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Abstract
Amino acid substitution model is a key component to study the plant evolution from protein sequences.
Although single-matrix amino acid substitution models have been estimated for plants (i.e., Q.plant and
NQ.plant), they are not able to describe the rate heterogeneity among sites. A number of multi-matrix
mixture models have been proposed to handle the site-rate heterogeneity, however, none are speci�cally
estimated for plants. To enhance the study of plant evolution, we estimated both time reversible and time
non-reversible multi-matrix mixture models QPlant.mix and NQPlant.mix from the plant genomes.
Experiments showed that the new mixture models were much better than the existing models for plant
alignments. We recommend researchers to use the new mixture models for studying the plant evolution.

Introduction
Modeling amino acid substitution process is one of the main problems in bioinformatics. In maximum
likelihood approach, the models are used to compute substitution probabilities along branches of
phylogenetic trees. Usually, this process is described by a Hidden Markov Model with time-continuous,
time-homogeneous and stationary properties (Richard Durbin 2006). The central part of the model is a
matrix of substitution rates each coe�cient represents the substitution rate from amino acid to
another amino acid. To reduce the computational complexity, the process might be assumed to be time-
reversible, i.e., the exchangeability rates between two amino acids are the same at both directions.

A number of general models have been introduced such as JTT, WAG or LG (Jones et al. 1992; Whelan
and Goldman 2001; Le and Gascuel 2008). Recently, we introduced clade-speci�c models for some
important clades including plants (Minh et al. 2021; Dang et al. 2022). They are single-matrix models
each has one matrix describing the substitution rates among amino acids for all sites. It is well-known
that the evolution rate is heterogeneous among sites and be affected by many factors like solvent
accessibility and protein structure (Le and Gascuel 2010; Le et al. 2012). The site rate heterogeneity can
be modeled by a discrete gamma distribution (Yang 1993), however, that is not a comprehensive solution
from biological perspectives.

The multi-matrix mixture models have been proposed to handle the site-rate heterogeneity problem, e.g.,
LG4X, LG4M (Le et al. 2012). Although these mixture models outperform the single-matrix models, they
were estimated from general datasets including diverse species and might be not appropriate for
analyzing speci�c clades. To enhance the evolutionary studies of the plants, we estimated two new multi-
matrix mixture models for plant species: time reversible model QPlant.mix and time non-reversible model
NQPlant.mix. We examined the performance and impacts of the new mixture models with other existing
models on plant alignments.

Materials and methods

Data
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We employed the Plant genome dataset (Ran et al. 2018) that was used to estimate Q.plant (Minh et al.
2021) and NQ.plant (Dang et al. 2022). The dataset has 1308 alignments containing about
16,416,532 million amino acids. In average, each alignment consists of about 38 sequences and 330
sites. The dataset was divided into two parts: the training part of 1000 alignments and the testing part of
308 remaining alignments.

Methods

Single-matrix model
The substitution rates among amino acids are described by a single replacement matrix  of 

elements where  is the substitution rate from amino acid  to amino acid . If the
substitution rates among amino acids are assumed to be time reversible (i.e., the exchangeability rates
between two amino acids are the same in both directions), the matrix  can be decomposed into two
parts: a symmetric exchangeability rate matrix  and an amino acid frequency vector 

 such that  and . The amino acid substitution processes among

sites are assumed to be independent. The likelihood of a tree  and a replacement matrix  given an
alignment  of  sites is calculated from the likelihood of sites:

1

where  is the likelihood of T and Q given the data at site .

Site rate heterogeneity
It is well-known that the substitution rates among sites are different (Yang 1993; Lartillot and Philippe
2004; Le et al. 2008, 2012; Quang et al. 2008; Wang et al. 2008). The site rate heterogeneity can be simply
modeled by a discrete gamma distribution with  equally weighted rate categories (Yang 1993). With 

, the likelihood  is calculated as followings:

2

where  is the  rate of the discrete gamma distribution with shape parameter  (the weights of
rate categories are all equal to ).

Multi-matrix model

Q = {qxy}
20 × 20 qxy x y(x ≠ y)

Q

R = {rxy}
Π = {πx} qxy = πyrxy qxx = −∑yqxy

T Q

D = (D1, D2, … , Dl) l

L (Q, T |D) = ∏
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The single-matrix model assumes that the substitution rates among amino acids are the same for all rate
categories. To relax the unrealistic biological assumption, multi-matrix models LG4M and LG4X have
been proposed (Le et al. 2012). The models have four replacement matrices for four different rate
categories. Technically, the 4-matrix model Q includes four replacement matrices: 
for ‘very slow’, ‘slow’, ‘medium’, and ‘fast’ rate category, respectively. The likelihood  is
now calculated as followings:

3

where  is the weight of matrix  with a constraint .

The LG4M model assigns each replacement matrix to one rate category obtained from the 4-category
discrete gamma distribution with equal weights for all categories; while The LG4X model uses the
distribution-free scheme that assigns different weights and rates for the rate categories (Le et al. 2012).

The maximum likelihood estimation method
The training dataset used to estimate an amino acid substitution model includes  alignments denoted
by . Let  be the set of N trees corresponding to the N training
alignments, i.e.,  is the phylogenetic tree of alignment . To account the site rate heterogeneity in the

model estimation process, let  and be the set of rates and

weights of the training alignments, respectively (i.e.,  and  are the rates and weights of alignment 
). The 4-matrix model  will be optimized to maximize the likelihood 

:

4

Optimizing Q, T, P, and W simultaneously to determine the optimal Q* is computationally infeasible for
large datasets. To overcome the computational burden, Q, T, P, and W are iteratively estimated to
obtained Q* (Whelan and Goldman 2001; Le and Gascuel 2008; Le et al. 2008). In this paper, we
enhanced the estimation process of (Le et al. 2012) by using IQ-TREE (Minh et al. 2020) to estimate trees
and site rate models; QMaker (Minh et al. 2021) to estimate parameters of time reversible replacement
matrices; and nQMaker (Dang et al. 2022) to estimate parameters of time non-reversible substitution rate
matrices.

Q1, Q2, Q3, andQ4

L(\varvecQ, T |D)

L (Q = {Q1, Q2, Q3, Q4} , W = {w1, w2, w3, w4} , T |D) = ∏
i

(
4

∑
k=1

wkL (T , Qk|Di))

wk Qk ∑4
k=1 wk = 1

N
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We estimated both time reversible model QPlant.mix and time non-reversible model NQPlant.mix from the
1000 training plant alignments. Each model contains 4 matrices corresponding to “very slow”, “slow”,
“medium” and “fast” rate categories. Since the mixture models with the free-scheme rate distribution are
better than that with the discrete gamma distribution (Le and Gascuel 2008; Minh et al. 2021; Dang et al.
2022), both QPlant.mix and NQPlant.mix were estimated with the free-scheme rate distribution.

Model performance assessment
We compared the performance models in building maximum likelihood trees including two new mixture
models QPlant.mix and NQPlant.mix; the general single-matrix models LG, WAG, JTT and Q.pfam (Jones
et al. 1992; Whelan and Goldman 2001; Le and Gascuel 2008; Minh et al. 2021); the current single-matrix
models Q.plant and NQ.plant for plants (Minh et al. 2021; Dang et al. 2022); and the general 4-matrix
mixture models LG4X and LG4M (Le et al. 2012). Because the number of free parameters of the models
are different, we used the BIC criterion (Schwarz 2007) to compare their performance.

We also examined the impacts of the models in building tree topologies. The topological difference
between two trees constructed with two different models is measured by the Robinson and Foulds (RF)
distance (Robinson and Foulds 1981). The RF distance is very wildly used metric which calculates the
number of clades that belong to one tree but not to the other. The normalized nRD distance calculated by
dividing to the total number of clades ranges from 0 (i.e., two trees have identical topologies) to 1 (i.e., the
topologies of two trees are completely different).

Results

Model analysis
First, we calculated the similarity between time reversible models Q.plant and QPlant.mix; and time non-
reversible models NQ.plant and QPlant.mix. Table 1 shows the Pearson correlations between matrices of
the models as well as the relative difference between substitution rates among amino acids. We observe
high Pearson correlations between the matrices of the mixture models with that of the single models.
There are a number of substitution rates in mixture models that are at least two or �ve times different
from that in the single-models, however, their squared errors are low (see Fig. 1). The mean squared errors
of “very slow”, “slow”, “medium” and “fast” matrices of QPlant.mix compared to Q.plant are 0.0152,
0.0046, 0.0024, 0.0039, respectively. The mean squared errors between NQPlant.mix and NQ.plant are
0.0053 for “very slow”, 0.0021 for “slow”, 0.0015 for “medium”, and 0.0041 for “fast” rate category.
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Table 1
The correlations between matrices of NQplant.mix (QPlant.mix) and that of NQ.plant
(Q.plant). 2x (-2x) means the number of exchangeability coe�cients of NQPlant.mix
(or QPlant.mix) that are two times bigger (smaller) than that of NQ.plant (or Q.plant).

Similar meanings for 5x and − 5x.

    Very slow Slow Medium Fast

NQPlant.mix & NQ.plant Correlation 0.971 0.983 0.988 0.971

2x 71 21 11 58

5x 23 4 0 12

-2x 107 163 104 119

-5x 78 74 67 86

QPlant.mix & Q.plant Correlation 0.956 0.972 0.984 0.974

2x 34 16 19 42

5x 5 4 1 3

-2x 154 194 92 99

-5x 66 76 44 50

We also used the principal component analysis (PCA) to visualize the overall difference between matrices
(see Fig. 2). The PCA shows that NQPlant.mix, QPlant.mix and 11 other models are grouped into several
clusters. For example, the Q.plant, NQ.plant and the “very slow”, “slow” and “medium” matrices of
QPlant.mix and NQPlant.mix are close to each other. The new mixture models for plants are far away
from the general mixture models LG4X and LG4M.

Fitness and Topology comparison
We tested the performance of different models in building maximum likelihood trees on 308 plant testing
alignments (see Fig. 3) using the BIC criterion. The two new mixture models for plants outperformed the
other models tested on plant alignments. QPlant.mix was better than Q.plant on 301 over 308
alignments. Similarly, NQPlant.mix outperformed NQ.plant on 301 alignments. The QPlant.mix and
NQPlant.mix were better than the general mixture models LG4X and LG4M, e.g., QPlant.mix �ts better
than LG4X on 304 alignments. We note that the mixture models QPlant.mix and NQPlant.mix were much
better than the single models.

We also investigated the impacts of the models in building tree topologies. We calculated the nRF
distances between trees constructed with our new models and that with the other models (see Table 2).
The results show that the models considerably affect the tree topology. There are only a small percentage
of testing alignments that trees inferred with the new mixture models and other models have the same
topology. For example, QPlant.mix and Q.plant resulted in the same tree topology for only 52 out of 308
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alignments. The average nRF distances between trees constructed with the new mixture models and that
with the other models range from 0.099 to 0.142.

Table 2
The nRF distances between trees constructed with the new
mixture models and that with the other models on testing

alignments. : two trees have the same topology.

Avg(nRF): the average nRF distances.
Model QPlant.mix NQPlant.mix

#nRF = 0 avg(nRF) #RF = 0 avg(nRF)

LG 30 0.132 15 0.135

WAG 13 0.136 13 0.137

JTT 30 0.117 28 0.115

Q.pfam 19 0.137 15 0.138

Q.plant 52 0.099 40 0.102

NQ.pfam 19 0.132 12 0.131

NQ.plant 44 0.103 42 0.101

LG4M 13 0.140 13 0.142

LG4X 16 0.137 11 0.143

Discussion
The multi-matrix mixture models can properly handle the site rate heterogeneity among sites, therefore,
outperform the single-matrix models. However, estimating multi-matrix mixture models is complicated
and computational expensive. It is well-known that clade-speci�c models are better than general models.
In this paper, we estimated both time reversible and time-none reversible 4-matrix mixture models for
plant species using the distribution-free scheme to handle the rate heterogeneity among sites.
Experiments showed that the new mixture models for plants outperformed the other models tested in
building maximum likelihood trees on plant alignments. We recommend researchers to use the new
mixture models to enhance the studies of plant evolution from protein sequences.
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Figure 1

The square errors of substitution rates of the mixture models QPlant.mix and NQPlant.mix in comparison
with the single models Q.plant and NQ.plant. Notation: 1, 2, 3, 4 are correspond to “very slow”, “slow”,
“medium” and “fast” matrix of the mixture models.
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Figure 2

The principal component analysis (PCA) of models. The QPlant.mix.1(.2,.3,.4) are corresponding to “very
slow” (“slow”, “medium” and “fast”) matrix. The same notations for NQPlant.mix.

Figure 3
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The performance of models in building maximum likelihood trees using the BIC criterion.


