[1] Kyrochristos I D, Ziogas D E, Roukos D H. Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy [J]. Drug Discov Today, 2019, 24(6): 1281-1294.
[2] Mehraj U, Dar A H, Wani N A, et al. Tumor microenvironment promotes breast cancer chemoresistance [J]. Cancer Chemother Pharmacol, 2021, 87(2): 147-158.
[3] Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer [J]. Biochim Biophys Acta, 2015, 1849(7): 861-870.
[4] Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease [J]. Science, 2020, 368(6489).
[5] Storz P. Reactive oxygen species in tumor progression [J]. Front Biosci, 2005, 10: 1881-1896.
[6] Szatrowski T P, Nathan C F. Production of large amounts of hydrogen peroxide by human tumor cells [J]. Cancer Res, 1991, 51(3): 794-798.
[7] Ackerman D, Simon M C. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment [J]. Trends Cell Biol, 2014, 24(8): 472-478.
[8] Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis [J]. J Cancer, 2017, 8(5): 761-773.
[9] DeNardo D G, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy [J]. Nat Rev Immunol, 2019, 19(6): 369-382.
[10] Huang Y, Wang H, Hao Y, et al. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity [J]. Nat Cell Biol, 2020, 22(6): 716-727.
[11] Anderson P, Kedersha N. RNA granules [J]. J Cell Biol, 2006, 172(6): 803-808.
[12] Pakos-Zebrucka K, Koryga I, Mnich K, et al. The integrated stress response [J]. EMBO Rep, 2016, 17(10): 1374-1395.
[13] Youn J Y, Dyakov B J A, Zhang J, et al. Properties of Stress Granule and P-Body Proteomes [J]. Mol Cell, 2019, 76(2): 286-294.
[14] Arimoto K, Fukuda H, Imajoh-Ohmi S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways [J]. Nat Cell Biol, 2008, 10(11): 1324-1332.
[15] Samir P, Kesavardhana S, Patmore D M, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome [J]. Nature, 2019, 573(7775): 590-594.
[16] Zhan Y, Wang H, Ning Y, et al. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors [J]. Am J Cancer Res, 2020, 10(8): 2226-2241.
[17] Kaehler C, Isensee J, Nonhoff U, et al. Ataxin-2-like is a regulator of stress granules and processing bodies [J]. PLoS One, 2012, 7(11): e50134.
[18] Lin L, Li X, Pan C, et al. ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance [J]. Cell Death & Disease, 2019, 10(3).
[19] Zhang H Y, Liang F, Jia Z L, et al. PTEN mutation, methylation and expression in breast cancer patients [J]. Oncol Lett, 2013, 6(1): 161-168.
[20] Piro G, Carbone C, Carbognin L, et al. Revising PTEN in the Era of Immunotherapy: New Perspectives for an Old Story [J]. Cancers (Basel), 2019, 11(10).
[21] Conciatori F, Bazzichetto C, Falcone I, et al. Role of mTOR Signaling in Tumor Microenvironment: An Overview [J]. Int J Mol Sci, 2018, 19(8).
[22] Eissing M, Ripken L, Schreibelt G, et al. PTEN Hamartoma Tumor Syndrome and Immune Dysregulation [J]. Transl Oncol, 2019, 12(2): 361-367.
[23] Walsh P T, Buckler J L, Zhang J, et al. PTEN inhibits IL-2 receptor-mediated expansion of CD4+ CD25+ Tregs [J]. J Clin Invest, 2006, 116(9): 2521-2531.
[24] Ogston K N, Miller I D, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival [J]. Breast, 2003, 12(5): 320-327.
[25] Kedersha N, Stoecklin G, Ayodele M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling [J]. J Cell Biol, 2005, 169(6): 871-884.
[26] Tourriere H, Chebli K, Zekri L, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules [J]. J Cell Biol, 2003, 160(6): 823-831.
[27] Lachmann A, Xu H, Krishnan J, et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments [J]. Bioinformatics, 2010, 26(19): 2438-2444.
[28] Flannagan R S, Harrison R E, Yip C M, et al. Dynamic macrophage "probing" is required for the efficient capture of phagocytic targets [J]. J Cell Biol, 2010, 191(6): 1205-1218.
[29] Sobota A, Strzelecka-Kiliszek A, Gladkowska E, et al. Binding of IgG-opsonized particles to Fc gamma R is an active stage of phagocytosis that involves receptor clustering and phosphorylation [J]. J Immunol, 2005, 175(7): 4450-4457.
[30] Underhill D M, Goodridge H S. Information processing during phagocytosis [J]. Nat Rev Immunol, 2012, 12(7): 492-502.
[31] Barger S R, Gauthier N C, Krendel M. Squeezing in a Meal: Myosin Functions in Phagocytosis [J]. Trends Cell Biol, 2020, 30(2): 157-167.
[32] Feng M, Jiang W, Kim B Y S, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy [J]. Nat Rev Cancer, 2019, 19(10): 568-586.
[33] Liu R T, Zhang M, Yang C L, et al. Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis [J]. J Neuroinflammation, 2018, 15(1): 51.
[34] Loschi M, Leishman C C, Berardone N, et al. Dynein and kinesin regulate stress-granule and P-body dynamics [J]. J Cell Sci, 2009, 122(Pt 21): 3973-3982.
[35] Jain S, Wheeler J R, Walters R W, et al. ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure [J]. Cell, 2016, 164(3): 487-498.
[36] Wang T, Tian X, Kim H B, et al. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules [J]. Nat Commun, 2022, 13(1): 5584.
[37] Zhu K, Wu Y, He P, et al. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer [J]. Cells, 2022, 11(16).
[38] Sfakianos A P, Mellor L E, Pang Y F, et al. The mTOR-S6 kinase pathway promotes stress granule assembly [J]. Cell Death Differ, 2018, 25(10): 1766-1780.
[39] Thedieck K, Holzwarth B, Prentzell M T, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells [J]. Cell, 2013, 154(4): 859-874.
[40] Hofmann S, Cherkasova V, Bankhead P, et al. Translation suppression promotes stress granule formation and cell survival in response to cold shock [J]. Mol Biol Cell, 2012, 23(19): 3786-3800.
[41] Wu R, Oshi M, Asaoka M, et al. Intratumoral Tumor Infiltrating Lymphocytes (TILs) are Associated With Cell Proliferation and Better Survival But Not Always With Chemotherapy Response in Breast Cancer [J]. Ann Surg, 2023.
[42] Somasekharan S P, El-Naggar A, Leprivier G, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1 [J]. J Cell Biol, 2015, 208(7): 913-929.
[43] Vilas-Boas Fde A, da Silva A M, de Sousa L P, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents [J]. J Neurooncol, 2016, 127(2): 253-260.
[44] Kaehler C, Isensee J, Hucho T, et al. 5-Fluorouracil affects assembly of stress granules based on RNA incorporation [J]. Nucleic Acids Res, 2014, 42(10): 6436-6447.
[45] Buchan J R, Parker R. Eukaryotic stress granules: the ins and outs of translation [J]. Mol Cell, 2009, 36(6): 932-941.
[46] Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? [J]. Trends Biochem Sci, 2013, 38(10): 494-506.
[47] Eum H, Shin Y, Song Y, et al. ATP-driven reactions are required for the assembly of large stress granules [J]. Biochem Biophys Res Commun, 2019.
[48] Zhang S, Macias-Garcia A, Ulirsch J C, et al. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis [J]. Elife, 2019, 8.
[49] Fritzlar S, Aktepe T E, Chao Y W, et al. Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF2alpha Axis [J]. mBio, 2019, 10(3).
[50] Sharma N R, Majerciak V, Kruhlak M J, et al. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation [J]. PLoS Pathog, 2017, 13(10): e1006677.
[51] Pandey V K, Mathur A, Khan M F, et al. Activation of PERK-eIF2alpha-ATF4 pathway contributes to diabetic hepatotoxicity: Attenuation of ER stress by Morin [J]. Cell Signal, 2019, 59: 41-52.
[52] Averous J, Lambert-Langlais S, Mesclon F, et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism [J]. Sci Rep, 2016, 6: 27698.
[53] Anderson P, Kedersha N. Stressful initiations [J]. J Cell Sci, 2002, 115(Pt 16): 3227-3234.
[54] Sun Y, Lu D, Yin Y, et al. PTENalpha functions as an immune suppressor and promotes immune resistance in PTEN-mutant cancer [J]. Nat Commun, 2021, 12(1): 5147.
[55] Guzikowski A R, Chen Y S, Zid B M. Stress-induced mRNP granules: Form and function of processing bodies and stress granules [J]. Wiley Interdiscip Rev RNA, 2019, 10(3): e1524.
[56] Linde-Garelli K Y, Rogala K B. Structural mechanisms of the mTOR pathway [J]. Curr Opin Struct Biol, 2023, 82: 102663.
[57] Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control [J]. Mol Cell, 2002, 10(3): 457-468.
[58] Sarbassov D D, Ali S M, Kim D H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol, 2004, 14(14): 1296-1302.
[59] Liu G Y, Sabatini D M. mTOR at the nexus of nutrition, growth, ageing and disease [J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203.
[60] Laplante M, Sabatini D M. mTOR signaling in growth control and disease [J]. Cell, 2012, 149(2): 274-293.
[61] DeYoung M P, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling [J]. Genes Dev, 2008, 22(2): 239-251.
[62] Brugarolas J, Lei K, Hurley R L, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex [J]. Genes Dev, 2004, 18(23): 2893-2904.
[63] Kosmas K, Filippakis H, Khabibullin D, et al. TSC2 Interacts with HDLBP/Vigilin and Regulates Stress Granule Formation [J]. Mol Cancer Res, 2021, 19(8): 1389-1397.
[64] Mediani L, Antoniani F, Galli V, et al. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling [J]. EMBO Rep, 2021, 22(5): e51740.
[65] Wippich F, Bodenmiller B, Trajkovska M G, et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling [J]. Cell, 2013, 152(4): 791-805.
[66] Prentzell M T, Rehbein U, Cadena Sandoval M, et al. G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling [J]. Cell, 2021, 184(3): 655-674 e627.
[67] Heberle A M, Razquin Navas P, Langelaar-Makkinje M, et al. The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner [J]. Life Sci Alliance, 2019, 2(2).