1 Coronavirus disease 2019 (COVID-19) Situation Report – 118. 2020.
2 Kalil AC. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA. 2020.
3 Baden LR, Rubin EJ. Covid-19 - The Search for Effective Therapy. N Engl J Med. 2020 7; 382(19): 1851-1852.
4 Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3): 269-271.
5 Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 20: 105949.
6 Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England) 2020; 0(0).
7 McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines, including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Ver. 2020; 102537.
8 Li W, Moore MJ, Vasllieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965): 450–4.
9 Costa DC, Rocha E, Ribeiro TF. Association of alveolar recruitment maneuvers and prone position in acute respiratory disease syndrome patients. Rev Bras Ter Intensiva. 2009; 21(2): 197-203.
10 Barbas CSV. Acute lung injury and acute respiratory distress syndrome: diagnostic hurdles. J Bras Pneumol. 2007; 33(4): xxv-xxvi;
11 Meduri GU. Host Defense Response and Outcome in ARDS. 1997; Chest, 112(5), 1154–1158.
12 Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020; pii: S1684-1182(20) 30065-7.
13 Chatzopoulou F, Gioula G, Kioumis I, Chatzidimitriou D, Exindari M. Identification of complement-related host genetic risk factors associated with Influenza A (H1N1) pdm09 outcome: challenges ahead. Med Microbiol Immunol. 2019; 208(5): 631-640
14 Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008; 13: 2400-2407
15 Song X, He X, Li X, Qian Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol. 2016; 13(4):418-31.
16 Vidy A, Maisonnasse P, Da Costa B, Delmas B, Chevalier C, Le Goffic R. The Influenza Virus Protein PB1 F2 Increases Viral Pathogenesis through Neutrophil Recruitment and NK Cells Inhibition. PLoS One. 2016; 11(10): e0165361.
17 Roncati L, Nasillo V, Lusenti B, Riva G. Signals of Th2 immune response from COVID-19 patients requiring intensive care. Ann Hematol. 2020; s00277-020-04066-7.
18 Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Feng C, Zhang Z, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63(3): 364-374.
19 Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38(1): 1-9.
20 Hannoodee S, Nasuruddin DN. Acute Inflammatory Response. Treasure Island: StatPearls Publishing; 2020.
21 Azkur AK, Akdis M, Azkur D, Sokolowska M, Veen WV, Brüggen MC, O'Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. J Allergy Clin Immunol 2020; 10.1111/all.14364
22 Kramer JM, Yi L, Shen F, Maitra A, Jiao X, Jin T, et al. Cutting edge: evidence for ligand-independent multimerization of the IL-17 receptor. J Immunol. 2007.
23 Wong CK, Cao J, Yin YB, Lam CWK. Interleukin-17A activation on bronchial epithelium and basophils: A novel inflammatory mechanism. Eur Respir J. 2010; 35(4): 883–93.
24 Naumenko V, Turk M, Jenne CN, Kim SJ. Neutrophils in viral infection. Cell Tissue Res. 2018; 371(3): 505-516.
25 Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020; 12 :4–20.
26 Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li WV, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. NEJM. 2020; doi: 10.1056/NEJMoa2015432
27 Wonnenberg, B., Jungnickel, C., Honecker, A., Wolf, L., Voss, M., Bischoff, M., Tschernig, T., Herr, C., Bals, R., Beisswenger, C. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immun. 2016; 22(8):620–25.