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ABBREVIATIONS 

 

AI: Artificial Intelligence  

ARCADE: Automatic Region-based Coronary Artery Disease diagnostics using X-ray 

angiography imagEs   

AUPRC: Area Under the Precision-Recall Curve 

AUROC: Area Under the Receiver Operating Curve 

CABG: Coronary Artery Bypass Grafting 

CAD: Coronary Artery Disease 

CAG: Coronary Angiography 

CI: Confidence Interval 

DICOM: Digital Imaging and Communications in Medicine  

LAD: Left Anterior Descending Artery 

LCA: Left Coronary Artery 

LCX: Left Circumflex Artery 

MAE: Mean Absolute Error 

MHI: Montreal Heart Institute 

PCI: Percutaneous Coronary Intervention 

PPV: Positive Predictive Value (Precision) 

QCA: Quantitative Coronary Angiography 

r: Pearson’s correlation coefficient 

RCA: Right Coronary Artery 

SD: Standard Deviation 

UCSF: University of California, San Francisco 

 

 

 

  



 4 

ABSTRACT 

The coronary angiogram is the gold standard for evaluating the severity of coronary artery 

disease stenoses. Presently, the assessment is conducted visually by cardiologists, a method that 

lacks standardization. This study introduces DeepCoro, a ground-breaking AI-driven pipeline that 

integrates advanced vessel tracking and a video-based Swin3D model that was trained and 

validated on a large dataset comprised of 182,418 coronary angiographies spanning 4 years. 

DeepCoro achieved a notable precision of 71.89% in identifying coronary artery segments and 

demonstrated a mean absolute error of 20.15% (95% CI: 19.88-20.40) and a classification AUROC 

of 0.8294 (95% CI: 0.8215-0.8373) in stenosis percentage prediction compared to traditional 

cardiologist assessments. When compared to two expert interventional cardiologists, DeepCoro 

achieved lower variability than the clinical reports (19.09%; 95% CI: 18.55-19.58 vs 21.00%; 95% 

CI: 20.20-21.76, respectively). In addition, DeepCoro can be fine-tuned to a different modality 

type. When fine-tuned on quantitative coronary angiography assessments, DeepCoro attained an 

even lower mean absolute error of 7.75% (95% CI: 7.37-8.07), underscoring the reduced 

variability inherent to this method. This study establishes DeepCoro as the first video-based, 

adaptable tool in coronary artery disease analysis, significantly enhancing the precision and 

reliability of stenosis assessment. 

 

INTRODUCTION  

Cardiovascular diseases account for roughly 17.9 million annual deaths, making them the 

leading global cause of mortality 1. A significant contributor is atherosclerotic coronary artery 

disease (CAD), where stenoses (i.e. obstructions caused by atherosclerotic plaque) can lead to 

myocardial infarction if untreated 2-5. Reliable and accurate identification of the extent and severity 

of CAD directly impacts the decision to pursue an invasive revascularization procedure (i.e. 

percutaneous coronary intervention (PCI), or coronary artery bypass grafting (CABG)), generally 

conducted when stenoses are severe 
2,5. In addition, this stenosis assessment is essential to provide 

necessary treatment and prevent unnecessary revascularization 6. These stenoses are usually 

identified through visual interpretation of coronary angiography (CAG) videos, a minimally 

invasive procedure involving iodine dye and X-ray imaging 4,7-9. Despite the routine use of visual 

estimation of stenosis in CAG, this approach lacks standardization and shows high intra-observer 
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and inter-observer variability, generally ranging from 6.9% to 26.4% between observers 10. Yet, 

this visual assessment remains the clinical standard for assessing CAD severity 4,11,12 and is also 

endorsed by clinical guidelines 13,14. Quantitative coronary angiography (QCA) offers more 

reproducible results but requires clinician input for image selection and is mainly used in research 

6,15-17. Hence, there is a need for an efficient and objective tool to assess coronary artery stenoses 

in routine clinical cardiology practice. 

Artificial intelligence (AI) algorithms offer the potential for more standardized assessments of 

diagnostic tests, such as CAG,  often performing as well or better than medical experts in various 

tasks 1. However, existing AI methods for the interpretation of CAG face several challenges that 

hinder their clinical implementation: they often were trained on small datasets 3,8,18, have extensive 

exclusion criteria 3,15,19,  rely on classifying vessels in CAG images as normal or abnormal instead 

of providing a continuous percentage of severity for every stenosis 8,19, and require human inputs 

to assist with the interpretation  2,3,15,18. These limitations make them less representative of real-

world clinical data. For example, some focus only on specific projection angles 3 or the simpler 

structure of the right coronary artery (RCA), avoiding the more complex left coronary artery 

(LCA) 3,15,19. A recent method, CathAI 6, automates the assessment of stenosis severity from CAG 

images. However, its algorithm for identifying coronary artery segments could be improved due 

to suboptimal performance. Additionally, like other aforementioned methods, CathAI's use of 

static images rather than dynamic videos may overlook critical information that clinicians often 

obtain from video analysis for evaluating stenosis severity.6  

 In this work, as a primary objective, we aimed to develop a video-based algorithmic 

pipeline called DeepCoro, which goal is to automatically localize stenosis and assess their severity 

in CAG videos, rather than images, of both the LCA and RCA, and evaluate its performance using 

visual assessments made by cardiologists on a large real-world CAG dataset spanning 5 years from 

the Montreal Heart Institute (MHI). DeepCoro is the first pipeline that leverages videos instead of 

static images for the automatic evaluation of CAGs. Distinguished by its innovative coronary 

artery segment recognition and stenosis percentage prediction algorithms, DeepCoro aims to 

enhance diagnostic accuracy by using the temporal dimensions present in CAG videos, mimicking 

the comprehensive assessment performed by cardiologists. The pipeline consists of six integral 

algorithms tackling various aspects from anatomic structure detection to stenosis percentage 

prediction. As secondary objectives, we aimed to benchmark the effectiveness of DeepCoro 
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against an existing state-of-the-art image-based pipeline, CathAI 6, which was re-trained on the 

same dataset. Additionally, we aimed to evaluate the performance of DeepCoro against existing 

CAG evaluation methods, concentrating on its consistency relative to human evaluators and its 

correlation with QCA labels. 

 

METHODS 

DeepCoro Algorithm Development  

 DeepCoro employs a unique multi-step pipeline to detect and analyze stenosis in CAG 

videos stored in Digital Imaging and Communications in Medicine (DICOM) format. It leverages 

six specialized algorithms, where the data flows from one algorithm to the other. It has been trained 

and validated on an extensive dataset from MHI. DeepCoro's architecture builds on the 

foundational work of CathAI 6, integrating its essential algorithms for detecting primary 

anatomical structures and identifying stenosis (Algorithms 1 and 2; Figure 1). These algorithms 

were adopted without further training on our dataset. Our novel contribution is detailed in 

Algorithms 3-6, representing our advancements in this field 6. DeepCoro initiates with the 

detection of primary anatomical structures (Algorithm 1), selectively focusing on videos pertaining 

to the RCA and LCA. It then employs RetinaNet 20 models (Algorithm 2) to locate stenoses within 

these coronary segments. A registration algorithm (Algorithm 3) follows, aligning frames to 

account for heart and respiratory movement, creating a stable video in reference to a stenotic 

coronary segment. Our sophisticated multi-class segmentation algorithm (Algorithm 4) plays a 

pivotal role in the process by categorizing the coronary artery into proximal, middle, and distal 

segments. Algorithm 5, in each frame, evaluates the content of the resized stenosis box, focusing 

on pixels within the central region of the reference area, which are matched to the underlying 

coronary artery segment as predicted by Algorithm 4. This method is designed around the typical 

central placement of stenosis within annotations, thus concentrating on this area with the 

assumption that it houses the relevant segment. Lastly, a stenosis severity prediction algorithm 

(Algorithm 6), using a modified Swin3D 21 transformer model, quantifies stenosis severity from 

the aligned video to predict a continuous percentage in targeted artery segments. This integrated 

approach facilitates automatic interpretation of CAG videos without any human input. More details 

are available in Supplementary Methods. 
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Figure 1. DeepCoro Pipeline Overview 

 

Legend. Overview of DeepCoro’s algorithmic pipeline and example of outputs from each 

algorithm of a 76 frames coronary angiography video. In practice, steps 3 through 6 must be 

performed for all stenosis boxes detected at step 2, but the figure shows an example using frame 

36 as a reference frame. White box: Stenosis localisation box. Green background box: 

DeepCoro’s input representing videos of left or right coronary angiograms. Grey background 

box: DeepCoro’s intermediary output. Orange background box: DeepCoro’s final output 

representing a continuous stenosis percentage as well as the underlying coronary artery segment 

with the stenosis. Abbreviations: RCA: Right Coronary Artery. 

 

Algorithm 1: Primary Anatomic Structure Detection Algorithm 

The first algorithm used an Xception 22 image-based model previously trained on over 

14,000 CAG images which were annotated by cardiologists at the University of California, San 

Francisco (UCSF). This model was trained as part of CathAI’s pipeline and results were previously 

published 6. The algorithm distinguished the primary anatomic structures, like the RCA, LCA, 

aorta, radial artery, left ventricle, catheter, and femoral artery, present in the most frames of the 

video (Supplementary Table 3) and was used to exclude videos not mostly containing the RCA or 

LCA from further analyses.  

 

Algorithm 2: Stenosis Detection Algorithm 

The second algorithm uses the RetinaNet  20 architecture, a state-of-the-art model for object 

detection, to pinpoint the locations of coronary artery segments and stenoses. It achieves this by 

drawing bounding boxes around these areas, thereby defining their precise coordinates.  RetinaNet 

models were previously trained on UCSF data as part of the previously published CathAI’s 

pipeline to detect specific anatomical structures, procedural instruments associated to a PCI and 

Coronary angiography video with 76 frames:

…

…

2. Stenosis detection algorithm
41 stenosis boxes including:

White box: Stenosis box

frame 36

3. Registration algorithm
Registered coronary angiography video with 76 frames 

around the resized stenosis box of reference frame 36:

White box: Resized stenosis box

…
…

4. Segmentation algorithm
Segmentation video with 76 frames of each relevant 

coronary artery segment, where each segment has a 

different color :

…

…

5. Coronary artery 

stenosis 

assignment to 

segment algorithm
Assignment of a stenosis 

to the underlying 

coronary artery segment:

Middle right 

coronary artery

6. Stenosis 

percentage 

prediction

algorithm
Percentage of stenosis 

prediction:

79.2%

1. Primary 

anatomic structure 

detection 

algorithm 
Primary anatomic 

structure prediction:

RCA
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stenoses (Supplementary Table 3), and were previously published 6. The RetinaNet models were 

applied to all frames of LCA and RCA videos, as identified by Algorithm 1. 

Each detected stenosis overlapping with a coronary artery's bounding box was 

preliminarily assigned to the respective artery segment, in a specific frame (Supplementary Figure 

1a). To optimize dataset handling and computational efficiency, especially for Algorithm 3, we 

limited inclusion to just one stenosis box per artery segment, in each video. We selected the central 

instance which is typically near the video’s midpoint, characterized by peak dye intensity, 

enhancing vessel visibility and thus, the accuracy of subsequent algorithm predictions in the 

DeepCoro pipeline. This selection criterion was crucial to prevent an overwhelming dataset size 

that would result from including multiple instances of the same coronary artery segment stenosis. 

By focusing on the most centrally located stenosis in the temporal dimension, particularly for 

videos with multiple stenoses linked to the same artery segment, we efficiently managed 

computational resources. This approach of assigning stenoses to coronary segments is the one used 

as part of CathAI’s pipeline 6 and it was compared to the method proposed under Algorithm 5 6. 

 

Algorithm 3: Registration Algorithm 

Given the inherent motion of cardiac structures during systole or breathing, this algorithm 

aims to align the stenosis bounding box derived by Algorithm 2, resized to measure the closest to 

17.5 mm by 17.5 mm. To achieve this, spatial translations were used for aligning the stenosis box 

in a reference frame to previous and subsequent frames, guided by a Discriminative Correlation 

Filter from the OpenCV Python library (Supplementary Figure 2) 23. A registered video was 

generated for each stenosis box obtained after Algorithm 2.  

 

Algorithm 4: Segmentation Algorithm 

Algorithm 4 segments full videos by applying an ensemble of seven segmentation 

algorithms (Supplementary Table 10) frame by frame, to generate registered multi-class 

segmented videos depicting 11 epicardial coronary artery segments (5 for the RCA – i.e. proximal 

RCA, middle RCA, distal RCA, posterolateral branch from the RCA and posterior descending 

artery – and 6 for the LCA – i.e. left main artery, proximal left anterior descending artery (LAD), 
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middle LAD, distal LAD, proximal left circumflex artery (LCX) and distal LCX), based on 

SYNTAX score definition (Supplementary Table 3) 24. These algorithms were refined through 

extensive testing of nine advanced segmentation models over 200 epochs, combined with five 

different loss functions, and optimized through a random search of batch sizes and learning rates, 

validated through 5-fold cross-validation.  

 

Algorithm 5: Coronary Artery Stenosis Assignment to Segment Algorithm 

This algorithm pinpointed the coronary artery segment affected by stenosis. It examined 

the central pixels of the resized stenosis-indicative region of the segmented registered video in 

each frame (Supplementary Figure 1b). These central pixels were matched with the coronary 

segments identified by Algorithm 4. The final video prediction was the segment that was most 

consistently predicted across frames. When the algorithm is unable to predict any artery segments 

in a video, no further predictions are made in that video. 

For assessing stenosis severity at the video-level, a targeted approach is employed. When 

multiple videos from the same DICOM file are related to an identical artery segment, only the 

central instance is retained for the final calculation of stenosis percentage. The remaining videos, 

which are effectively duplicates for the same coronary segment, are removed. While most of these 

duplicates are initially filtered out by Algorithm 2, there are instances where Algorithm 5 might 

reassign videos to the same segment. In such cases, only one video per segment is kept. This 

strategy ensures a thorough and accurate evaluation of stenosis severity. 

 

Algorithm 6: Stenosis Percentage Prediction Algorithm 

For the final step, DeepCoro uses a modified version of the Swin3D 21 architecture, a state-

of-the-art video classification transformer model adapted for regression tasks to output stenoses 

percentages ranging between 0 to 100%. Through extensive testing, we have established that our 

final Algorithm 6 stands as the most optimal among the options considered (Supplementary Table 

11).  
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Description of datasets 

Our algorithms were trained and validated using four distinct datasets, detailed below, and 

illustrated in Figure 2 (Supplementary Figure 5 shows a detailed form of this figure). 

Comprehensive dataset characteristics and patient demographics are available in Supplementary 

Table 1 and 2. We eliminated videos that did not feature the LCA or RCA, as identified by 

Algorithm 1. We further reduced the dataset due to computational constraints as outlined in the 

methodology associated with Algorithm 2, keeping only one video per DICOM per coronary artery 

segment preliminary predictions. Videos depicting PCI and CABG procedures were also removed. 

Any videos that did not display recognizable coronary artery segments as determined by Algorithm 

5 were excluded. To facilitate video-level predictions, we maintained a single video for each artery 

segment in a DICOM after the application of Algorithm 5. 

Figure 2. Datasets and patients used to train and validate DeepCoro. 

 

Dataset B
Registered CAG videos 

around the stenosis box 

with labels with labels to 

confirm human 
variability, registration of 

Algorithm 3, 

performance of 

Algorithm 5 and 

presence of PCI 
procedure

• Videos: 1,926

• DICOMs: 1,900

• Patients: 1,628

• Exams: 1,653

Dataset A
Registered CAG videos 

around the stenosis box 

with labels for 

percentage of stenosis
• Videos: 44,139

• DICOMs: 28,772

• Patients: 8,057

• Exams: 8,524

MHI Clinical Database

CAG DICOM videos 

analysed through the 

cardiologist’s visual 

assessment 

• DICOMs: 182,418
• Patients: 10,330

• Exams: 11,473

MHI QCA Core Lab

CAG DICOM videos 

analysed with QCA

• DICOMs: 33,118

• Patients: 1,381

• Exams: 2,012

Stenosis percentage 
prediction algorithm 

• Train set: 

75% (n = 32,629)
• Validation set: 

10% (n = 4,608)

• Test set: 

15% (n = 6,902)

PCI removal 
algorithm

• Derivation set: 

80% (n = 1,335)
• Test set: 

20% (n = 333)

Segmentation 
algorithm
• Train set: 

66% (n = 800)
• Validation set: 

17% (n = 200)

• Test set: 

17% (n = 200)

Fine-tuning on the 
QCA labels

• Train set: 

80% (n = 4,637)
• Test set: 

20% (n = 1,267)

• DICOMs: 79,169
• Patients: 9,567

• Exams: 10,484

Stenosis Videos

CAG videos around a 

stenosis box

• Videos: 594,365

• DICOMs: 59,368

• Patients: 9,074
• Exams: 9,880

Detection of stenoses overlapping a coronary 
artery box

• Videos: 119,294
• DICOMs: 59,386

• Patients: 9,074

• Exams: 9,880

• Videos: 117,368
• DICOMs: 59,032

• Patients: 9,071

• Exams: 9,876

Split

Dataset C
ARCADE dataset 

containing 1,200 CAG 

images with multi-class 

segmentation maps of 
our 11 target segments

Dataset D
Registered CAG videos 

around stenosis box with 

labels for percentage of 

stenosis
• Videos: 5,904

• DICOMs: 4,816

• Patients: 1,010

• Exams: 1,325

• DICOMs: 18,118
• Patients: 1,345

• Exams: 1,934

Stenosis Videos

CAG videos around a 

stenosis box

• Videos: 51,810

• DICOMs: 6,374

• Patients: 1,103
• Exams: 1,473

Detection of stenoses overlapping a coronary 
artery box

Excluded (103,249 DICOMs)  
• Exclusion of DICOMs not associated to the LCA or RCA as per 

Algorithm 1 (103,249 DICOMs)  

Excluded (475,071 videos) 
• Preliminary assignment of coronary segments, keeping one 

stenosis per segment per video (475,071 videos)  

Excluded (73,229 videos) 
• Exclusion of DICOMs associated to PCI procedures (57,040 

videos)

• Exclusion of DICOMs associated to CABG procedures (1,895 
videos)

• Exclusion of videos associated to no coronary artery segment as 
per Algorithm 5 (3,168 videos)

• Retention of only one video per artery segment after Algorithm 5 

to obtain video-level predictions (11,126 videos) 

Excluded (15,000 DICOMs)  
• Exclusion of DICOMs not associated to the LCA or RCA as per 

Algorithm 1 (15,000 DICOMs)  

Excluded (45,906 videos)  
• Preliminary assignment of coronary segments, keeping one 

stenosis per segment per video (43,257 videos) 

• Exclusion of videos associated to no coronary artery segment as 
per Algorithm 5 (504 videos) 

• Exclusion of videos with no entries in clinical reports (1,482 
videos)

• Retention of only one video per artery segment after Algorithm 5 

to obtain video-level predictions (663 videos)
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Legend. Datasets change in size when our algorithms are applied to our datasets. ARCADE is a 

public dataset described in 25. White box: Exclusion details. Grey box: Intermediate datasets. 

Green box: Final datasets. Orange box: Dataset split for the development of an algorithm. 

Abbreviations: ARCADE: Automatic Region-based Coronary Artery Disease diagnostics using 

X-ray angiography imagEs, CABG: Coronary Artery Bypass Grafting, CAG: Coronary 

Angiography, DICOM: Digital Imaging and Communications in Medicine, MHI: Montreal Heart 

Institute, PCI: Percutaneous Coronary Intervention, QCA: Quantitative Coronary Angiography. 

 

Dataset A was derived from the MHI's comprehensive CAG videos database, which 

contains 182,418 videos of LCA or RCA in DICOM format, captured at 15 frames per second, and 

includes patients aged 18 years and older, spanning the period from January 1, 2017, to December 

31, 2021. The dataset was used for the training, validation, and testing of DeepCoro. Clinical 

reports detail the percentage of coronary artery segment stenosis, ranging from 0 to 100%, 

associated to these videos as described by the interventional cardiologist after visual assessment. 

Segments with ≥70% stenosis were classified as severe, while those with less were labeled as non-

severe. After applying Algorithms 1 to 5 to this database, we obtained a final dataset of 44,139 

videos from 8,057 patients with associated stenosis percentages from clinical reports. This dataset 

was partitioned into mutually exclusive training (75%), validation (10%), and test (15%) sets, 

ensuring that each patient could only belong to one of these subsets, for the training and evaluation 

of DeepCoro’s Algorithm 6.  

Dataset B consists of 1,926 videos of the LCA and RCA from 1,628 patients, randomly 

selected from the MHI database. This selection occurred after the initial application of Algorithms 

1 to 3. The purpose of this specific curation was to ensure that the dataset included only LCAs and 

RCAs with stenoses, facilitating the testing of our pipeline's performance against a human-

annotated dataset. All videos were simultaneously annotated by two cardiologists (interface shown 

in Supplementary Figure 3) with over 10 years of experience in reading CAG videos to describe 

stenosis percentage (1,926 labels), correctness of the artery segment registration (Algorithm 3; 

1,926 labels), identification of the coronary artery segment with a stenosis (1,926 labels) and 

presence of PCI in the video (i.e. presence of a guidewire, balloon, or stent; 1,668 labels). The 

purposes of this dataset were to assess inter-observer variability, determine the performance of 

Algorithm 3, 4 and 6, and develop an automatic algorithm to remove videos associated to PCI 
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from our dataset. For the latter, we randomly divided the dataset into an 80% derivation set (to 

identify the optimal threshold for excluding PCI procedures) and a 20% hold-out test set where we 

tested this threshold to exclude PCI procedures. A video was deemed correctly registered when 

the targeted coronary segment remained in the predefined stenosis box from the onset of iodine 

dye visibility to its disappearance. For evaluating Algorithm 4's accuracy, we excluded videos that 

did not correspond to the 11 pre-specified coronary segments as determined by both the algorithm 

and a cardiologist, removing 119 videos and reducing the dataset from 1,926 to 1,807 videos. To 

assess the performance of Algorithm 4, the Dataset B was cleaned from PCI and CABG procedures 

with our algorithm; in total, 965 videos remained in Dataset B.   

Dataset C is sourced from the Automatic Region-based Coronary Artery Disease 

diagnostics using X-ray angiography imagEs  (ARCADE) 25 public dataset and includes 1,200 X-

ray CAG images, with 25 different multi-class coronary artery segmentations. We only considered 

the 11 coronary artery segments pertinent to our approach. Segments with very few annotated 

examples were excluded. We randomly split 800 images (66% of the dataset) for Algorithm 4 

training and 200 images each (17% of the dataset each) for validation and testing.  

Dataset D was extracted from the MHI QCA Core Laboratory’s, which is a separate dataset 

from the MHI clinical database that features CAG videos from randomized controlled trials 

focused on lipid-lowering therapies 26. This dataset comprised a unique patient population distinct 

from our primary clinical dataset, as it mainly contained mild-to-moderate coronary stenoses, with 

an average QCA stenosis severity of 33.7%±11.7%. These angiograms were recorded at 15 frames 

per second.  Each angiogram underwent QCA analysis by trained technicians and was supervised 

by an expert physician. For this dataset, stenosis was categorized as severe with QCA stenosis 

percentage of ≥50% 27,28. After applying Algorithms 1, 2, 3, and 5, the dataset was narrowed down 

from 33,118 CAG video to 5,904 videos cropped around stenoses. This dataset provided an ideal 

setting to evaluate DeepCoro adaptability to different clinical contexts, using QCA stenosis 

percentage labels for retraining. Patients’ videos were randomly broken down into an 80%-20% 

split, resulting into a training set of 4,637 videos and a test set of 1,267 videos for the external 

validation of DeepCoro. 
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Removal of PCI procedures 

The study aimed to ensure accurate labeling of CAG videos for diagnostic evaluation, prior 

to any plaque modification during a PCI. We excluded videos taken during or following a PCI 

because the stenosis observed could be modified during the intervention. This modification could 

lead to discrepancies between the video and the initial diagnostic stenosis labels. For example, a 

significant stenosis visualized during balloon angioplasty type PCI might appear less severe in the 

imaging captured during the procedure. Such intra-procedural changes in stenosis are usually not 

recorded; only the diagnostic stenosis percentage before PCI and the result after PCI are typically 

reported. However, we kept the initial diagnostic CAG videos of patients who subsequently 

underwent PCI treatments. To distinguish diagnostic CAG videos from those recording PCI, we 

developed a dual-method approach for identifying videos linked to PCI procedures: 

1. Method 1: We used Algorithm 2 to identify frames containing procedural instruments 

indicative of a PCI (i.e. stent, balloon, guidewire). A metric m1 was calculated by summing 

the number of frames containing the instruments according to RetinaNet 20 predictions, 

then dividing by the total frame count. For a video, if m1 was greater or equal to a pre-

determined threshold, the video was identified as a PCI-related. This threshold was 

optimized using Youden’s index, applied to 100 equally spaced thresholds between 0 and 

1 in a derivation set and then compared to the human annotations. 

2. Method 2: We also leveraged clinical reports that specify the start and end times of each 

PCI procedure for both RCA and LCA views. Videos within these timeframes were flagged 

as PCI-related. Due to possible time discrepancies between clinical report timestamps and 

the video recording, an offset value m2 was subtracted from each stenting event's start time 

to account for inconsistencies. The optimal offset was determined by maximizing 

Youden’s index a derivation set, considering offsets of 0, 5, 10, 15, 20, 25, and 30 minutes. 

 

 The optimal thresholds for both Method 1 and Method 2 were initially determined using 

the derivation set of Dataset B. These thresholds were then validated on a separate hold-out test 

set of Dataset B. The combined approach associates a video to a PCI if one is detected with either 

of the two methods, for subsequent removal. By combining both methods, we systematically 

identified and excluded videos associated with PCI procedures, as well as any subsequent videos 
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of a patient, from Dataset A. This ensures that DeepCoro is only trained on diagnostic CAG videos 

to make sure the labeling of coronary artery stenoses is the most accurate. 

 

Removal of patients with CABG 

We also excluded videos connected to CABG procedures from Dataset A. This is due to 

the significant anatomical differences in patients who have undergone CABG surgery, which 

interferes with our objective of creating a universally applicable analysis pipeline for native 

coronary vessels. Clinical reports indicate whether a patient has undergone a CABG operation. 

Therefore, patients featuring bypassed vessels were excluded. 

 

Algorithm Evaluation and Statistical Analysis 

Primary Objective: Assessment of the DeepCoro Algorithm Suite 

 Algorithm 1 and 2 performances were previously published 6. Our current objective was to 

evaluate the novel Algorithm 3 to 6 within the DeepCoro pipeline. For Algorithm 3, video 

registration performance was defined by the proportion of correctly registered videos, determined 

using human annotated data from Dataset B. Algorithm 4's segmentation quality was validated on 

Dataset C's test set by employing the Dice Score, positive predictive value (PPV), and sensitivity 

for the delineation of the 11 targeted coronary artery segments. We also described sensitivity, PPV, 

and the F1-score for each of the 11 coronary artery segments of interest against ground truth labels 

from Dataset B. Algorithm 6's efficacy in stenosis percentage prediction was gauged using mean 

absolute error (MAE) and Pearson’s correlation coefficient (r) on Dataset A's test set. Its capability 

to classify stenosis severity (non-severe versus severe) was assessed using the area under the 

receiver operating characteristic curve (AUROC), sensitivity, specificity, PPV, and the area under 

the precision-recall curve (AUPRC). Clinician-reported stenosis percentages, which were 

dichotomized for severity classification at a 70% threshold, served as the gold standard for Dataset 

A, whereas a 50% threshold 27,28 was used in Dataset D (evaluated through QCA). Due to important 

class imbalance favoring the non-severe stenosis class 29, AUPRC and AUROC best represent 

DeepCoro’s performance for a comprehensive performance overview. Binarization of predictions 

used the optimal threshold derived from maximizing Youden's index among 100 equally spaced 

thresholds between 0 and 1 on the validation set. Our primary performance was assessed at the 
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artery-level which was derived by computing the mean stenosis severity for each coronary 

segment, using videos from the same patient taken on a single day. This approach provided an 

aggregated measure of stenosis for each artery segment, leveraging multiple angiographic views 

to enhance the robustness of the assessment. 

We calculated 95% confidence intervals (CIs) using the bootstrapping method, which 

involves randomly selecting 80% of the test set data to recompute the performance metrics. This 

process was repeated across 1,000 iterations, and the CIs were established from the resulting 

distributions of these metrics. 

 

Comparison with the CathAI pipeline 

CathAI represents a notable advancement in AI-driven automated interpretation of CAGs 

6. However, it has limitations, such as suboptimal coronary artery segment prediction and reliance 

on still images, contrasting with the dynamic video analysis typically employed by cardiologists. 

Our goal was to compare our video-based DeepCoro pipeline with CathAI’s image-based one to 

assess if it could address these issues and enhance overall performance.  

We first compared coronary artery segment predictions between CathAI and DeepCoro on 

Dataset B, using human annotations as the standard. CathAI's approach, using RetinaNet 20 models 

for stenosis identification, was evaluated against DeepCoro's segmentation-based method 

(Algorithm 5). Performance metrics PPV, F1-Score, and sensitivity were computed for both 

systems. 

Further, we analyzed stenosis severity on Dataset A, contrasting CathAI's image-based 

model with DeepCoro's video-based approach. To ensure a fair comparison for this task, we 

integrated DeepCoro's coronary artery segment predictions into CathAI's framework rather than 

using the coronary segment prediction from RetinaNet. CathAI's stenoses, delineated with 

bounding boxes, were processed, and compared with DeepCoro's Algorithm 6. Training 

parameters for CathAI, including epochs, learning rate, optimizer, and batch size, were aligned 

with DeepCoro's settings (Supplementary Methods). The comparison was based on uniform 

metrics, with model superiority determined by non-overlapping 95% CIs. We applied the DeLong 

test 30 to evaluate statistical differences of AUROC and AUPRC between CathAI and DeepCoro 

for stenosis severity categorization, with a p-value below 0.05 indicating a significant difference. 
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Assessment of Inter-Observer Variability 

To evaluate inter-observer variability, we conducted a comparative analysis between the 

performance of DeepCoro's Algorithm 6 and the clinical reports annotations, against the average 

annotations from two expert interventional cardiologists with over ten years of experience 

provided in Dataset B. These annotations served as the ground truth, against which we compared 

the performance of Algorithm 6 as well as the accuracy of clinical reports. Clinical report 

predictions were obtained by retrieving the percentage of obstructions of the DICOM in clinical 

reports associated to the artery segment identified by the cardiologist in Dataset B, and were 

binarized with a 70% threshold. Key metrics such as the AUROC, AUPRC, sensitivity, specificity, 

MAE, and r were computed to quantitatively benchmark the performance of Algorithm 6 and 

clinical reports against the human annotated stenosis percentage.  

 
External validation against QCA 

Fine-tuning is pivotal for adapting DeepCoro's Algorithm 6 to new tasks, such as predicting 

stenosis percentages that match the inherently more consistent measurements from QCA. To test 

its capability for this precision-demanding task, we fine-tuned the algorithm using the train set of 

Dataset D—CAG videos annotated with QCA by the MHI core lab as the gold standard. The fine-

tuning involved keeping the model's parameters fixed except the last two linear layers which are 

adjusted over 100 epochs. We varied learning rates from 1e-2 to 1e-7 and determined the optimal 

rate to be 1e-3, based on the lowest loss achieved. The model, optimized for QCA annotations, 

was then rigorously evaluated on the test set to confirm its enhanced regression accuracy. 

 
Human Subjects Research 

This study was reviewed and approved by the MHI Institutional Review Board. The need 

for individual informed consent was waived.  

 

RESULTS 

Performance of the DeepCoro pipeline 

To assess the efficacy of the DeepCoro pipeline, we evaluated the performance of its 

component algorithms (Algorithms 3-6) as well as our PCI removal algorithm. Dataset A was a 
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central dataset for training and evaluating DeepCoro. We had 182,418 CAG videos in DICOM 

format of the LCA and RCA in our MHI clinical database which, after applying Algorithm 1 to 5, 

resulted in 44,138 cropped videos of stenosed coronary artery segments that formed Dataset A. 

Average age of patients was 67.6±11.0 years old, and 12,917 (29%) were identified as female and 

30,067 (68%), as male. The average stenosis percentage was 20.6±30.2% and we had 16% severe 

stenoses. The relatively low mean and wide standard deviation (SD) reflect a wide spectrum of 

stenosis percentages, including a substantial proportion of segments with 0% stenosis as identified 

by cardiologists, while our stenosis detection algorithm detected one. 

 A significant challenge in analyzing CAG videos is the movement of vessels within the 

videos, which can complicate the analysis of specific areas of interest. Algorithm 3 successfully 

registered 96.63% of the videos in Dataset B, as verified by expert annotators. The videos that 

were not correctly registered mostly either contained obstructive background elements, such as 

pacemaker leads or sternotomy wires, or suffered from poor contrast injections. 

For the multi-vessel segmentation algorithm (Algorithm 4), our best performance was 

observed using an ensemble of seven models, averaging the predictions across the different 

models. We obtained a Dice score, PPV and sensitivity of respectively 73.93%, 75.96% and 

70.12% using a weighted average across segments in the test set of Dataset C (Supplementary 

Table 4). This suggests that there is a strong agreement and significant overlap between the 

predicted segmentations and ground truths.  For coronary artery segment prediction, we obtained 

similar performances against human annotators on Dataset B for Algorithm 5 with a PPV, 

sensitivity and F1-score across all 11 coronary segments of 71.89%, 70.72% and 70.71% 

respectively (Supplementary Table 5). Owing to the pipeline’s high accuracy for upstream 

algorithms, it was subsequently applied to our dataset for the training and inference stages of 

Algorithms 6. 

We optimized DeepCoro's PCI removal algorithm for high sensitivity to ensure accurate 

identification and exclusion of PCI-related videos, as PCIs can greatly increase error rates in the 

stenoses labelling, due to plaque modification. Using Youden's index, we determined the optimal 

cut-offs to be 0.16 for Method 1 and a 25-minute offset for Method 2. Individually, Method 1 

showed a sensitivity of 91.89%, and Method 2, 79.73% and, when combined, the sensitivity 

increased to 95.27%, indicating that the integrated approach effectively identified most video 
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recordings of PCI procedures for subsequent removal. After determining that the registration, 

multi-vessel segmentation and PCI removal algorithm were working properly, we excluded all 

videos that were associated to PCI or post-PCI (n=57,040 videos) and patients that underwent a 

CABG (n=1,895 videos) from the MHI clinical database.   

Next, Algorithm 6 demonstrated high classification performance and moderate correlations 

for both vessels on Dataset A using the Swin3D approach compared to other video-classification 

models (Supplementary Table 11). Specifically, the RCA exhibited higher stenosis severity 

classification performance (AUROC=0.8643; 95% CI: 0.8537-0.8745), sensitivity (76.20%; 95% 

CI: 73.98-78.60), and precision-recall balance (AUPRC=0.5578: 95% CI: 0.5242-0.5890), along 

with a stronger correlation coefficient (r=0.6200; 95% CI: 0.6018-0.6372) for stenosis percentage 

regression task (Table 1). These results suggest that the model is more adept at identifying and 

quantifying severe stenoses in RCA exams than LCA. Stratified results across age groups and sex 

are shown in Supplementary Table 8. DeepCoro’s predictions plotted against ground truth for 

Dataset A are shown in Supplementary Figure 4a.  

 

Comparison with the CathAI pipeline 

In a head-to-head comparison of CAG interpretation tools, DeepCoro significantly 

outperformed CathAI 6. The evaluation focused on stenosis assignment to coronary artery 

segments and stenosis percentage prediction performances. DeepCoro's segmentation method 

demonstrated a more accurate stenosis assignment, achieving a higher overall average PPV 

(71.89% versus 59.10%), sensitivity (70.72% versus 56.50%), and F1-score (70.71% versus 

56.50%) than CathAI's bounding box approach. These results were consistently robust across 

individual segments in Dataset B, indicating DeepCoro's reliable performance enhancement 

without significant variance, as detailed in Supplementary Table 5. 

Secondly, comparing stenosis classification in combined LCA and RCA, DeepCoro’s 

video-based approach demonstrated significant improvements over CathAI with AUROC values 

at the artery-level of 0.8294 (95% CI: 0.8215-0.8373) versus 0.7953 (95% CI: 0.7875-0.8038) 

(p<0.01, as determined by DeLong's test) and AUPRC values of 0.5239 (95% CI: 0.5041-0.5421) 

versus 0.4670 (95% CI: 0.4497-0.4849) (p<0.01, as determined by DeLong's test). In addition, 

Algorithm 6 (DeepCoro’s video-based model) had lower variability with the report stenosis, with 
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a MAE of 20.15% (95% CI: 19.88-20.40) versus 21.61% (95% CI: 21.35-21.87), and higher 

correlation, with a r of 0.5497 (95% CI: 0.5360-0.5630) versus 0.4571 (95% CI: 0.4430-0.4711). 

We present a comparative performance table at the artery-level and video-level for both 

approaches in Supplementary Table 6 and 7 respectively which demonstrates superior performance 

for DeepCoro’s video-based model over the CathAI’s image-based model.  

 

Inter-Observer Variability of Visual Assessment Methods 

In the expert-annotated Dataset B, DeepCoro demonstrated an AUROC of 0.8699 (95% 

CI: 0.8564-0.8853) and an AUPRC of 0.7042 (95% CI: 0.6717-0.7339) for combined LCA and 

RCA in stenosis severity classification, surpassing the clinical reports which showed an AUROC 

of 0.7533 (95% CI: 0.7328-0.7744) and an AUPRC of 0.4737 (95% CI: 0.4382-0.5086) (Table 2). 

For regression tasks, DeepCoro's MAE was 19.09% (95% CI: 18.55-19.58) with a r of 0.6792 

(95% CI: 0.6598-0.7004), in contrast to clinical reports with an MAE of 21.00% (95% CI: 20.20-

21.76) and a r of 0.5000 (0.4702-0.5302; Table 2; Supplementary Figure 4b). Overall, DeepCoro’s 

performance was closer to two experts annotating the CAG videos, rather than the clinical report, 

demonstrating DeepCoro’s potential as a standardized approach to assess CAG videos. Ultimately, 

DeepCoro's Algorithm 6 accuracy more closely mirrored the assessments of two expert 

cardiologists in annotating CAG videos and was superior to the conventional clinical report. 

 

Re-training and performance of DeepCoro on the MHI QCA Dataset – Dataset D  

To verify if the performance of our model mirrors the lower variability of QCA, we fine-

tuned and tested the regression performance of our pipeline on Dataset D, a dataset of CAG videos 

which uses QCA assessment as ground truth. The average percentage annotated in this dataset is 

33.7 ± 11.7 %. Overall, the fine-tuned model had a MAE against QCA of 7.75% (95% CI: 7.37-

8.07; Supplementary Table 9; Supplementary Figure 4c). 

 

DISCUSSION 
 

In the current study, we introduced DeepCoro, the first video-based pipeline for the 

interpretation of CAG videos. Our approach describes a novel ensemble segmentation approach, 
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artery tracking algorithm and stenosis percentage prediction algorithm which mark a significant 

advancement in the automated analysis of CAG videos. We demonstrated good classification and 

regression performance for stenosis severity assessment on a large real-world dataset, spanning 5 

years and over 40,000 CAG videos. Second, when benchmarked against the existing image-based 

CathAI pipeline 6, DeepCoro demonstrated superior performance, setting a new standard for state-

of-the-art automatic CAG interpretation. Third, DeepCoro’s performance not only aligned more 

closely with the expert evaluations from seasoned cardiologists but also exhibited lower variability 

when compared to clinical reports, enhancing the reliability of CAG video assessments. Fourth, 

our findings underscore DeepCoro’s versatility, showing its ability to be fine-tuned for diverse 

applications, such as QCA assessments, where it displayed acceptable classification accuracy. 

Finally, our model weights were made publicly available which will accelerate the research in this 

field by enabling researchers and cardiologists to fine-tune them to their own dataset and develop 

novel applications. 

During the evaluation of DeepCoro's Algorithm 6 for stenosis prediction, we noted a MAE 

of 20.15% (95% CI: 19.88-20.40), which falls within the typical variability range (6.9 to 26.5% 

31) noted among practitioners as reported in the literature. By aligning Algorithm 6 with the 

consensus annotations from two veteran interventional cardiologists, we reduced its variability to 

19.09% (18.55-19.58), outperforming the inter-observer variability of 21.00% (20.20-21.76) found 

within this dataset. The precision of Algorithm 6 was further enhanced through calibration with 

QCA assessments. This fine-tuning highlights DeepCoro's capability to diminish variability and 

improve the accuracy of stenosis evaluations, with results reflecting the nature of the training or 

fine-tuning dataset. DeepCoro's benefits extend beyond its capacity to reduce variability. The 

algorithm's design also allows for scalability across different datasets and adaptability to new 

diagnostic criteria, potentially setting a new standard for reproducibility in CAG interpretation. Its 

application could lead to more consistent and reliable stenosis assessments, by acting as an 

independent observer in the interpretation of CAG, which could lead to better-informed clinical 

decisions and potentially improving patient outcomes by ensuring a higher degree of diagnostic 

accuracy.  

DeepCoro demonstrated an AUROC of 0.8294 (0.8215-0.8373) on a comprehensive real-

world dataset, aligning with prior stenosis classification research but significantly expanding on 

the scope with data spanning five years. This contrasts with earlier studies that used under 500 
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annotated angiogram frames, but obtained a higher AUC of 0.97 19. Au et al. achieved an AUROC 

of 0.825 for their stenosis severity classification algorithm alone applied solely on RCA videos, 

but their performance declined when they applied their pipeline end-to-end to automatically 

interpret angiograms 15.  Notably, our end-to-end pipeline maintained a comparable performance 

for both RCA and LCA videos, matching the AUROC scores of algorithms tested solely on less 

complex RCA images. 15 Zhao et al. achieved a sensitivity of 55.56% and PPV of 50.00% for 

severe stenosis classification, which is comparable to our pipeline, which displayed a sensitivity 

of 67.64% (66.09-69.31) but PPV of 40.25% (38.97-41.55) 18. Crucially, our pipeline's validity is 

bolstered by a dataset vastly larger than the 99-patient cohort used by Zhao et al., enhancing the 

clinical applicability of our findings 18. Zhou et al. achieved a MAE of 15.9±13.3% in a study 

focusing on RCA stenoses among 102 patients 3. This highlights DeepCoro's wider clinical 

applicability and robustness. Our model's accuracy, combined with a diverse and extensive real-

world dataset, offers superior generalizability compared to earlier studies that were restricted by 

smaller patient numbers and limited scope in terms of views analyzed. 

Perhaps the most comprehensive work involved an algorithmic pipeline called “CathAI” 

that was trained on 13,843 studies spanning 4 years of data. They achieved an AUC of 0.862 (95% 

CI: 0.843-0.880) 6. CathAI, while a state-of-the-art pipeline, had several limitations, notably its 

reliance on static images rather than video data. This approach may overlook crucial temporal 

information, which is essential for accurate diagnosis. Video-based models, by leveraging the 

inherent variability in multiple cardiac cycles, enhance diagnostic precision and effectively address 

the fluctuations in cardiac function that occur from one heartbeat to the next. 32 For instance, 

EchoNet-Dynamic, a video-based deep learning algorithm, exemplifies this advancement by 

outperforming human experts and image-based models in key diagnostic tasks like left ventricle 

segmentation and ejection fraction estimation from echocardiographic videos, showcasing the 

potential for video models to improve reproducibility and precision in cardiovascular disease 

diagnosis. 32 DeepCoro addressed these challenges by using a video-based analysis framework, 

effectively capturing the dynamic nature of cardiac cycles and thereby enabling accurate stenosis 

estimation. In our study, DeepCoro consistently surpassed CathAI 6 in regression metrics across 

all coronary arteries and matched or outperformed it in most classification metrics. The system 

proved especially effective in assessing the LCA, demonstrating the superior capability of video-

models in analyzing complex anatomical structures. DeepCoro excelled in accurately assigning 
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stenoses to coronary segments, significantly reducing data mislabeling. This contrasts with 

CathAI's RetinaNet approach, which sometimes incorrectly interpreted the coronary artery tree's 

structure by including irrelevant background details in its predictions. In contrast, DeepCoro's 

segmentation method effectively recognized the interconnectedness of artery segments. This 

approach is more aligned with the methods cardiologists use, assessing artery segments based on 

their positions within the coronary artery tree, thereby enhancing stenosis prediction precision and 

the overall robustness of the algorithm.  

Direct comparisons between DeepCoro and other models in existing literature present 

challenges, primarily due to the unique and extensive dataset that our approach used, a dataset not 

commonly used for testing other methods. We rigorously applied DeepCoro to a comprehensive 

collection of videos, covering both the RCA and LCA from all projection angles. This approach 

was undertaken without imposing extensive exclusion criteria, ensuring a broad and representative 

dataset that accurately reflects real-world clinical scenarios. In contrast, other models in the field 

often rely on partial automation or restrictive selection criteria, which may not capture the full 

spectrum of clinical scenarios, making DeepCoro a more comprehensive and clinically pertinent 

tool. 

We also demonstrated that DeepCoro can be applied to new tasks. Upon fine-tuning with 

video annotations derived from QCA, DeepCoro achieved a reduced MAE of 7.75% (95% CI: 

7.37-8.07%), aligning with the reduced variability typically associated with QCA compared to 

visual assessment. This MAE is notably less than the 10 to 17% variability range reported in 

literature when comparing QCA annotations with visual assessments 28. Such approach could be 

undertaken in the future to fine-tune DeepCoro for calcium estimation, identifying the vulnerable 

plaque 33 or predicting the physiological impact of stenoses 34.  

Results stratified across age groups and sexes demonstrate no significant bias on Dataset 

A’s test set (Supplementary Table 8), although the best performance was observed at extremes of 

age and those aged 60 to 75 had slightly reduced performance. Some differences in performance 

may be due to the varying proportion of severe stenoses across groups. Moreover, as individuals 

age, their vessels typically become stiffer due to increased calcification and changes in the vessel 

walls 35. This age-related transformation in the coronary arteries' structure can influence the 

diagnostic process and the accuracy of interpretations derived from CAG videos. 
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 Finally, we are the first to make our model weights publicly available, a step that promises 

to expedite progress in this research domain. By providing access to these weights, cardiologists 

may fine-tune the models to their specific datasets and foster the development of new applications 

for interpretation of CAGs.  

Understanding the limitations of DeepCoro is crucial for a comprehensive evaluation of its 

capabilities. A primary limitation is that the stenosis percentage used for training and testing is 

based on clinician interpretation from CAG videos, which may not always align with the actual 

stenosis values. This discrepancy underscores the potential benefit of employing large-scale 

datasets analyzed through objective measures like QCA to improve reproducibility. Despite this, 

our approach, when compared to the clinical report in Dataset B, had lower variability, suggesting 

that DeepCoro could be used to reduce variability in CAG interpretation. Of note, DeepCoro tends 

to underestimate stenosis severity reflecting the underlying stenosis distribution, likely due to the 

high prevalence of non-severe stenoses in the training dataset. Also, the current version of 

DeepCoro is optimized for detecting stenoses in 11 specific coronary segments on patients that did 

not receive a CABG surgery, thus the performance of our approach on bypass grafts or on non-

included segments is unknown.  Furthermore, the pipeline's reliance on multiple algorithms, each 

introduced a compounding degree of error, potentially affecting the final output's quality. For 

example, our registration algorithm did not perfectly align all videos, with only 96.63% correctly 

registered, suggesting a need for further refinement to achieve consistent success across all cases.  

However, our approach remains the most comprehensive one, it underscores the different steps 

that must be taken to automatically interpret CAGs and these performances can be improved by 

annotating more data.  

In conclusion, DeepCoro marks a substantial leap in CAG video interpretation. This multi-

step video analysis pipeline adeptly mirrors the dynamic analysis conducted by cardiologists, 

offering a more standardized approach to CAG evaluation. It shows great promise in reducing 

variability in clinical assessments and is versatile enough for tasks like interpreting QCA labels. 

Looking to the future, DeepCoro has the potential for further development to identify stenoses in 

more anatomically complex coronary segments such as the marginal or diagonal arteries. 

Additionally, it could be enhanced to evaluate other critical features in CAG videos, like 

calcification severity, which plays a vital role in plaque stability assessment and treatment 

planning. A crucial next step is to assess DeepCoro’s impact on clinical decision-making, 
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particularly regarding revascularization strategies. Conducting a randomized controlled trial to 

compare revascularization decisions based on AI-assisted CAG interpretations versus traditional 

methods will be key in understanding DeepCoro's effect on clinical outcomes. 
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Table 1. Artery-Level Performance of DeepCoro in the Test Set of Dataset A 

Task Metric 
Coronary Artery 

LCA RCA LCA + RCA 

Number of exams 2,568 2,259 4,827 

Number of severe stenoses, ≥ 70% (n (%)) 536 (21%) 345 (15%) 881 (18%) 

Number of non-severe stenoses, <70% (n (%)) 2,032 (81%) 1,914 (85%) 3,946 (82%) 

Number of healthy vessels, 0% stenoses (n (%)) 1,253 (49%) 1,075 (48%) 2,328 (48%) 

Classification* 

AUROC 0.8017 (0.7919 - 0.8124) 0.8643 (0.8537 - 0.8745) 0.8294 (0.8215 - 0.8373) 

AUPRC 0.5092 (0.4868 - 0.5329) 0.5578 (0.5242 - 0.5890) 0.5239 (0.5041 - 0.5421) 

Sensitivity (%) 70.70 (68.75 - 72.73) 76.20 (73.98 - 78.60) 72.86 (71.24 - 74.47) 

Specificity (%) 74.51 (73.56 - 75.43) 79.03 (78.10 - 80.04) 76.71 (76.05 - 77.36) 

PPV (%) 41.06 (39.48 - 42.70) 37.08 (35.11 - 39.00) 39.42 (38.15 - 40.68) 

F1-score (%) 51.95 (50.32 - 53.58) 49.88 (47.86 - 51.78) 51.15 (49.81 - 52.39) 

Regression  
MAE (%) 22.19 (21.82 - 22.52) 17.82 (17.48 - 18.16) 20.15 (19.88 - 20.40) 

r 0.4890 (0.4704 - 0.5087) 0.6200 (0.6018 - 0.6372) 0.5497 (0.5360 - 0.5630) 

Legend. The performance at the artery-level of the DeepCoro’s pipeline on the test set of Dataset 

A. The range in parentheses is the 95% confidence interval generated by bootstrapping. 

*DeepCoro predictions were binarized with a threshold of 0.23, as determined on the validation 

set. Abbreviations. AUPRC: Area Under the Precision-Recall Curve, AUROC: Area Under the 

Receiver Operating Curve, LCA: Left Coronary Artery, MAE: Mean Absolute Error, PPV: 

Positive Predictive Value, r: Pearson’s correlation coefficient, RCA: Right Coronary Artery. 
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Table 2. Video-Level Performance of Coronary Angiography Clinical Reports and DeepCoro 

against Expert Annotated Videos Present in Dataset B 

Task Metric 

Coronary artery 

LCA RCA RCA + LCA 

Clinical 

reports 
DeepCoro 

Clinical 

reports 
DeepCoro 

Clinical 

reports 
DeepCoro 

Number of videos 475 490 965 

Number of severe stenoses, ≥ 

70% (n (%)) 
105 (22%) 92 (19%) 197 (20%) 

Number of non-severe stenoses, 

<70% (n (%)) 
370 (78%) 398 (81%) 768 (80%) 

Number of healthy vessels, 0% 

stenoses (n (%)) 
335 (71%) 322 (66%) 657 (68%) 

Classification 

AUROC 

0.7430 

(0.7136 - 

0.7735) 

0.8781 (0.8608 

- 0.8965) 

0.7649 

(0.7359 - 

0.7959) 

0.8599 (0.8386 

- 0.8867) 

0.7533 

(0.7328 - 

0.7744) 

0.8699 (0.8564 

- 0.8853) 

AUPRC 

0.4908 

(0.4400 - 

0.5369) 

0.7066 (0.6659 

- 0.7494) 

0.4684 

(0.4168 - 

0.5213) 

0.7040 (0.6592 

- 0.7483) 

0.4737 

(0.4382 - 

0.5086) 

0.7042 (0.6717 

- 0.7339) 

Sensitivity (%) 
46.63 (41.57 - 

51.76) 

79.91 (76.54 - 

83.95) 

47.88 (42.31 - 

52.78) 

77.20 (72.86 - 

81.94) 

47.30 (43.95 - 

50.64) 

78.74 (76.05 - 

81.70) 

Specificity (%) 
91.87 (90.57 - 

93.27) 

77.05 (75.00 - 

79.12) 

93.73 (92.63 - 

94.94) 

77.40 (75.39 - 

79.50) 

92.81 (91.95 - 

93.77) 

77.20 (75.78 - 

78.60) 

Regression 

MAE (%) 
22.28 (21.18 - 

23.39) 

19.76 (19.02 - 

20.53) 

19.79 (18.74 - 

20.84) 

18.45 (17.75 - 

19.15) 

21.00 (20.20 - 

21.76) 

19.09 (18.55 - 

19.58) 

r 

0.4661 

(0.4221 - 

0.5084) 

0.6653 (0.6406 

- 0.6916) 

0.5332 

(0.4929 - 

0.5757) 

0.6914 (0.6624 

- 0.7232) 

0.5000 

(0.4702 - 

0.5302) 

0.6792 (0.6598 

- 0.7004) 

Legend. Video-level performance of DeepCoro and clinical reports on Dataset B. The 

statistically significant metrics where the confidence intervals don’t overlap are shown in bold. 

DeepCoro predictions were binarized with a threshold of 0.23, as determined on the validation 

set, and clinical used a threshold of 0.7 for sever stenosis classification. The range in parentheses 

is the 95% confidence interval generated by bootstrapping.  Abbreviations. AUPRC: Area 

Under the Precision-Recall Curve, AUROC: Area Under the Receiver Operating Curve, MAE: 

Mean Absolute Error, r: Pearson’s correlation coefficient, RCA: Right Coronary Artery, LCA: 

Left Coronary Artery. 
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