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Abstract 

The present study aimed to screen small molecular compounds as the human noroviruses 

(HuNoV) inhibitors/modulators that could be potentially responsible for exhibiting some level 

of inhibitory activity against HuNoV 3CLPro. The structural similarity-based screening against 

ChEMBL database is performed against known chemical entities which are presently under 

pre-clinical trial. Molecules that remained after the similarity search were considered molecular 

docking using SCORCH and PLANTS. On detailed analyses and comparisons with control 

molecule, 3 hits (CHEMBL393820, CHEMBL2028556 and CHEMBL3747799) were found 

to be potential for HuNoV 3CLpro inhibition. The binding interaction analysis revealed several 

critical amino acids to hold the molecules tightly at the close proximity site of the catalytic 

residues. Further, three MD simulation study was performed in triplicate to understand the 

binding stability and potentiality of the proposed molecule towards HuNov 3CLpro. The 



binding free energy based on MM-GBSA has revealed their strong interaction affinity with 

3CLpro.  
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1. Introduction 

The human noroviruses (HuNoV) belong to the Caliciviridae family [1], and are subdivided 

into seven genogroups (GI to GVII) [2]. HuNoV is one of the major reasons for causing 

gastroenteritis worldwide [3, 4]. HuNoV infections are considered to be the leading cause of 

non-bacterial gastroenteritis across many nations, making high mortality and morbidity rates 

[5]. All age groups are susceptible to getting the HuNoV infection, however, children and the 

elderly are much more prone to get infection easily and also immunocompromised patients, 

and hence more likely to develop severe symptoms and so on priority wise are groups of interest 

for immunization [3, 5]. Fecal-oral transmission, ingesting tainted food or drink, and person-

to-person contact are all common ways of spreading HuNoV infections [6]. HuNoV is thought 

to be accountable for ~699 million illnesses and ~219,000 fatalities annually in the world [7]. 

According to the estimated During 2013, it was estimated that the disease burden brought on 

by HuNoV infection causes approximately 1.7–1.9 million ambulatory visits to health centers, 

400,000 visits to the emergency room, 56,000 – 71,000 hospitalizations, and 570–800 deaths, 

and accumulating overall 19–21 million total diseases each year, in a developed country like 

United States alone [5, 8]. Despite such a devastating and life-taking disease, there are currently 

no specific approved medicines or chemical compounds or vaccines available for the either 

treatment or control the HuNoV infection [3, 5]. There are several challenegs in developing 

potent small drug like molecules or vaccines agasint such virus. Particularly, because of the 

norovirus's environmental stability, low infectious dosage and high shedding titer, it is very 

challenging to prevent and control infections with this norovirus [9]. The development of a 

potent norovirus drug like candidate or vaccine may encounter a number of obstacles. Majorly 

due to challenge in cultivation of noroviruses has seriously hindered the smooth development 

of effective and durable vaccinations and other therapeutic options [9].  

The NoV encompasses a genetically diverse group of nonenveloped positive-strand RNA 

viruses that infect many host species including humans and enterics in nature [6]. The genome 

of HuNoV is comprised of three open reading frames (ORFs) viz. ORF1, ORF2 and ORF3 

[10]. ORF1 is consisting of non-structural polyproteins which are usually get degraded by the 

3C-like protease (3CLpro) enzyme and broken into at least 6 different proteins, and these are 

crucial for viral replication [11]. ORF2 represents the major viral capsid protein i.e. VP1, 

whereas, ORF3 encodes the minor capsid protein, VP2 [11]. Both ORF2 and ORF3 are 

responsible for maintaining the virus structure. The polyprotein is processed by the virally 

encoded 3CLpro. 3CLpro is consisting of cysteine protease having Cys139-His30-Glu54 

catalytic triad which represents to be the catalytic binding cleft [12], and a major substrate 



selectivity for a P1 glutamine (or glutamate) residue. The prototypical catalytic triad of HuNoV 

3CLPro is located at the interface of a β-sheet domain and a β-barrel domain [13]. Moreover, 

this protease act as an induced fit enzyme and has an extended binding cleft [14-16]. The 

substrate specificity of the protease is for a P1 Gln residue (or Gln surrogate) that engages in 

critical H-bonding interactions with Thr134 and His157 located in close proximity to the active 

site [17]. As a critically important protease enzyme involve in the life cycle of the norovirus 

function, the 3CLpro breaks down the lengthy polypeptide chain from viral RNA's ORF1 that 

cleaves at five sites to release several non-structural proteins [18]. Moreover, it is reported that 

3CLpro of HuNoV is an important and critical protein for the virus life cycle which projected 

as an ideal and effective drug target for the development of potential and therapeutic chemical 

components for the HuNoV infection [19, 20].  
Pharmacoinformatics which represents the computational approach in drug discovery became 

pivotal and pioneer methodologies to design and identify the potential and effective chemical 

compounds for any specific drug target [21, 22]. Similarity search of chemical repositories by 

known or approved molecular fingerprints is widely accepted and used by the scientific 

community for therapeutic developments for numerous disease models including infectious 

diseases [23-25]. Moreover, another highly regarded and widely used technique like molecular 

docking assisted by machine learning (ML) enables to predict and identify the correct binding 

pose or orientation of the molecules at the active site of the receptor cavity [26-28]. The 

interaction dynamicity of any small molecules inside the protein target assessed through 

molecular dynamics (MD) simulation can provide insight into the potentiality and effectivity 

of the molecules [29, 30]. In particular, some important functional processes are difficult to 

address experimentally, such as protein-ligand binding orientation in dynamic motion, ligand-

induced conformational change in the protein, and the nature of protein folding in the dynamic 

state may infer through MD simulation analysis. Hence, in a similar notion, the main present 

work intended to similarity search of the ChEMBL database which contains about 2 million 

compounds using few known HuNoV inhibitors followed by ML based molecular docking and 

MD simulation studies to find effective chemical compounds for the management of HuNoV 

infection. Overall, the present study finding employed through above mentioned techniques 

have greatly illuminated the understanding of binding interactions of newly identified screened 

compounds for exploring an array of conceptually-sound approaches toward the development 

of anti-norovirus therapeutics targeting the HuNoV 3CLpro by means of either inducing or 

inhibiting or modulating the conventional biological functions of the studied enzyme.  

 



2. Materials and methods 

2.1 Fingerprint based similarity search against the ChEMBL database 

A similarity search of any chemical database based on known or approved molecules is an 

important application in drug discovery research. This approach gives the ability to scan 

chemical compounds to identify similar molecules from the databases to the given query 

compounds. In order to find the potential 3CLpro inhibitors from the ChEMBL database [31, 

32], a set of five chemical compounds (2′-C-methylcytidine, Nitazoxanide, Valopicitabine, 

Suramin and PPNDs) was considered as query molecules. In particular, the above set of 

molecules is reported to be in pre-clinical trials for HuNoV infection. A two-dimensional 

representation of the query molecules is given in Figure S1 (supplementary file). Therefore, 

any new molecules from the ChEMBL database similar to the above molecules might be crucial 

and important to manage the HuNoV infection. For the similarity search, extended-connectivity 

fingerprints-4 (ECFP4) was used. Molecular fingerprints are the depiction of chemical 

compounds and are widely used for similarity searching, clustering, and classification. The 

ECFPs are developed to apprehend the molecular features related to the activity of the chemical 

compound. The simplified molecular input line entry system (SMILES) form of query 

molecules was collected from the PubChem database. As a target dataset, the entire ChEMBL 

database was downloaded in SMILES format. The molecules in ChEMBL are manually curated 

and publicly available bioactive molecules that possess drug-like characteristics. For the 

similarity search, the Python RDKit was used. Python RDKit is an open-source toolkit for 

cheminformatics consisting of a number of packages for chemical data analysis. After a 

similarity search of the ChEMBL database using the five query molecules, all molecules of the 

target database were arranged according to the ascending order of the Tanimoto coefficient. 

Molecules found to have a Tanimoto coefficient of more than or equal to 0.6 were considered 

for further analyses. 

 

2.3 Molecular docking simulation 

Molecular docking has already been recognized as a prototype of structure-based virtual 

screening [33-46]. In this approach, potential molecules are identified from large chemical 

databases and binding interaction affinity is predicted toward the protein targets of interest. The 

traditional molecular docking approach and scoring functions (SFs) are not comparable with 

experimental data, hence, a number of improvements are done using the ML approaches. 

Scoring COnsensus for RMSD-based Classification of Hits (SCORCH) [47], a novel ML 

scoring function for molecular docking was used to dock the HuNoV 3CLpro target protein 



with most structurally similar small molecule compounds screened against the ChEMBL 

database [31, 32]. The scoring function gives the strength to the docking engines to identify 

docked orientation that might close resembles a co-crystal ligand pose [47]. The SCORCH 

program implemented the multiple RMSD labeled docked poses to strengthen the scoring 

function which is one of the unique and powerful screening strategies. Another docking 

program, the Protein-Ligand ANT System (PLANTS) [48] is one of the important tools used 

for molecular docking of identified screened small molecules to the protein target. PLANTS is 

one of the crucial tools to screen the extra large chemical databases followed by optimization. 

The stochastic optimization algorithm is called ant colony optimization (ACO) and is used by 

the PLANTS program. For ligand docking in the active site or any defined site of the protein 

molecule, an ACO is employed to find a minimum energy conformation of the ligand in the 

binding site.  

In the present study, in particular, for docking execution, both the above mentioned two highly 

regarded docking programs were implemented. Therefore, the crystal structure of norovirus 

3CLpro was obtained from RCSB-PDB [49] having the PDB ID: 5T6F [50]. The above protein 

structure was found to have a resolution of 1.9Å. The protein structure was prepared by the 

SCORCH with the help of Autodock tools through the addition of hydrogens and Gasteiger 

charges. The co-crystal water and other hetero atoms were deleted during protein preparation. 

Any missing atoms were identified and repaired. Prior to save in .pdbqt format, the type of the 

atom was assigned to AD4 to the protein structure, as the mandate required for ADV for 

docking execution. The coordinates (5.677, 65.623 and -7.117 along the x-, y- and z-axes, 

respectively) of the co-crystal ligand were considered to be the active site for molecular 

docking. The grid box size was considered to be 40x40x40 Å along x-, y- and z-axes, 

respectively. The same coordinate was used for docking in SCORCH and PLANTS to dock all 

the screened ChEMBL molecules inside the HuNoV 3CLpro. The molecules were found after 

the similarity search prepared for molecular docking following the need for the basic docking 

principle. The polar hydrogens and Gasteiger charges were added and finally, saved into .pdbqt 

and .mol2 format for the molecular docking. The binding interactions analysis was explored 

through Protein-Ligand Interaction Profiler (PLIP), an online web server and it is available at 

https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index. 

 

2.4 In-silico pharmacokinetics and toxicity analysis 

The 'pkCSM', a publicly available web server based in silico pharmacokinetics and toxicity 

properties prediction tool, was used to evaluate the various drug-likeliness parameters of three 



identified chemical entities [51]. The highly accepted program 'pkCSM' for in-silico drug-

likeliness, toxicity and pharmacokinetics-based properties prediction analysis is accessible at 

http://biosig.unimelb.edu.au/pkcsm/. In order to construct a good prediction model of various 

pharmacokinetics and toxicity features, the 'pkCSM', in particular, depends on graph-based 

signatures and mathematical or statistical illustrations of every given substance that are usually 

validated through highly predictive regression and classification model [51]. Several 

parameters including a blood-brain barrier (BBB), central nervous system (CNS) permeability, 

total clearance, AMES and minnow toxicity, skin sensitivity and hepatoxicity were predicted 

for the proposed molecules. BBB explains the permeability potentiality of the molecule in the 

brain. It is reported that a low value (< -1) of BBB is poorly distributed in the brain. Similar to 

the BBB, CNS permeability gives the idea of the penetration of molecules inside the brain. A 

CNS permeability value of -3 indicates that molecules are unable to penetrate the CNS. The 

mutagenicity of the molecules can be explored through AMES toxicity. The minnow toxicity 

is an important parameter to explain the molecules necessary to cause of death of the Flathead 

Minnows. The hepatotoxicity value of any molecule indicates whether it disrupted the normal 

function of the liver. Skin sensitization can be explored with skin sensitivity parameters. 

 

2.5 Molecular dynamics simulation 

The MD simulation is an essential approach to understand the dynamic nature of the protein-

ligand complex. The final proposed molecules and PPNDs bound with 3CLpro were considered 

for the MD simulation for 100ns of time span. For better insight exploration, the MD simulation 

of each complex was repeated three times. The MD simulation was carried out in 

Gromacs2021.1 [52] and installed in a Linux operating system environment with a system 

configuration of 10th Generation Intel Core i9-10885H and NVIDIA® GeForce RTXTM 2070. 

The protein topology was generated using the CHARMM36 force field [53], whereas, the 

ligand topology was developed from SwissParam [54] web server. The entire simulation was 

carried out with a time step, constant pressure, and constant temperature of 2 fs, 1 atm, and 300 

K, respectively. Each of the complexes was immersed in a cubic box system with a minimum 

distance of 10 Å from the center to the box edge and solvated by the TIP3P water model [55]. 

The systems were neutralized by the addition of a sufficient number of Na+/Cl−. To address the 

overlap and close contacts between the atoms, the systems were minimized by the steepest-

descent algorithm. Further, all prior to transferring the system to the production phase, each 

system was equilibrated through NVT (constant number of particles, volume, and temperature) 

followed by NPT (constant number of particles, pressure, and temperature). Finally, the MD 



simulation trajectories were analysed to calculate a number of statistical parameters including 

backbone RMSD, ligand RMSD, root-mean-square fluctuation (RMSF), the radius of gyration 

(RoG), and the number of inter-molecular H-bond interactions. 
 

2.6 Principal component analysis (PCA) and free energy landscape (FEL) analysis 

Free energy landscape (FEL) [56-58] is an important aspect to explore the folding and 

unfolding of the protein in dynamic states through the assessment of their basins. The relative 

stability of 3CLpro bound with proposed and PPNDs molecules was explored by the FEL 

approach. In this regard, the principal component analyses (PCA) [56] was performed for each 

of the complexes on C-α atoms of 3CLpro. The PCA is known to be crucial for the motions 

managing the molecular conformational movements throughout the MD simulation [59]. The 

final FEL for each molecule of all three rounds of MD simulations was calculated by estimating 

joint probability distribution from the essential plane made by the top two eigenvectors. It is 

reported that among all eigenvectors, the first few or two signify the most dominant collective 

motions providing a useful description of sub-conformational structural transitions. 

 

2.7 Binding free energy estimation using MM-GBSA 

The MD simulation trajectories were considered to explore binding affinity through the 

calculation of binding free energy (Gbind) using the MM-GBSA approach. This approach has 

already been considered one of the trusted strategies to explore the binding affinity of any small 

molecule of interest. From the MD simulation trajectories, the (Gbind) of each of the final 

HuNoV inhibitors along with PPNDs was calculated using the gmx_MMPBSA module [60]. 

Out of 100000, a total of 2000 frames from the entire trajectory were considered for (Gbind) 

estimation. The stepwise calculation of Gbind is given below.  

bind complex receptor ligandG G  - G  -  G =     (1) 

In the above expression, Gcomplex, Greceptor and Gligand can be recognized as the binding energy 

of protein-ligand complex, receptor and ligand, correspondingly. 

Further, Gbind may be denoted as 

bindG ΔH - TΔS =        (2) 

Where, H signifies the enthalpy of binding, and, TS indicates the conformational entropy 

after ligand binding. After the elimination of the entropic term, the anticipated value represents 

the effective free energy [61, 62].  

From equation (2), the H can be divided into simpler form as given below.  



MM solH ΔE  + ΔG =        (3) 

Here, EMM may be further can be stated as a total of bonded and non-bonded terms. 

MM bonded nonbondedΔE =ΔE +ΔE       (4) 

Ebonded is the addition of bond stretching, and, angle bending and torsion angle. The combined 

electrostatic and van der Waals’ terms may be expressed as Enonbonded Both equations are given 

below. 

bonded bond_length angle dihedralΔE =ΔE +ΔE +ΔE     (5) 

nonbonded ele vdWΔE =ΔE +ΔE       (6) 

The polar constituent is only present in the solvation energy (Gsol) for GB models. The 

nonpolar (NP) constituent is mostly thought to be proportional to the molecule’s total solvent-

accessible surface area (SASA). The equations of solvation and non-polar energy can be given 

below. 

sol polar non-polar GB non-polarΔG =ΔG +ΔG =ΔG +ΔG     (7) 

non-polar TENSION SASA OFFSETΔG =NP +Δ +NP     (8) 

 

3. Results and discussion 

Extensive computational approaches were considered to screen the entire ChEMBL database 

through ligand-based similarity search, molecular docking, pharmacokinetic and toxicity 

assessment, and, MD simulation studies. Ligand-based similarity search and screening using 

molecular docking become the favorite choice to find promising molecules for a given target. 

The validation of the molecular docking protocol is an essential step prior to using it for the 

screening of molecular databases. The self-docking approach was considered to validate the 

current protocol. In this method, the co-crystal bound ligand was re-drawn and it docked at the 

active site where the co-crystal ligand was originally bound. The best pose after docking is 

needed to superimpose the co-crystal ligand. If the RMSD between the best pose and co-crystal 

ligand is to be found < 2Å, it is considered to be the docking protocol will generate the ligand 

conformation as similar to crystallization. The considered 3CLpro crystal structure consists of 

Suramin as a co-crystal bound ligand. Suramin was redrawn and docked by replacing the co-

crystal bound conformation. A number of best poses from different combinations of docking 

protocols were extracted and superimposed on the original co-crystal conformation of Suramin 

and RMSD was recorded. The best-superimposed conformation was revealed with an RMSD 

of 0.956Å which suggest the validation of the docking protocol and the same protocol was 



considered for the screening of the ChEMBL database. The superimposed structure is given in 

Figure 1. 

 

 

Figure 1. Superimposition of the co-crystal and best-docked pose of Surmin 

 

3.1 Fingerprint similarity-based virtual screening for potential inhibitor/modulator 
identification 

The employment of advanced cheminformatics knowledge makes it possible to use and 

comprehend diversity by defining molecules as molecular fingerprints and vectorizing their 

structural properties [63-65]. Those molecular fingerprints can be used to quickly compare 

similarities and serve as the foundation for research on the relationships between structure and 

activity, virtual screening, and the creation of chemical space maps [23, 66]. Screening of a 

large number of molecules using the molecular fingerprinting similarity search become an 

essential and effective tool for computational drug discovery [67]. In a similar notion, the 

present study intended to find some promising molecules for inhibiting or modulating the 

activity of HuNoV 3CLpro protein. The complete workflow of the employed study has been 

depicted in Figure 2. 



 

Figure 2. Computational workflow for identification of potential inhibitors/modulators for 

HuNoV 3CLpro protein based on fingerprint similarity search, molecular docking and MD-

simulation and FEL studies 

 

In particular, the ChEMBL chemical database was screened through molecular fingerprints 

against five known potential chemical entities for managing the HuNoV infection. Five 

chemical entities namely Nitazoxanide [68], Methylcytidine, Valopicitabine, PPNDs and 

Suramin are currently under pre-clinical trials for the HuNoV infection treatment [69]. All five 

molecules mentioned above were considered to be standard compounds and taken as the query 

compounds for the similarity search against the ChEMBL database. The SMILES 

representation of the five standard molecules was collected from PubChem. ECFP4 fingerprint 

[70] is available in Python RDKit and it was used for similarity search against ChEMBL 

molecules. On successful completion of the similarity search, all molecules were arranged 

according to the Tanimoto coefficient. Molecules found to have a Tanimoto coefficient of 0.6 

and above were considered for further assessment. A total of 97 molecules were found to have 

a Tanimoto coefficient of 0.6 and above. A list of the above 97 molecules is given in Table S1 

(Supplementary data). Further, the above 97 molecules were considered for molecular docking 

study using two docking engine tools such as ML based ADV implemented in SCORCH [47] 

and PLANTS [48]. The binding energies from SCORCH and PLANTS of each of the 

molecules were recorded and explored, and, it is given in Table S1 (Supplementary data). Both 

the binding energies were arranged in descending order and the top ten molecules from each 

set were collected. After analyzing binding energies from both docking programs, it was found 



three molecules retained or found as common in both docking programs. In particular, three 

molecules (CHEMBL393820, CHEMBL2028556 and CHEMBL3747799) were found to be 

common in the top ten molecules from SCORCH and PLANTS docking programs. Hence, the 

common three molecules from both docking studies were considered to be the best promising 

molecules for HuNoV 3CLpro inhibitors/modulators and subsequently more extensive and 

rigorous computational analyses were conducted on them. Moreover, similar types of analysis 

have also been employed for standard PPNDs and used for comparison purposes. Two 

dimensional (2D) chemical representation of the selected three hit molecules is depicted in 

Figure 3. 

 

 

Figure 3. Two-dimensional representation of selected 3CLpro molecules 

 

3.2 Selection of control molecule 

To select the control molecule for the comparison of the data, considered five query molecules 

were docked in both SCORCH integrated via Vina and PLANTS engines with similar 

parameters as ChEMBL molecules docked. The binding energy of each molecule from both 

docking engines was collected and it is given in Table 1. All the molecules were shown negative 

binding affinity which suggests the strong affinity of each molecule towards the 3CLpro. On 

close observations, it can be seen that among all five, PPNDs was found to have a better affinity 

towards 3CLpro. Hence, PPNDs was considered to be the standard control molecule in the 

current study. 

 



Table 1. The binding energy of standard query molecules 

Molecule 
Binding energy (kcal/mol) 

SCORCH PLANTS 

2′-C-methylcytidine -5.305 -63.544 

Nitazoxamine -6.575 -56.240 

Valopicitabine -6.394 -74.532 

Suramin -9.125 -48.503 

PPNDs -8.001 -80.499 

 

3.3 Molecular interaction profile analysis through docking simulation 

A molecular docking approach was employed to investigate the possible intermolecular binding 

interaction formed between the HuNoV 3CLpro and screened-out compounds from the 

ChEMBL database based on most structural similar characteristics with standard five 

compounds. Two different docking tools namely SCORCH and PLANTS - standalone 

programs were used for docking execution with compounds showing > 6.0 Tanimoto similarity 

search score, which resulted in the selection of three best potential inhibitors/modulators viz. 

CHEMBL393820, CHEMBL2028556, and CHEMBL3747799.  

 

Figure 4. Intermolecular binding interactions of the proposed identified three 
inhibitors/modulators with HuNoV 3CLpro. A number of important ligand-binding amino 

acid residues of HuNoV 3CLpro protein are labeled in pink color. H-bond interactions, 
hydrophobic contacts, salt bridge and π-cation interactions are highlighted in blue, dash grey, 

dash yellow, and dash dark orange color, respectively. 



 

The molecular docking simulation based binding interaction profile of the top three identified 

hit compounds and standard PPNDs has been depicted in Figure 4. The binding conformation 

of the lowest docking score of CHEMBL393820 establishes four numbers of H-bond 

interaction with different residues (Gln110, Thr134, Ala158 and Ala160) of 3CLpro protein. 

Moreover, a number of hydrophobic contacts were found for CHEMBL393820 with residues 

Glu54, Gln110, Arg112, Val114, and Ala160 of 3CLpro protein. In addition, a salt bridge 

interaction was also noticed between residue His30 and CHEMBL393820. Among all the 

identified final hit compounds, CHEMBL2028556 establishes a maximum number of 

intermolecular interaction formations between several residues of 3CLpro and revealed a total 

of 6 H-bonds, 3 hydrophobic contacts, 3 salt bridge interactions, and 1 π-cation interaction 

(Figure 4). Amino acid residues Ser14, Arg108, Gln110, Gly111, and Ala158 of HuNoV 

3CLPro formed H-bond interaction with CHEMBL2028556. Hydrophobic contacts was 

established with residues Ala160, Lys162 and Pro136, and, CHEMBL2028556. Two basic 

amino acid residues His30 and Arg108 were found to form salt-bridge interaction with 

CHEMBL2028556. Moreover, π-cation interaction was also noted in association with the 

involvement of residue His30. The identified hit compound  CHEMBL3747799 was found to 

form five numbers of H-bond interaction with three consecutive amino acid residues Arg108, 

Ile109, and Gln110 (Figure 4). Two other amino acid residues Thr134 and Thr161 also 

established H-bond interaction with novel hit CHEMBL3747799. Residues Ile109, Gln110 and 

Thr161 established hydrophobic contacts with CHEMBL3747799. Two basic amino acid 

residues (His30 and Lys162) were found to create two numbers of π-cation interaction with 

CHEMBL3747799. Furthermore, to get a better insight into the 3CLPro protein interacting 

with the standard compound PPNDs, the critical analysis revealed a comparatively less number 

of H-bond interactions with the amino acid residue of 3CLpro (Figure 4). Especially, one 

residue Gln110 engagement was found for establishing H-bond interaction with PPNDs. In 

addition to H-bond interaction, three numbers of hydrophobic contacts were also found for 

considered standard PPNDs with hydrophobic residues Ile109, Ala159, and Val168. A salt 

bridge interaction was also formed between residue His30 and PPNDs. Moreover, for all 

compounds, observed H-bond distances were found within the range of 1.45 - 3.06 Å, whereas 

hydrophobic distances were measured within 1.69 - 3.29 Å.   

Interestingly, two residues Gln110 and His30 were found to be common amino acid residues 

that participated in intermolecular interaction formation, as observed from critical interaction 

analysis obtained through the PLIP program. Undoubtedly, amino acid residue His30 is one of 



the important catalytic residues of Norovirus 3CLpro protein [71], and such residue 

involvement in interaction association with novel identified hit compounds may deliver 

protease inhibitory potential.  

 

Figure 5. Binding orientation of the proposed molecules inside the 3CLpro receptor cavity 

  

Overall, binding orientations or interaction modes of the identified three hit compounds 

revealed a relatively similar kind of interaction profile to that of the standard compound  

PPNDs, at the close conjunction of the catalytic site or pocket of the HuNoV 3CLPro (Figure 

5). Molecular docking simulations were performed to investigate the potentiality of small drug-

like candidate molecules, which can engage at the catalytic site of 3CLpro of HuNoV site 

and/or close the vicinal cavity in a way that would disrupt the inhibition process of the 3CLpro, 

leading to the modulation of bio physicochemical interactions upon binding of novel hit 

compounds.  

Moreover, according to previously published work, H-bond interactions between HuNoV 

3CLpro and the studied ‘compound 8B’ shows the association of amino acid residues Thr134, 

His157, Ala158 and Ala160 of HuNoV 3CLpro [17]. Such evidence is strongly adjudged with 

the potentiality of the identified screen compounds for showing similar types of H-bonding 

interactions, and hence could possibly serve as potent inhibitors/modulators of HuNoV 

3CLpro. Another study from the same research group, also highlighted the H-bonds interaction 

network involving the backbone of the studied inhibitor ‘compound 13’ and amino acid 

residues Gln110, Ala158, and Ala160 of HuNoV 3CLpro that serve to position the inhibitor 

correctly at the active site clearly evident [17]. Surprisingly, our present study also revealed 



similar types of intermolecular interaction affinity for most of the identified compounds 

(CHEMBL3747799 and CHEMBL2028556) which ordinarily engage in H-bonding 

interactions at the close vicinity of the catalytic binding cleft of the HuNoV 3CLpro protein.  

 

3.4 Pharmacokinetics and toxicity assessment 
The pharmacokinetic and toxicity assessment of CHEMBL393820, CHEMBL2028556 and 

CHEMBL3747799 were calculated and these are in Table 2. The BBB and CNS permeability 

of CHEMBL393820, CHEMBL2028556 and CHEMBL3747799 was found to be -1.150 and -

3.536, -3.755 and -3.755, and, -3.104 and -4.574, respectively that suggested the low 

distribution in the brain and CNS. The total clearance of CHEMBL393820, CHEMBL2028556 

and CHEMBL3747799 was predicted to be in the range of -3.755 to 0.406. Not a single 

molecule was found to have AMES, hepatotoxicity and skin sensitivity except 

CHEMBL393820 shown positive hepatotoxicity, which may need structural optimization for 

better pharmacokinetic efficacy. The minnow toxicity of the selected molecules was found to 

be more than 1.560 which undoubtedly revealed that there is no cause of death of Flathead 

Minnows by administrating these molecules. Overall the data obtained from pkCSM suggested 

that selected molecules were found to pass almost all the explored pharmacokinetic and toxicity 

parameters, however, may also need structural modification or optimization for gaining better 

pharmacological attention. 

 

Table 2. Pharmacokinetics and toxicity parameters of CHEMBL393820, CHEMBL2028556 

and CHEMBL3747799 

Parameters CHEMBL393820 CHEMBL2028556 CHEMBL3747799 

BBB permeability -1.150 -3.755 -3.104 

CNS permeability -3.536 -3.755 -4.574 

Total Clearance 0.405 -3.755 -1.245 

AMES toxicity No No No 

Hepatotoxicity Yes No No 

Skin Sensitisation No No No 

Minnow toxicity 3.797 3.921 1.570 

 

 

 



3.5 Molecular dynamics simulation of the 3CLpro and identified ligand complexes 

The dynamicity of each selected molecule along with the considered standard compound 

(PPNDs) bound with 3CLpro was assessed using the triplicate 100ns MD simulation. The 

relative stability and the deviations from the reference frames were explored through a number 

of statistical parameters including 3CLpro backbone RMSD, ligand RMSD, RMSF, RoG, 

number of hydrogen bonds and FEL.  

 

3.5.1 3CLpro backbone RMSD 

The protein backbone RMSD is one of the parameters to understand the stability of the protein-

ligand complexes during the MD simulation. High deviation from the reference backbone 

indicates low stability. Steady variations portray the stability and compactness of the complex. 

From all three rounds of MD simulation, the 3CLpro backbone RMSD was calculated and it is 

given in Figure 6. For more insightful exploration, the MD simulation was repeated three times 

and statistical data were calculated for each round of simulation. The average of 3CLpro 

backbone RMSD from all three rounds of the simulation was calculated and portrayed in Figure 

6. It can be seen that in Round #3, the 3CLpro backbone bound with CHEMBL393820 deviated 

a bit at the beginning and afterward achieved steadiness.  

 

 

Figure 6. 3CLpro backbone RMSD bound with selected molecules and PPNDs. The red 

color graph is the average of all three rounds of data. 

 

In the case of 3CLpro backbone bound with CHEMBL3747799, both Round #1 and #2 

deviated almost in the same range of RMSD values, while, the backbone in Round #3 was 

found to increase a bit at the beginning and achieved compactness at around RMSD of 0.20 



nm. For three rounds of MD simulation, 3CLpro backbone bound with both CHEMBL2028556 

and PPNDS were found to deviate in an almost similar manner. The average backbone RMSD 

of three rounds of MD simulations for each complex was calculated and found a very compact 

steady variation throughout the simulation. Hence, it can be postulated that the 3CLpro 

backbone was quite stable and compact throughout all three rounds of MD simulation. 

 

3.5.2 Ligand RMSD 

Deviation of the ligands bound with 3CLpro was checked by calculation of the ligand RMSD 

from all three rounds of MD simulation and these data are given in Figure 7. The average 

RMSD from all three rounds of simulation for each complex was calculated and given in Figure 

7. It can be observed that CHEMBL393820 and PPNDs were almost compact and stable 

throughout the simulation with some variation. In the beginning, PNDSs was seen to have a 

little bit of high RMSD in Round #2 and afterward, it remained consistent. During all three 

rounds of simulations, CHEMBL2028556 was seen to fluctuate at the beginning and after about 

70ns it was found to be equilibrated. Interestingly, CHEMBL3747799 was found to be almost 

equilibrated for all three rounds of simulation with different RMSD values. The possible reason 

behind stability achievement with different RMSD might be the starting of the simulation with 

different velocities. In order to get more insight into the deviation of the molecules, the average 

RMSD of all three simulations for each molecule was calculated and plotted in Figure 7 (red 

lines). It can be seen that the average graph clearly was shown consistency and a small 

deviation from the beginning to the end of the simulation. The above observations undoubtedly 

indicated that with small exceptions, all molecules remained stable in the dynamic states. 

 

 

Figure 7. RMSD of CHEMBL393820, CHEMBL2028556, CHEMBL3747799 and PPNDs 
bound with 3CLpro 



 

3.5.3 Residual fluctuation analysis 

The role of individual amino acids are playing a crucial role to hold the ligand and give complex 

stability in dynamic states. The fluctuation of the 3CLpro amino acids was explored through 

RMSF and it is given in Figure 8. From all three rounds of simulation for each complex, it can 

be seen that all amino acids of 3CLpro fluctuated in a similar pattern. The average RMSF from 

three rounds of simulations was calculated and given in Figure 8. The average (red lines) RMSF 

was also found to fluctuate in similarly to the other three rounds of simulations. Apart from the 

extreme two ends, amino acids from about 90 to 120 were seen to fluctuate a bit more in 

comparison to the other part of the protein. The possible cause of such a bit high fluctuation in 

the above region might be the loss and reform of the binding interaction with the active site 

amino acids. 

 

Figure 8. Root-mean-square fluctuation of 3CLpro amino acids bound with 

CHEMBL393820, CHEMBL2028556, CHEMBL3747799 and PPNDs 

 

3.5.4 Radius of gyration 

The compactness of the system during the MD simulation was assessed through RoG 

calculation and it is given in Figure 9. For more insightful observation, the average RoG of all 

three independent simulations for each complex was calculated and plotted in Figure 9. The 

RoG data of the proposed molecules bound in 3CLpro clearly indicates the compactness of the 

systems for all three rounds of simulation. It can be seen that for all three proposed molecules 

along with PPNDs, the average RoG deviated around 1.52 nm. Not a single simulation was 



found to show abnormal RoG deviation. Hence, such a consistent variation of the RoG in all 

three rounds of MD simulation for each of the proposed molecules definitely explained that no 

unusual opening of the protein happened in the dynamic states.  

 

 

Figure 9. The radius of gyration of 3CLpro bound with CHEMBL393820, 

CHEMBL2028556, CHEMBL3747799 and PPNDs 

 

3.5.5 Hydrogen bond assessment 
Along with other non-covalent bonds, the hydrogen bonds between protein and small molecule 

play a crucial role to hold the small molecules inside the active site of the protein. In the 

dynamic states, a number of HBs are lost and reformed due to orientational changes. Therefore, 

it is essential to explore the number of HBs in each of the frames obtained from the MD 

simulation trajectory to understand the stability between protein and small molecules. The HBs 

for each frame for all three rounds of MD simulation of all three proposed molecules along 

with PPNDs were calculated and these are given in Figure 10. It can be seen 

CHEMBL2028556, CHEM3747799 and PPNDs formed a significant number of HBs with 

3CLpro. It can be noted that CHEMBL393820 formed fewer HBs in comparison to others and 

it might be due to the smaller size of the molecule. Although the number of HBs is a whole 

number, an average HBs calculated and it is given in Figure 10. Except for CHEMBL393820, 

the average HBs graph of all other molecules was shown between 2 to 4. In the case of 

CHEMBL393820, with some exceptions, the average HBs remained within 2. Hence, the 

above observations clearly suggested that all proposed molecules successfully retained some 

HBs in dynamics states and hold them inside the receptor cavity. 

 



 

 

Figure 10. Number of hydrogen bonds between 3CLpro, and, CHEMBL393820, 
CHEMBL2028556, CHEMBL3747799 and PPNDs 

 

3.5.6 Free energy landscape 
The conformational transitions of 3CLpro bound with proposed molecules were explored using 

the FEL estimation and given in Figure 11. It is the representation of Gibbs free energy against 

two eigenvectors and it might be crucial to understand the stability of the protein 

conformations. In Figure 11, the blue color represents the minimum energy area, whereas, the 

red areas indicate the maxima. On close observations, it can be seen that no clear large minima 

were found for 3CLpro bound with PPNDs in all three rounds of simulations. Moreover, the 

greater distances between the minima of the 3CLpro-PPNDs complex explained the higher 

transition states that are unfavorable for the stability of the molecule. The 3CLpro bound with 

CHEMBL393820 and CHEMBL2028556 were found to show clear flat deep minima in Round 

#2 and #3, respectively. The complex between 3CLpro and CHEMBL3747799 was found to 

form evident and prominent large minima in both Round #1 and #3. The above observations 

clearly suggested that 3CLpro bound with all three proposed molecules were shown low energy 

states and stable clusters in comparison to the 3CLpro bound with PPNDs. 

 



 

Figure 11. Free energy landscape between PC1 and PC2 of 3CLpro bound with 
CHEMBL393820, CHEMBL2028556, CHEMBL3747799 and PPNDs 

 

3.5.7 Binding free energy using MM-GBSA 

The binding free energy (Gbind) of each of the proposed small molecules along with PPNDs 

was calculated using the MM-GBSA approach and it is given in Table 3. To confirm and 

validate, the Gbind of all molecules from each of the three rounds of MD simulation was 

calculated. It can be seen that CHEMBL393820 shows binding affinity towards 3CLpro by 

Gbind of -12.904, -5.931 and -21.154 kcal/mol for Round #1, #2 and #3, respectively. 



Similarly, Gbind in Round #1, #2 and #3 for CHEMBL2028556, CHEMBL3747799 and 

PPNDs was found to be -29.055, -39.984 and -2.844 kcal/mol, -35.951, -33.593 and -27.244 

kcal/mol, and, -35.983, -23.245 and -28.483 kcal/mol, respectively. The average Gbind was 

calculated and it was found to be -13.330, -30.961, -32.263 and -29.237 kcal/mol for 

CHEMBL393820, CHEMBL2028556, CHEMBL3747799 and PPNDs, respectively. In 

particular, CHEMBL393820 was found to show the lowest affinity in comparison to other 

molecules but not a single round of simulation found positive Gbind. Both CHEMBL2028556 

and CHEMBL3747799 were revealed to exert a bit higher binding affinity towards 3CLpro in 

comparison to the standard molecule, PPNDs. From the binding free energy analyses, it can be 

postulated that CHEMBL2028556 and CHEMBL3747799 might be crucial 3CLpro inhibitors, 

while, CHEMBL393820 needs some optimization to improve the potentiality. 

 

Table 3. Binding free energy of CHEMBL393820, CHEMBL2028556, CHEMBL3747799 

and PPNDs towards HuNoV 3CLpro 

Molecules 
Round #1 Round #2 Round #3 Average 

Gbind Std. Dev. Gbind Std. Dev. Gbind Std. Dev. Gbind Std. Dev. 

CHEMBL393820 -12.904 ±5.156 -5.931 ±7.839 -21.154 ±5.015 -13.330 ±6.003 

CHEMBL2028556 -29.055 ±8.007 -39.984 ±7.338 -23.844 ±8.537 -30.961 ±7.961 

CHEMBL3747799 -35.951 ±8.545 -33.593 ±6.300 -27.244 ±8.295 -32.263 ±7.713 

PPNDs -35.983 ±5.087 -23.245 ±8.360 -28.483 ±9.293 -29.237 ±7.580 

 

4. Conclusions 

In the current work, a ligand-based similarity search was carried out to find potential chemical 

compounds against 3CLpro for the management of HuNoV infections. The potential chemical 

entities in pre-clinical trials for the treatment of HuNoV infections were considered for a 

similarity search of the entire ChEMBL database. High-similarity molecules found from 

ChEMBL were considered for the molecular docking studies using two docking engines such 

as SCORCH and PLANTS. The binding energy from both the docking studies was analyzed 

and three molecules (CHEMBL393820, CHEMBL2028556 and CHEMBL3747799) were 

found to be common within the top ten molecules from both docking studies, hence, proposed 

as potential 3CLpro inhibitors/modulators for HuNoV infections. The binding interaction 

analyses revealed a number of critical amino acids to form several non-covalent bonds between 

proposed molecules and 3CLpro. The binding interactions of PPNDs were compared and found 

a number of common amino acids to interact with the proposed molecule. Three rounds of MD 

simulation for each of the molecules bound with 3CLpro clearly explained their stability and 



consistency in the dynamic states. High negative binding free energy towards 3CLpro has also 

suggested the potentiality of the molecules. The free energy landscape for each complex was 

explored from all three rounds of MD simulation and it showed the stability of the complexes. 

Hence, the proposed molecules might be important candidates for the management and 

treatment of HuNoV infections subjected to in-vitro/in-vivo validation. 
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