 2018) and CIIV (Windmeijer et al, 2021) mitigate pleiotropy by identifying valid
instruments from candidate sets.

The above approaches relying on many implausible assumptions are tricky to model
sophisticated real genetic patterns. In particular, due to complex gene interactions
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Fig. 1 The overview of BNMR.

a. The three core assumptions of IV. b. The problems in current MR. Weak IVs are primarily due to
the small individual contribution of a single locus to the trait and the low statistical power of GWAS,
as well as the presence of linkage and interaction effects, leading to numerous false-positive discoveries.
Invalid I'Vs are mainly caused by horizontal pleiotropy and linkage disequilibrium, which break the
exclusion restriction assumption. c. Correlated horizontal pleiotropy induced by gene interactions.
Zp is a pleiotropic varaints with independent effect on X and Y, and Z; is associated with Zp. The
causal pathway IV— X — Y and horizontal pleiotropic pathway IV— Y will be correlated when Z;
is selected as IV. d. The BNMR model. In the learning stage, we leverage the random graph forest to
prioritize variants from a large interacting set and select variants with a true effect on the exposure as
instruments. In the inference stage, we impose shrinkage prior on the Bayesian MR model to obtain
a pleiotropy-robust estimate. e. Notations used in the BNMR model.

(Gx@G), incorporating non-causal variants as IVs not only leads to unstable esti-
mates and impacts statistical power but also may introduce GxG-induced correlated
pleiotropy, violating the Instrument strength independent of direct effect (InSIDE)
assumption that many methods for correcting pleiotropy that rely on (Fig 1c). Causal
diagram model provides an alternative way to represent the underlying causal rela-
tionships (Nogueira et al, 2022). With causal diagrams, machine learning techniques



like the causal Bayesian network (BN) are currently applied to identify genetic interac-
tions and causal variants (Lyu et al, 2021). They will also be a profitable complement
to conventional MR (Howey et al, 2020; Amar et al, 2021).

In this paper, we propose a two-stage Bayesian Network-based Mendelian Random-
ization (BNMR) approach by integrating causal discovery and inference (Fig. 1d). We
aim to tackle correlated weak instruments in learning stage and cope with pleiotropy
in inference stage. Using the random graph forest (RGF'), an ensemble approach com-
prised of a series of BN structure learning processes, we prioritize variants with effects
that are small and interacting and identify variants with direct effect on exposure
as instruments. Then we estimate the causal effects via the Bayesian MR framework
with a shrinkage prior to cope with potential horizontal pleiotropy (Berzuini et al,
2020). We demonstrate that BNMR is superior to conventional approaches in both
instrument selection and effect estimation via simulations. With application to the
UK BioBank, we examine causal pathways from hematological parameters to blood
pressures and psychiatric disorders, bringing new biological insights.

Methods
Overview of the BNMR model

BNMR is a two-stage MR framework using individual-level data. In the learning stage,
we propose RGF to select variants with reliable relevance from a large number of
correlated weak instruments. We utilize BNs to characterize the complex conditional
probability relationships and partition the variant set Z into three subsets according
to their relationships with the exposure of interest X (DIE partition),

ZZZDUZ[UZE. (1)

We use notations in calligraphic font to represent the variant set, bold font to represent
the vector of genotypes, and Italic capital letter to represent single genotype. Variants
in Zp directly affect the exposure, variants in Z; indirectly affect the exposure via
gene interaction or linkage, i.e. variants in Z; and X are d-separated by variants in
Zp (Z; L X|Zp), while variants in Zg do not affect the exposure (Zg 1L X). The
three subsets are distinguished via BN under the causal Markov, faithfulness, and
sufficiency assumptions (Nogueira et al, 2022), and only Zp can be parents of X in
the causal graph.

In the inference stage, we model the potential horizontal pleiotropy explicitly.
Since quantitative traits are determined by both genetic and environmental factors,
assuming linearity and no interaction, we have

)(=O[Q'i'CUTZD'l'é“X7 (2)

and
T T T
Y =v%+YpZp+71Z1 +YEZE + ¢y, (3)
where a and <y represent corresponding effect size on X and Y. Variants Zp € Zp
affect the outcome Y through two different pathways: with the mediation of exposure



X (Zp =X 2, Y), the causal pathway of interest, and via direct pathway or

through other mediators other than X (Zp N Y'), known as (horizontal) pleiotropy
(Pingault et al, 2018). Under the assumption that both pathways are independent
(the InSIDE assumption) (Pingault et al, 2018), we have

YD = ﬁa + n, (4)

where (3 is the causal effect of X on Y, while 5 represents the pleiotropic effects. By
introducing the correlation matrix R between Zp and Z,

ZI=R0+RZD+6R, (5)
we can rewrite the Eq. 2 and 3 as

T
X=ay+a Zp+ex,

T . (6)
Y=0+p8X+7y Zp +¢cy,
T T ~ ~ T
where Bg =% +YrRo + YeZE — Bag, ¥ =N+ Ryy, and ey = yreg + ey — Pex.
ex and ey are correlated, but are both independent with Z p. Actually, only a subset
of variants in Zp need to be included as IVs, and consequently, variants in Zp are
required to be identified with high precision. We then impose a shrinkage prior on
nuisance parameters 4 to make (3 identifiable (Berzuini et al, 2020). Details on the
derivation can be found in Supplementary Note SN1.

BN structure learning in the random graph forest

To reduce the computational complexity of structure learning and assess confidence
of each edge, we propose RGF, inspired by the random forest. In RGF, r sub-graphs
are created using bootstrapping or subsampling, in which ng of n individuals and p,
of p variants are sampled in each sub-graph. Consequently, we boil down the process
of DIE partitioning to the structure learning of a series of causal BNs.

Since variants are reasons of traits naturally, we can simplify structure learning to
graph skeleton determination. We identify Zp by scanning the variants directly adja-
cent to the exposure in each graph and calculating the adjacency score (the frequency
of the Z — X edge presence in all sub-graphs) for each variant, which is the confidence
of the variant-exposure relevance in the average causal graph. Variants with higher
adjacency scores are at a higher confidence level to be identified as Zp € Zp. We can
select a specified number of lead variants or variants with scores higher than a given

threshold 2-2= as IVs.

Various palgorithms are proposed for BN structure learning. Scored-based
approaches ascertain the optimal network by exhaustively or heuristically explor-
ing candidate graphs and maximizing the network score, while constraint-based
approaches leverage a sequence of conditional independence tests to establish the
edge constraints between nodes and subsequently refine the directions (Nogueira et al,




2022). We implement score-based approaches including Hill-Climbing (hc) and Tabu
Search (tabu), constrained-based approaches including stable PC (pc.stable), Incre-
mental Association (iamb), and Grow-Shrink (gs), as well as hybrid learning methods
including Max-Min Hill-Climbing (mmhc) and Restricted Maximization (rsmax2). All
these methods are implemented using the R package bnlearn.

Bayesian MR estimation with a shrinkage prior

We specify model (6) under the Bayesian framework. The total error term ey and £y
can be decomposed into a confounding-related term ¢ and a completely random term
o, ie., Elex) = E(y) = 0, Var(ex) = 67 + 01, and Var(Sy ) = 65 + 5. Assuming that
the two completely random terms are uncorrelated, we have Cov(ex,&y ) = 610s.

We only need to select a subset of Zp as instruments, and have the Bayesian MR
model (Berzuini et al, 2020)

J
XlZ,U ~ N(OLO + ZOéJZ] +51U,O'%)
j=1
z 2 (7)
YIX.ZU ~N(Bo+BX + Y 7;Z; +0,U,03),
j=1

U ~N(0,1).

where Z; € Zp. To make causal parameter 3 identifiable, we assume that not all
IVs selected take pleiotropic effects (i.e., some components of «y are zero) and impose
a shrinkage prior on 7 under the Bayesian framework (Berzuini et al, 2020). The
Bayesian estimation is conducted using Markov Chain Monte-Carlo (MCMC) with
Rstan and PyMC. The first half of the iteration is used for burn-in, and the second
half is used for sampling.

BNMR can extend to binary outcomes by modifying the Eq. 7 to probit or logistic
regressions, i.e.,

J
Y|X.Z,U ~ Bernoulli | h(By + BX + Y 7, Z; +8,U) |, (8)
j=1

where the link function h(+) can be inverse-probit or inverse-logit.

We compare estimates of BNMR, with other IV selection and MR estimation
approaches. We implement PCA with R package stats and penalized regressions with
R package glmnet, where 10-fold cross validation is used to determine the best value of
A. Compared methods are implemented with the R package AER, ivmodel, Mendelian-
Randomization, cause, R2BGLiMS, and CIIV. We implement BNMR as an R package,
with source codes available at https://github.com/sjl-sjtu/bnmr.


https://github.com/sjl-sjtu/bnmr

Simulations

We use both simulated and real genomics from UK Biobank in simulations. For sim-
ulated genomics, k independent loci sampled from multinomial distributions, whose
genotype frequencies satisfy the Hardy-Weinberg equilibrium (HWE), with the effect
allele frequency 7 from U(0.05,0.95). m correlated loci for each locus are simulated
according to LD squared correlation coefficient (7“2) (Pritchard and Przeworski, 2001)
that sampled from U(0.01,0.99), and genomics with p = k(m + 1) loci are synthe-
sized. Real genomic data used to simulate phenotypes are derived from variants on
chromosomes 10, 17 and 22 in the European ancestry population of UK Biobank.
Phenotypes are generated from linear model

X=a0+ZajGj+5zU+gx, o ~/\/’(O,gg2c)7 (9)
J
and
Y =B+ BX + ) nGr+ ) 1mGm +0,U +e,, e, ~ N(0,0}), (10)
k m
unilateral pleiotropic

with causal effect 8 = 0.5, G,,, from a subset of G;. Confounder U is generated from
the standard Gaussian distribution A'(0,1), with coefficients 6, = §, = 1. Variants
affecting X are randomly selected from the simulated genome, with effect size a; ~
0.1 + |N(0,0.05%)|. Variants affecting Y are either unilateral (those only affect V)
or pleiotropic (those that also affect X). For unilateral variants v, ~ N (0.1,0.052),
and for pleiotropic variants v; ~ N (u7,0.052), with j, = 0 (balanced pleiotropy)
or ju, = 0.05 (directional pleiotropy). Although unilateral loci do not directly affect
X, they can perform as a background noise to interfere IV selection through gene
interactions. We utilize 100 replicates for each scenario and report the average.

For scenarios with non-additive genetic effects, we simulate phenotypes using more
complicated polygenetic models with simple multiplicative effects, interactive multi-
plicative effects, and interactive threshold effects (Marchini et al, 2005). Details can
be found at Supplementary Note SN3.

Results

BNMR can efficiently identify effect variants from numerous
weak, interacting variants with high precision in learning stage.

We first compare the fine-mapping performance of RGF with different hyperparame-
ters and structure learning algorithms in simulated datasets (Fig 2). RGF exhibits a
lower false discovery rate (FDR) and a higher AUC, with increasing subsample size
and numbers of subsamples, though this improvement is accompanied by an increase
in time consumption. Constrained-based approaches yield lower FDR, while the score-
based approaches are superior in speed. As the selection threshold increases, the
number of identified variants diminishes with increased precision.

Compared to the conventional association test (linear regression), RGF, LD step-
wise pruning, and penalized regressions (especially lasso and elastic net) can all reduce
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Fig. 2 The performance of the RGF with different hyperparameters and BN structure learning
methods in simulations.
a. The performance and time consumption of RGF with different numbers of subsampling variants
using the Hill-Climbing (hc) algorithm. b. The performance and time consumption of RGF with
different numbers of subsampling individuals using the hc algorithm. c. The performance and time
consumption of RGF with different numbers of subsamples. d. The performance and time consump-
tion of RGF with different BN structure learning methods. We evaluate score-based approaches
including hc and tabu, constrained-based approaches including stable PC (pc.stable), Incremental
Association (iamb), and Grow-Shrink (gs), as well as hybrid learning methods including Max-Min
Hill-Climbing (mmhc) and Restricted Maximization (rsmax2). The lines show the corresponding FDR
and AUC, while the gray bars display the changes in consumed time (min). e. The ROC curve for
RGF (ng = 2000, p, = 120, 7 = 1000). f. The relationships among selection threshold (a*), number
of selected variants, and FDR. Simulated data size: n = 5000, p = 2000, with 100 true effect variants
for the exposure. FDR: false discovery rate. AUC: area under the receiver operating characteristic
(ROC) curve.

FDR, while the RGF achieves the highest precision, performing as a effective tool in
prioritizing candidate effect variants and identifying true effect variants (Zp) (Fig 3).
Before employing these variable selection strategies, we conduct pre-filtering to reduce
the number of candidate variants. A more strict P threshold before RGF increases the
precision in top variants but may cause more false discoveries. A threshold of around i

to 0.01

may be proper. Besides, adjacency score can be regarded as the confidence that

the variant belongs to Zp, and thus, it is also an assessment of instrument strength.
The correlation between the adjacency score and the commonly used F statistics (Fig

r125

t100

J3quinu JueLeA



a RGF b LD Pruning
X1 X2 X1 X2

0.8 0.8

0.6 0.6

ot ot

FDR
FDR

20 40 40 60 0.001 0.01 0.1 0.001 0.01 0.1
2

60 20
selected number E

GWAS threshold [] 1e-08 [] 1e-06 [] 1e-04 [] 0.01 GWAS threshold [[] 1608 [ 1e06 [ 1604 [ 0.01

C Penalized Regression
X1 X2

GWAS filtering
X1 x2

60 20
o selected number

GWAS threshold [[] 1e-08 [] 1e:06 [[] 1e-04 [[] 0.01

0 05 1 0 0.5 1

Fig. 3 False discovery rate (FDR) of different IV selection strategies in simulations.

a. FDR of RGF. b. FDR of LD stepwise pruning. r2: correlation thresholds for LD pruning. c. FDR
of penalized regressions. « is set to be 1.0 (Lasso), 0.5 (elastic net), and 0 (ridge regression), with
penalty factor A determined by 10-fold cross validation. d. FDR of GWAS lead SNPs. Variants are
pre-filtered according to specific GWAS P-value thresholds before LD pruning, penalized regressions,
or RGF. Simulated data size: n = 10000, p = 10000, with 300 true effect variants for each trait. The
environmental variance (oi) for X5 is imposed to be twice as much as that of X to represent traits
with lower heritability. RGF is conducted with ng = 2000, ps = 150, r = 5000 using hc algorithm.

S2) indicate that RGF is capable of choosing instruments reliable relevance to reduce
weak-instrument bias.

GWAS becomes tricky when dealing with non-additive genetic effects (Tam et al,
2019). We simulate phenotypes from the combination of three interacting polygenetic
models, including simple multiplicative effects, interactive multiplicative effects, and
interactive threshold effects (Supplementary Note SN3) (Marchini et al, 2005). The
results show that RGF performs well in settling the puzzle of gene interaction and
epistasis (Fig S4).

Since genotypes are notoriously difficult to simulate, we also generate phenotypes
using the same procedures (Eq. 11) but based on real genotype data from the UK
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BioBank. Using the synthetic datasets, we demonstrate the adaptation of RGF to
different scales of genomes (Fig 4). RGF is capable of handling the complex structure
of real genetic data and exhibits good adaptability to datasets with different scales.

BNMR can effectively reduce mean square error of estimates,
enhance statistical power, and is robust to horizontal
pleiotropy in inference stage.

We first compare the performance of BNMR to other existing MR approaches (Sup-
plementary Table S5), including two-stage least square (TSLS), limited information
maximum likelihood ratio (LIML) (Boehm and Zhou, 2022), inverse-variance weighted
(IVW) (Burgess et al, 2013), MR-Egger (Bowden et al, 2015), weighted median (Bow-
den et al, 2016), weighted mode (Hartwig et al, 2017), JAM-MR (Gkatzionis et al,
2021), CAUSE (Morrison et al, 2020), and CIIV (Windmeijer et al, 2021) (Fig 5a).
We include two types of pleiotropic loci in our simulation: pleiotropy loci that inde-
pendently affect exposure and outcome, or the effects on the exposure and outcome
correlated resulting from gene interaction like linkage. For each scenario, we exam-
ine the performance of various methods under settings where the expected average
pleiotropic effect of all loci was either 0 (balanced pleiotropy) or non-zero (directional
pleiotropy). Most prevailing approaches perform relatively well in balanced pleiotropy,
but fail to cope with scenarios with complex directional and correlated pleiotropy. Due
to its sensitivity to the InSIDE assumption, MR-Egger performs noticeably worse when
the number of correlated pleiotropic variants increases. Some two-sample methods, like

10



CAUSE, confront an inflated estimation variance, and bias from sample overlap when
applying to one-sample studies (Burgess et al, 2016). Methods based on plurality rule
in a broad sense such as weighted median and mode estimator exhibits commendable
stability. In general, BNMR is superior to the existing approaches in terms of mean
squared error (MSE), particularly due to its smaller variance of estimates, yielding
augmented statistical power. Despite relying on the InSIDE assumption, the process
of using RGF for IV selection enhances the robustness of the InSIDE assumption,
making it more resilient to correlated pleiotropy arising from gene-gene interactions.

To show the bonus BN brings to the conventional Bayesian MR, we then eval-
uate the improvement in Bayesian MR estimation by using IVs obtained from BN
(BNMR) compared to using GWAS lead SNPs directly as IVs (BMR). A noticeable
reduction in MSE can be observed when there is presence of correlated pleiotropy by
gene interaction (Fig 5b). This enhancement primarily manifests in the attenuation of
estimated variance in balanced scenarios, while both bias and variance deflate when
the pleiotropic effect is directional. To better understand the role of BN, we examine
the performance of RGF-selected IVs on other traditional MR methods (Fig 5c). Due
to overlapping samples in single-sample designs and the requirement for IVW and
MR-Egger to use independent IVs, while RGF aims to identify IVs that have a direct
impact on the exposure (which may not be independent of each other), the use of RGF-
selected IVs does not perform well and even increases bias when using IVW estimator.
Even so, on the other hand, when using MR-Egger estimator, the use of RGF-selected
IVs reduced bias and variance in estimation compared to IVs obtained through LD
pruning. We believe this is because MR-Egger and Bayesian MR are based on sim-
ilar assumptions, the InSIDE assumption, requiring that the effect of Z on X and
the pleiotropic pathways from Z to Y are independent. It is violated when Z affects
the confounder U that affects both X and Y (i.e., correlated horizontal pleiotropy).
If this correlated horizontal pleiotropy is caused by gene-gene interactions, where U
is another genetic locus Z' (Fig 1c), RGF will tend to select Z' as IV ensuring that
the InSIDE assumption is still satisfied. And therefore RGF enhances the robustness
of the InSIDE assumption.

We also conduct sensitivity analysis on the instrument numbers and iterations, and
different shrinkage priors (Van Erp et al, 2019) (Fig 5, Supplementary Note SN4-SN5).
Bias increases when there are too many or too few instruments. BNMR estimates are
not sensitive to priors in general, despite the fact that uniform spike & slab prior is
a bit more inefficient than the others based on the error bars (Fig 5d). The Bayesian
Lasso prior shows the fastest sampling speed and a deflated standard error, but has a
slightly higher bias. The horseshoe prior, although slightly less efficient, is superior in
the performance of convergence due to the lowest Rhat (Table S4 & Fig S5).

BNMR with large-scale biobank-level data vindicates causality
from erythrocyte-related traits to blood pressures.

To highlight the practical significance and applicability of our method on extensive
modern genetic datasets, we provide illustrative examples of two real-world studies

featuring both continuous and binary outcomes, utilizing data sourced from the UK
BioBank.
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Fig. 5 Performance on causal effect estimation in simulations.

a. Averaged mean square errors (MSE) of different MR approaches. Robust regression and penalized
weights are adopted in IVW and MR-Egger. IVs used in TSLS, LIML, IVW, MR-Egger, weighted
Median and Mode, and CIIV are obtained through LD stepwise prunning. IVs used in JAM-MR,
CAUSE, and BNMR are selected using their own filtering procedures from GWAS lead SNPs. Stan-
dard errors (SEs) of CAUSE are transformed from confidence intervals, of BNMR are calculated from
MCMC posterior sampling. The scenarios are represented as “the number of independent pleiotropic
variants (variants with independent direct effects on both X and Y) + the number of correlated
pleiotropic variants (the effects on X and Y are correlated)”. For each scenario, the pleiotropic effects
are simulated to be either balanced (mean pleiotrppic effect py = 0) or directional (mean pleiotropic
effect uy = 0.05). Each bar represents the average MSE of the estimation for the respective method in
that scenario with error bar showing the empirical standard error of mean MSE. The darker section
at the bottom represents the squared bias, while the lighter section at the top represents the vari-
ance. b. MSE of Bayesian MR using IVs from BN (BNMR) and using the same number of IVs from
GWAS lead SNPs (BMR). c. MSE of IVW and MR-Egger using IVs from LD pruning and RGF.
Both estimators were used their penalized robust versions. d. The average bias and error bars under
different IV numbers (left), iterations (middle), and shrinkage priors (right).



Hematological indices usually vary in a variety of physiological processes and are
potential indicators for related disorders. Correlational studies have proposed that
erythrocyte-related characteristics, including red blood cell count (RBC), hemoglobin
concentration (HGB), hematocrit (HCT), the proportion of RBCs to the plasma,
and mean red cell volume (MCV) (Enawgaw et al, 2017), are in strong correlation
with systolic and diastolic blood pressures (SBP and DBP), and abnormalities of
erythrocytes might be indicators of some cardiovascular and cerebrovascular diseases
such as hypertension (Tsuda, 2020).

To examine the causal effects of erythrocyte parameters on blood pressures, we
involve 246,659 participants of Caucasian ancestry, self-reported as free from hyper-
tension or other cardiovascular diseases (UK Biobank Non-cancer Illness Coding
1065-1094), and with available blood routine measurements at the time of enrollment.
Genome quality control is conducted using PLINK 2.0, with correspond thresholds for
the SNP missing rate, minor allele frequency (MAF), and HWE test are 0.05, 0.01,
and le-6. Fast posterior sampling with the large dataset is conducted with the Python
packages PyMC and JAX. To increase power, we conducted preliminary GWAS fil-
tering using summary statistics from a different dataset of the same ethnic group but
with distinct samples (Astle et al, 2016).

We exert two pre-filtering strategies to reduce the amount of candidate variants
and then conduct BNMR analysis. The first strategy utilizes a more stringent GWAS
P threshold of 1e-20, while the second strategy employs a looser P threshold of 5e-8,
followed by LD clumping. The results (Fig 6e) consistently show that RBC, HGB, and
HCT show significant positive effects on both DBP and SBP, and the effect magnitude
is larger on SBP than on DBP. Whereas MCV shows a non-significant negative effect
on blood pressure instead. Alternative approaches use top GWAS significant SNPs
after LD clumping as instruments, and the varied and even conflicting results (Table
S5) remind us of the importance of MR methodology. MR-Egger test shows that all
causal relationships are not significant. On the other hand, TSLS indicates that RBC,
HGB, and HCT have a significant effect on DBP but not on SBP, while CIIV estimates
a positive effect on DBP and a negative effect on SBP.

Comparing the causal variants identified by RGF and probabilistic fine-mapping
methods such as Susie (Wang et al, 2020) is quite interesting. In general, RGF focuses
on the genomic global landscape, while fine-mapping methods are more focused on
local features. Taking RBC as an example, if we coarse fine-mapping using both meth-
ods on all candidate loci after preliminary screening, we would find that the majority of
signals are shared between the two approaches (Fig 6f). When we specifically examine
the local structure near a GWAS peak (e.g., the region from 41,600,000 to 42,200,000
on chromosome 6), although Susie tends to identify more causal loci, the most signif-
icant signal (rs112233623) is the same for both methods (Fig 6g). Considering that
in IV selection, we are more concerned about false-positive signals in GWAS caused
by genetic correlation and winner’s curse, the relative conservatism of RGF is not a
disadvantage.

The underlying mechanisms may relate to blood viscosity. Higher RBC, HGB, and
HCT mean an increase in blood viscosity and peripheral resistance to blood flow,
resulting in hypertension (Enawgaw et al, 2017). Besides, erythrocytes and hemoglobin
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Fig. 6 Causal relationships from erythrocyte-related traits to blood pressures.

a-d. Manhattan plots for RBC (a), HGB (b), HCT (c), and MCV (d), where the vertical coordinate
shows the negative logarithm of the GWAS association test P-values for each locus. e. Forest plot of
the causal estimations. The units of RBC, HGB, HCT, MCV, and blood pressure are million/mms,
g/dl, %, fL, and mmHg. We adopt two different pre-filtering strategies: one uses a more strict GWAS
P threshold (1e-20), the other uses a looser P threshold (5e-8) and then conducts LD clumping
(threshold: window = 10000kb, r?=0.01, MAF=0.01). The variant loci obtained from pre-filtering
are then further selected via RGF (ng = 4000, ps; = 150, r = 5000) to identify 20 instruments for each
exposure, shown in Supplementary Note SN6, and sample 4 chains with 5000 iterations per chain
in MCMC. f. Fine-mapping results of Susie and RGF using all variants after pre-filtering using the

second strategy. g. Fine-mapping results of Susie gd RGF in the GWAS peak region chr6 41,600,000
- 42,200,000.



also influence nitric oxide bioavailability, a crucial signal in the regulation of vessel
psychology such as vasodilatation, thrombosis inhibition, and vessel formation (Helms
et al, 2018). Although the molecular mechanisms still remain to be uncovered, the
findings indicate that those hematological indices may be not only indicators but
potential therapeutic targets for hypertension.

BNMR indicates that increased leukocytes contribute to the
risk of depression.

The neuro-immune interaction has been an appealing topic in recent years. Widespread
bidirectional circuits exist between the two systems. The nervous system regulates
immune activity and cytokine balance via the direct connection of sympathetic and
parasympathetic nerves, and some neurotransmitters and neuroendocrine hormones
can also serve as immunomodulators. Meanwhile, the immune system participates in
the elimination and plasticity of synapses during development and modulates brain
activity as well (Dantzer, 2018). Immune-related hematological biomarkers provide
a new insight into the pathological mechanisms of many psychiatric disorders. For
instance, immune dysregulation has long been regarded associated with psychological
disorders including depression (Drevets et al, 2022). Recent studies report the cor-
relation between leukocyte count and depression (Reay et al, 2022; Sgrensen et al,
2023).

We leverage disease records from UK Biobank and construct a case-control study
by randomly selecting the same number of healthy individuals of the same ethnicity to
assess whether leukocyte count, as well as its two subtypes, lymphocyte and monocyte
counts, will causally affect depression. Subjects with extreme values exceeding 3 o
are excluded, and 22324 cases and 22861 controls are included in the analysis. All
participants are of Caucasian ancestry.

Significant differences in leukocyte, lymphocyte, and monocyte counts are mani-
fested between the case and control groups (Fig 7a). Results from BNMR and weighted
median indicate that an elevated leukocyte count will increase the risk of depression
(Fig 7b). The reciprocal MR analysis supports the causal direction from leukocyte
count to depression. However, when we examine the two subtypes of leukocytes -
lymphocytes and monocytes - this significant positive causal relationship disappears.
This suggests that the causal mechanism from immune cells to mental disorders is
more complex than anticipated, and warrants a careful examination of the influence
of various cell type counts and compositional ratios (Sgrensen et al, 2023).

We further conduct gene mapping and functional annotation by FUMA (Watan-
abe et al, 2017) using the top 1500 variants identified in RGF, which maps 273
depression-related protein coding genes. Functional analysis shows that these genes
are enriched in the KEGG systemic lupus erythematosus and glycosaminoglycan
Degradation pathway (Fig 7c), both related closely with immune system (Handel and
Dyer, 2021). Depression-related genes also indicates enrichment in many cytokine and
immune response pathways, including reactomes related to signaling of interleukin 9,
Wat, biocarta, and butyrophilin family (Supplementary Fig S6), consistent with pre-
vious study (Wray et al, 2018). Depressive symptoms often share resemblance with
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Fig. 7 The relationships between immune cell count and psychiatric disorders.

a. Differences in immune cell counts between the case and control groups. The significance level is
calculated using the two-side T test. b. Forest plot of the causal estimations of BNMR, penalized
robust MR-Egger, and penalized weighted median. The unit of blood cell count is billion cells per
liter. For BNMR, we select 20 instruments for each exposure via RGF (ns = 5000, ps = 150, r = 5000),
shown in Supplementary Note SN6, and sample 4 chains with 5000 iterations per chain in MCMC. For
MR-Egger and weighted median, GWAS lead variants after LD clumping are selected as instruments.
c. KEGG pathway enrichment of genes mapped by depression-related SNPs.

inflammation-induced syndrome like lethargy and inactivity, and the findings support
role of immunity in the development of depression.

Immune targets for therapeutic development in depression has become a promising
area in recent years (Drevets et al, 2022). Our analysis supports the idea of modulating
immune cell composition as an intervention for psychological depression. However, the
results should still be interpreted with caution due to recipient inclusion and sample
size, population heterogeneity, and other potential confounding factors. Noncollapsi-
bility of the logistic model may damage the estimation of binary responses (Schuster
et al, 2021). Collaboration with evidence by means of triangulation (Lawlor et al,
2016) is vital to drawing a solid and reliable conclusion.
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Discussion

Causality is challenging to identify in observational studies due to unmeasured con-
founders. The introduction of genetic instruments in MR makes it possible to estimate
causal effect in the presence of unobserved confounders, making MR increasingly
appealing in real-world studies.

Tackling imperfect IVs has always been a tricky issue in MR. We propose BNMR
to address the challenges by leveraging machine learning techniques and integrating
causal discovery and inference. We use RGF to reduce FDR and improve statistical
power when selecting instruments with true effects from numerous correlated weak
variants due to polygenicity, epistasis, and LD. Then we control horizontal pleiotropy
by imposing a shrinkage prior on the Bayesian MR. The selection of SNPs with direct
effect on exposure enhance the robustness of InSIDE assumption and reduce corre-
lated pleiotropy due to gene interaction, and the avoidance false positive signals in IV
selection also contributes to reducing weak instrument bias and enhancing statistical
power.

To guarantee the faithfulness and sufficiency of causal diagrams, we impose con-
straints in RGF that limit the nodes in the graph to only include genetic loci and a
single exposure. We tend not to involve multiple traits in a causal graph because the
common causes of those traits may not be observed. Another advantage is that the
criteria ‘not d-separated from exposure by other variants’ can be simply expressed as
‘adjacent to exposure’ in this scenario, which is convenient for DIE partition and IV
selection.

Bayesian estimation with imposed shrinkage priors is conceptually similar to
regularization in the traditional model but with some obvious advantages, like simulta-
neously estimated penalty parameters, easily obtained credible intervals, and intuitive
interpretation. Additionally, domain-specific knowledge can be included as an infor-
mative prior. BNMR are not sensitive to priors, though we recommend horseshoe prior
for better convergence performance if no additional information is accessible.

Although large-scale biobanks containing genotypes and phenotypes are now avail-
able, an increasing number of studies tend to report summary association statistics
instead due to concerns on privacy and security. Bayesian meta-analysis is applied to
assess pooled genetic relevance (Sun et al, 2022). Recent work has started to focus on
learning causal diagrams with summary data (Zhang et al, 2017), while arduous task
still remains.

BNMR is an example of post-selection inference and faces the issue that the infer-
ence stage does not account for uncertainty in the selection stage, causing more volatile
results. The model also confronts computational challenges in BN learning and MCMC
sampling, especially with increasing numbers of samples and variables. BN structural
learning is an NP-hard problem. We leverage the bagging technique in ensemble learn-
ing and propose the RGF to split the whole genetic pattern into a series of subgraphs.
The number of candidate variants is restricted via pre-filtering by GWAS association
tests before RGF, since the removal of variants with low correlations will not influ-
ence the network structure severely due to the modularity of the causal diagram. To
achieve a balance between sufficiently high precision and acceptable time consump-
tion, we suggest conducting pre-filtering using a GWAS P threshold of approximately
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L to &9 and setting the value of p,r to be at least 100 times greater than the number

of variants in RGF to ensure adequate sampling for each variant. We endorse the use
of at least 4 chains and at least 2000 iterations in MCMC. For large-scale datasets,
consolidation of posterior sampling in subsamples may be feasible.

In summary, BNMR is a practical model to prioritize and select proper instruments
from massive, interacting, and weak variants and obtain pleiotropy-robust causal effect
estimates. With accumulated genomic data available, BNMR will contributing to
revealing more causal relationships and discovering potential therapeutic targets with
real-world evidence.
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