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Abstract
Synthetic lethal interactions (SLIs) can provide a therapeutic index, as illustrated by PARP inhibition of
BRCA-de�cient cancers1–4. Whereas additional SLIs based on genomic alterations in cancer have been
identi�ed5–19, we set out to explore the SLI space as a function of differential RNA expression pro�les in
cancer and normal tissue. By unbiased computational analyses of publicly available functional genomic
and gene expression resources we uncovered a cancer-speci�c SLI between the paralogs cytidine
diphosphate synthase 1 (CDS1) and CDS2. The essentiality of CDS2 for cell survival is observed for
mesenchymal-like cancers, which express low levels of CDS1. We con�rm the CDS1-2 SLI in a panel of
cultured cancer cell lines and in tumor-bearing mice. Mechanistically, the CDS1-2 SLI is accompanied by
disruption of lipid homeostasis including extensive accumulation of cholesterol esters and triglycerides,
and induction of apoptotic cell death. Genome-wide CRISPR-Cas9 knockout screens in a panel of CDS1-
negative cancer cell lines failed to identify a common escape mechanism of death caused by CDS2
ablation, indicating the robustness of the SLI. Our �ndings reveal that CDS2 may serve as a
pharmacologically tractable target in mesenchymal cancers, meriting therapeutic exploration.

Introduction

Established SLIs in cancer
SLIs can provide a therapeutic index in cancer1, as exempli�ed by the dependency on PARP of BRCA-
de�cient hereditary breast and ovarian cancer. Whereas healthy cells retain one functional germline BRCA
copy, somatic loss of the second copy results in cancer. Because BRCA de�ciency results in loss of
homology-based DNA repair20, it causes a strong dependency on PARP for genomic stability and, hence,
survival. This SLI has been clinically exploited with speci�c PARP inhibitors2–4. This clinical success, and
other examples, have spurred efforts to identify additional cancer-associated SLIs5–19,21–32. Similar to
BRCA-PARP, data on genomic alterations speci�c to cancer are commonly used to �nd SLIs2,3,5–20, such
as the dependency on WRN in microsatellite unstable cancers5,6.

Exploring SLIs in cancer based on differential gene expression
In addition to genomic alterations, cancers have also distinct gene expression pro�les relative to healthy
tissue. Publicly available datasets provide extensive transcriptional information as well as genetic
dependencies in cancer. For example, the cancer dependency map (DepMap) is a comprehensive
research initiative providing matched CRISPR screening and gene expression data for 913 cell lines
across 30 cancer lineages (2021Q2)33,34. Additionally, the Cancer Genome Atlas (TCGA) provides
genome-wide gene expression data for 9264 tumor and 741 healthy samples35. Together, these data sets
provide approximately 1e9 datapoints on gene expression and genetic dependencies in cancer and can
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be mined to predict SLIs. For example, gene expression data have been used to retrospectively predict
patient responses to targeted therapy using computational synthetic lethality analyses29.

Here, we performed unbiased computational analyses to �nd cancer-speci�c SLIs, taking advantage of
these public functional genomic and gene expression resources, particularly also the Genotype-Tissue
Expression project (GTEx), which provides genome-wide gene expression data for 17382 healthy tissue
samples36. We scored all ~ 3.4e8 gene pairs for synthetic lethality and cancer speci�city. We focused on
the strong SLI that we uncovered between CDS1 and CDS2, investigating cancer speci�city, robustness of
the synthetic lethal relationship in vitro and in mice, potential escape mechanisms, mechanism of cell
death and lipidomic and proteomic analysis.

Results
Computational analyses identify CDS1-CDS2 as a common and cancer-associated SLI

To query for SLIs based on differential gene expression between cancer and normal tissue, we set up a
bioinformatic pipeline using public datasets on gene dependencies and RNA expression (Fig. 1a). This
pipeline identi�es anchor-target gene pairs, in which the anchor gene shows a relatively reduced
expression level in cancer compared to normal tissue, and in which disruption of the target gene results in
cancer lethality.

The DepMap includes additional types of data that we incorporated in our pipeline to score SLIs,
including promoter methylation data, protein expression data, damaging mutation data and cancer type
data33,34,37,38. RNA expression data provided good power to detect previously established synthetic lethal
interactions, including BRCA1-PARP1 and WRN-MLH1 (Fig. 1b, Extended Data
Fig. 1a)2,3,5,6,14,15,18,19,24,30,39. The inclusion of all cancer types simultaneously resulted in a high
resolution to detect established synthetic lethal interactions compared to analyzing speci�c cancer types
separately (Extended Data Fig. 1a). Therefore, we determined the SLI scores for all gene pairs with RNA
expression data for all cancer types simultaneously.

The CDS1-CDS2 and NAA10-NAA11 gene pairs received high SLI scores (Fig. 1c, Extended Data Fig. 1b, c
and Supplementary Table 1). However, the NAA10-NAA11 SLI failed to show cancer speci�city and was
therefore not pursued. In contrast, the CDS1-CDS2 SLI demonstrated signi�cant cancer speci�city. The
high SLI score for CDS1-CDS2 is consistent with other analyses and screens scoring CDS1-CDS2 as a
candidate synthetic lethal pair, but to our knowledge this has not yet been pursued18,30,32,40. CDS1 and
CDS2 are enzymes that are conserved in plants and yeast. They serve to convert phosphatidic acid into
cytidine diphosphate diacylglycerol, conceivably representing the bottleneck in phosphatidylinositol (PI)
synthesis41–43. PI constitutes an essential component of cellular membranes and is also used as a
critical kinase substrate regulating cell proliferation and survival44,45. Aberrations in PI signaling
components act as common cancer drivers and are clinically targeted with PI3K inhibitors46.
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Our analysis con�rmed FAM50A-B, DDX3X-DDX3Y and EIF1AX-EIF1AY as cancer-speci�c SLIs, in
agreement with previous reports (Extended Data Fig. 1c)18,30. Similarly, we identi�ed PARP-associated
synthetic lethality for breast cancer cell lines (Fig. 1d, left panel). For several other SLIs, cancer speci�city
was previously inferred from genomic data5,6,14,18,19, but did not score here as such, for example WRN-
MLH1. This is conceivably due to the relatively low frequency of genomic alterations in MLH1 coupled to
our focus on transcriptomic rather than genomic data.

In contrast, we noted that CDS2 loss was associated with lethality in a large number of cancer types
(Fig. 1d, right panel). Several of these concerned common cancers, including lung, blood, brain and skin
cancer (Extended Data Fig. 1d). From here onwards, lethality as a function of CDS2 loss will be referred to
as ΔCDS2 lethality. Patients with CDS1-low cancers showed signi�cantly worse survival compared to
CDS1-high cancer patients (Fig. 1e). For these reasons we focus here on the CDS1-CDS2 SLI.

To con�rm and quantify cancer-speci�c loss of CDS1 expression, we compared pan-cancer DepMap
expression data and pan-tissue GTEx expression data (Fig. 1f). The data was calibrated on housekeeping
genes, while control analyses on reference genes were performed to determine reliability. In line with the
TCGA data (Fig. 1c), we observed common absence, or low expression, of CDS1 in cancer cell lines
compared to healthy tissue (64% average reduction, p-value < 0.0001). As expected, given the SLI, low or
no CDS1 expression strongly correlated with ΔCDS2 lethality in cancer cell lines (90% average reduction,
p-value < 0.0001). We also observed that lung, blood, brain and skin cancers have reduced CDS1 levels
compared to their lineages of origin (Extended Data Fig. 1e), suggesting that these cancers may suppress
transcription of CDS1 during cancer development. For lung cancer, differential CDS1 levels were
con�rmed using a cohort comprising patient-matched proteomics data from healthy and tumor tissue
(Fig. 1g)47. Thus, our in silico analyses predict that the CDS1-CDS2 gene pair constitutes a human cancer-
associated SLI, speci�cally in common CDS1-low cancers.

CDS1 and CDS2 constitute a synthetic lethal gene pair across cancer types

For wet lab validation of the computational predictions, we used a panel of cancer cell lines, which are
also in the DepMap (Fig. 2a). Their CDS1 RNA levels were con�rmed by qPCR analysis (Fig. 2b). Low
throughput CRISPR perturbations were used to quantify the lethality inferred from genome-wide CRISPR
knockout screens. By including �uorescent tracker cells serving as an internal control for each
experimental condition, we quanti�ed lethality over extended timeframes, showing minimal variation
(Fig. 2c).

Upon perturbation of CDS2 with one of two separate sgRNAs, we were able to con�rm ΔCDS2 lethality in
CDS1-low or CDS1-negative cell lines across several cancer types (Fig. 2d and Extended Data Fig. 2a, b).
Furthermore, as predicted, a CDS1-high cell line was ΔCDS2 non-lethal. Compared to the DepMap data, we
observed remarkably strong lethality. Furthermore, ΔCDS2 lethality was still evident in cell lines with low
levels of CDS1 RNA (Fig. 2d; green).
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To validate the CDS1 dependency for the ΔCDS2 lethality, we either ectopically expressed CDS1 in CDS1-
negative cancer cell lines or perturbed CDS1 in CDS1-pro�cient cancer cells. When CDS1 was introduced
into two CDS1-negative cell lines, the ΔCDS2 lethality was largely negated. Conversely, when CDS1 was
perturbed in a CDS1-high cell line it exhibited increased ΔCDS2 lethality (Fig. 2e). To validate these
observations, we admixed control GFP-expressing cancer cell lines with CDS1-restored cell lines in an
additional panel of four human melanoma models. The results con�rmed strong synthetic lethality upon
perturbation of CDS2 in this panel (Fig. 2f and Extended Data Fig. 2c). Together, these functional
experiments con�rm that CDS1 and CDS2 constitute a synthetic lethal pair across a panel of cancer cell
lines in vitro.

ΔCDS2 lethality is associated with apoptosis

We suspected ΔCDS2 lethality may result in apoptotic cell death in vitro. To investigate this, we collected
tumor samples and measured cleaved caspase-3 by quantitative western blotting as a measure of
apoptosis (Fig. 2g). For quanti�cation the cleaved caspase-3 signal is compared to total protein signal in
the same capillary. As a positive control, we analyzed cleaved caspase-3 levels upon induction of
apoptosis by TPCA-1 + TNF (BLM) or staurosporine (SK-MEL-2) (Extended Data Fig. 2d). We observed a
signi�cant increase in cleaved caspase-3 in ΔCDS2 cancer cells, which indicates ΔCDS2 lethality is
associated with tumor cell apoptosis.

ΔCDS2 lethality in vivo

Next, we investigated whether the SLI between CDS1 and CDS2 observed in silico and in vitro can be
recapitulated in vivo. For this purpose, we again admixed control GFP-expressing cancer cell lines with
CDS1-restored cell lines. Tumor cells were inoculated into immunode�cient NOD-Scid IL2Rgnull mice and
analyzed by �ow cytometry of the tumors 17 days later. We observed a striking inability of CDS2-
perturbed cells to contribute to tumor formation in vivo (Fig. 2h and Extended Data Fig. 2e, f; note that the
tumor growth curves are derived from cell mixes including rescued cells). Together, these results
demonstrate that CDS1 and CDS2 form a robust synthetic lethal pair in cancer, in silico, in vitro and in
vivo.

No common escape mechanism for Δ CDS2 lethality

The computational and in vitro and in vivo functional validation data above demonstrate the broad
cancer range and reproducibility of the CDS1-2 SLI, prompting us to further challenge its robustness.
Speci�cally, the rate-limiting role of the CDS enzymes in PI synthesis led us to investigate whether any
cells can rewire their signaling network such that they can escape from this SLI. To investigate this in an
unbiased, genome-wide fashion, we performed CRISPR knockout rescue screens in a panel of four CDS1-
negative human cancer cell lines and, as a control, one CDS1-high cancer cell line (Fig. 3a and
Supplementary Table 2). In parallel, cells from the screens were used to track ΔCDS2 lethality during the
screen. These analyses con�rmed ΔCDS2 lethality in four CDS1-negative cancer cell lines and extended
our data on the lack of ΔCDS2 lethality in CDS1-high cancer cell lines to an additional cancer cell line
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(Fig. 3b). In addition, colony formation assays were performed to visualize the lethal effect during the
screen (Extended Data Fig. 3a; note that for K562 a different readout was used because it is a suspension
cell line).

Analysis of the dropout of essential genes con�rmed the high quality of the screens (Fig. 3c). Potential
escape mechanisms were determined using ΔCDS2 lethality quanti�ed with tracker cells. However, the
results of the screens (Fig. 3d and Extended Data Fig. 3b) indicated no common escape mechanism of
ΔCDS2 lethality. For example, the screen performed in SK-MEL-2 cells yielded no signi�cant enrichment
even after an additional 14 days (32 days in total; Extended Data Fig. 3c), while the other screens yielded
only some cell line-speci�c rescue (Extended Data Fig. 3d-f). These �ndings suggest that no common
escape to the combined loss of CDS1 and CDS2 is possible, which is in agreement with the idea that
CDS1 and CDS2 together serve as a bottleneck for PI synthesis.

Mesenchymal cancers depend on CDS2 for PI synthesis

To understand which cancer types show reduced CDS1 expression and, hence, ΔCDS2 lethality, we
characterized CDS1-low cancers using publicly available data. First, we noted that CDS1-high cancer cells
express high levels of the epithelial marker gene E-cadherin, whereas CDS1-low cancer cell lines instead
express mesenchymal markers like ZEB1, ZEB2 and vimentin (Fig. 4a and Extended Data Fig. 4a)48,49.
Mechanistically, this is in agreement with the notion that CDS1 expression is suppressed in mesenchymal
cancers by the transcription factor ZEB1, previously reported to bind the CDS1 locus and to suppress
CDS1 expression50,51. Besides this major regulatory mechanism, we also observed that a rare subset of
the blood lineage cancer cell lines exhibit methylation of the CDS1 promoter (Extended Data Fig. 4b).
Overall, these �ndings indicate that the suppression of CDS1 expression in mesenchymal-like cancers (by
ZEB1) results in their strong dependency on CDS2.

Gene-set enrichment analysis indicated that CDS1-low cancers are enriched for the Hallmark EMT gene-
set (p = 0.0001 DepMap, p = 0.009 TCGA, Extended Data Fig. 4c). Mesenchymal-transitioned cancers are
common, highly metastatic and therapy-refractory48,52–55. These �ndings are in agreement with our
observations that low CDS1 expression is common, more frequent in cancers compared to their healthy
tissue of origin and associated with worse survival (Fig. 1d, e, Extended Data Fig. 1e). Together, these
results suggest that suppression of CDS1 expression is an integral element of EMT in cancer.

Next, we zoomed in into the pathway in which CDS1 and CDS2 are involved, as has been de�ned by
previous studies (Fig. 4b)41–43,56. We incorporated expression and dependency data from the DepMap of
the enzymes involved. In line with the requirement for CDS1/2, the next enzyme in the pathway, cytidine
diphosphate diacylglycerol synthase inositol-3-phosphatidyltransferase (CDIPT), is highly essential for
survival. In addition, CDS2 and CDIPT are signi�cantly co-dependent in DepMap cancer cell lines, which is
indicative of a similar mechanism of dependency (Fig. 4c)27,57. Accordingly, when supplementing the cell
culture media with exogenous PI, we observed a signi�cant rescue of cell death, suggesting that ΔCDS2
lethality is due, at least in part, to insu�cient availability of PI (Fig. 4d and Extended Data Fig. 4d).
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CDS2 acts upstream of the PI3K signaling module regulating growth and survival. Unexpectedly, DepMap
analysis revealed that ΔCDS2 lethality is not accompanied by lethality with either genetic loss of PIK3CA
or pharmacologic PIK3CA inhibition (Alpelisib). Instead, we observed a strong anticorrelation between
ΔCDS2 lethality and ΔPI3KCA lethality (Fig. 4c). This anticorrelation was independent of PI3K isoforms,
as judged by pan-PI3K inhibitor responses. These results demonstrate an essential role of CDS for PI
synthesis in mesenchymal cancers. Furthermore, they unexpectedly point to a contribution of CDS1 and
CDS2 to survival signaling independent of the classical PI3K pathway.

Expression of either CDS1 or CDS2 is required for lipid homeostasis

To biochemically de�ne the effects of CDS2 perturbation in CDS1-negative cancer cells, we performed
multi-omic analyses in a panel of four CDS1-negative cancer cell lines and, as a control, one CDS1-high
cancer cell line (Fig. 5a). Lipidomics was performed to quantify buildup or depletion of lipids, speci�cally
those in the CDS pathway. In addition, proteomics was performed to identify deregulated cellular
processes upon CDS2 loss.

Lipidomic analysis allowed for quanti�cation of the major lipid classes in the cells, with phosphorylated
PI (PIP) serving as the major signaling molecule44 (Extended Data Fig. 5a and Supplementary Table 3).
Major changes as a function of CDS1 expression were detected upon CDS2 loss (Fig. 5b and Extended
Data Fig. 5a, b; note that the stars indicate the number of CDS1-negative cancer cell lines with p-value < 
0.01). For example, cholesterol esters and triglycerides were massively upregulated. Furthermore, we
observed strong buildup of CDS2 substrates and depletion of the downstream product PI.

The proteomics analysis allowed for quanti�cation of ~ 7000 proteins in each cell line (Supplementary
Table 4). As expected, the levels of CDS2 protein had dropped 10-fold in all �ve cell lines upon CDS2
CRISPR perturbation (Fig. 5c). In addition, large groups of proteins were commonly and signi�cantly
down- or up-regulated in CDS1-low cancer cell lines, suggesting an orchestrated response (Fig. 5c and
Extended Data Fig. 5c). GO-term enrichment analysis of these proteins revealed major induction of
cholesterol import and production upon ΔCDS2 lethality (Extended Data Fig. 5d).

In line with the build-up of cholesterol esters and triglycerides, CDS2-perturbed cells formed large lipid
droplets58, which were visible by both light and electron microscopy, staining positively for the lipid dyes
BODIPY and Nile Red. Quanti�cation of BODIPY-stained live cells revealed that on average 3% of the
imaged cells comprised lipid (Fig. 5d). Combined light and electron microscopy of �xed cells showed
these lipid droplets in more detail (Fig. 5e). Together, these �ndings again corroborate the CDS1/2
biochemical bottleneck to support lipid homeostasis, demonstrating that lethality upon CDS2 perturbation
in CDS1-low cell lines is accompanied by major changes in lipid metabolism and expression of the
cholesterol pathway (Fig. 5f).

Discussion
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Genomic alterations in cancer can serve as a mechanistic basis for SLIs2,3,5–19. Cancers show also
distinct gene expression patterns compared to healthy tissue, prompting us to explore the cancer SLI
space based on differential gene expression in normal and healthy tissue. Taking advantage of extensive
publicly available cancer datasets, we identify here by computational mining that CDS2 serves as a
synthetic lethal target in mesenchymal cancers. Our bioinformatic pipeline revealed a potential
therapeutic index thanks to differential CDS1 expression in cancer cells (low) and normal cells (high). We
con�rmed that CDS1 and CDS2 constitute a functional SLI across many cancer types, particularly those
of mesenchymal origin, representing approximately 40% of all cancers. The SLI is mechanistically
explained by the fact that the combined loss of CDS1 and CDS2 is incompatible with cell survival, in
combination with the low or absent expression of CDS1 in mesenchymal cancer cells resulting in ΔCDS2
lethality. Our data are in agreement with results by Chan et al. reporting that CDS1-2 are a synthetic lethal
gene pair in uveal melanoma (co-submitted to Nature Genetics with this manuscript).

A series of CRISPR knockout rescue screens con�rmed not only the synthetic lethal relationship between
CDS1 and CDS2, but also that they form a bottleneck in a pathway required for PI synthesis that
apparently is essential for cancer cell viability. Mechanistically, we show that ΔCDS2 lethality causes
cancer cell apoptosis, which can be rescued at least in part by supplementing exogenous PI. The latter is
consistent with a requirement for CDS2 to produce PI. Our data also strongly suggest that, unexpectedly,
PI synthesis is required for cell survival independent of classical PI3K-dependent survival signaling,
because cell lines that depend on CDS1/2 for survival did not require PI3K. Our data imply that CDS2
inhibition may be explored to eliminate particularly mesenchymal-like cancers, which are common, highly
metastatic and therapy-refractory48,52–55.

To date, no inhibitor is available for CDS2 targeting. However, assuming that its enzymatic activity is
involved, pharmacological targeting may be possible. For example, for PI3K and DGAT enzymes acting in
the same pathway inhibitors exist, while for PI3K inhibition isoform-speci�c inhibitors also are
available46. Because healthy tissues are not included in the DepMap data, we cannot exclude that dose-
limiting toxicities for CDS2 inhibition may occur. Reassuringly however, the GTEx data suggests that high
expression of CDS1 is ubiquitous across healthy tissues. Furthermore, CDS2-targeting morpholinos are
tolerated in mice59. We would propose to develop a CDS2-speci�c inhibitor to maximize the therapeutic
index; this may be possible given the different acyl-chain preferences for CDS2 and CDS143. Clearly, a
CDS2-speci�c inhibitor would be required to determine whether, as our large-scale computational and
functional data in vitro and in vivo predict, a therapeutic index for clinically exploiting the CDS1-2 SLI
exists.
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Methods

Software
Flow cytometry data was analyzed using Flowjo (v10.6.0). For data analysis and statistics Excel (16.71),
R (4.2.2), Rstudio (2023.03.0 + 386) or Graphpad Prism (9.4.1) was used. Quantitative elements of �gures
were generated using Graphpad Prism or Flowjo. Visual elements of graphs and plots were designed and
generated in Adobe Illustrator (26.2). MAGeCK v0.5.9.5 was used for screen analysis60. Image analysis by
macro was performed using FIJI 2.14.0, Java 1.8.0 and ImageJ 1.54f61.

Data processing & availability
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Data processing was always veri�ed by a second researcher. Complex bioinformatic analyses were
redone independently. For these analyses, software notebooks designed to ease reproduction are
available on Figshare. Files required to run the provided software are either directly supplied or
instructions for downloading are supplied. Unprocessed proteomic data are available on the Proteomics
IDEnti�cations repository (PXD045833). All other plotted and unprocessed data related to this study are
available on Figshare.

Review repository access information

Figshare reviewer acces

 https://�gshare.com/s/5a4ee85512d58ab924aa 

PRIDE reviewer access

Username reviewer_pxd045833@ebi.ac.uk

Password kvmhgerD

Cancer-speci�c synthetic lethality prediction
Brie�y, to rank potential synthetic lethal candidate pairs, the Pearson correlation between �tness data
(CERES) and mRNA expression, proteomics, mutation or methylation data was calculated with 21Q2
DepMap data. Each pair includes the anchor gene (expression gene) and the target gene (�tness effect
gene), respectively. To validate this approach, several positive control synthetic lethal pairs were selected.
Positive control analyses were run using all pairs with the anchor genes. To identify the most promising
new synthetic lethal interactions, the anchored approach was replaced with a genome-wide analysis
encompassing 3.4e8 gene pairs. From the results, the top pair for each anchor was ranked to form a hit
list. Then, all duplicate target genes were removed to prevent false positives from cross-correlated anchor
genes. Reanalyzed TCGA RNA data and healthy or tumor annotation was downloaded from accession
GSE6294462. The fold change in expression was calculated for each anchor gene in the synthetic
lethality prediction.

Patient mortality and survival analysis
TCGA pan cancer atlas RNA and outcome data was downloaded on Januari 12th 2023 from:

 https://gdc.cancer.gov/about-data/publications/pancanatlas 

United States patient mortality data by cancer type was collected on Januari 18th 2023 from:

 https://seer.cancer.gov/archive/csr/1975_2017/results_single/sect_01_table.04_2pgs.pdf 

21Q2 DepMap data for cell lines with available RNA and dependency data was used for ΔCDS2 lethality.
Lineages of patient mortality data and DepMap data were matched manually (Supplementary Table 5).
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Comparing CDS1 expression between healthy tissue and cancer cell lines

GTEx v8 TPM was downloaded from the portal on January 1st 2022. 21Q2 DepMap data was
downloaded from the DepMap portal. Calibration genes with available TPM in DepMap and GTEx were
used for normalization63. Up- and down- regulation controls were selected from literature64,65. Brie�y,
transcripts per million for each calibration gene were normalized to their own average expression. Then
the TPM for B2M, CDS1, CDKN2B and E2F1 were normalized to the average of the calibration gene
expression. Calibrated results are similar to uncalibrated results due to intrinsic total RNA calibration of
the GTEx and DepMap dataset TPM data. The analysis was also performed for blood, skin, lung and
brain lineage data with the original labelling from the DepMap and GTEx, also including soft tissue ATRT
in the DepMap brain category.

Healthy and tumor proteome data
Tumor and normal adjacent lung proteome data from Satpathy et al. was downloaded from entry
PDC000234 and analyzed47. Speci�cally, log2-transformed ratios to internal controls were collected and
sample names were mapped to their healthy or tumor tissue origin. Before plotting and statistical testing
log2-transformation was undone resulting in ratios to internal control. The internal control was reported
to be a mix of all samples. Still, calibration genes with available ratios in all samples were used for
normalization63. Each calibration gene ratio was normalized to its own average ratio. Then the ratio for
CDS1 was normalized to the geometric mean of the normalized calibration gene ratios for each sample.

Quantitative polymerase chain reaction to quantify RNA
Three housekeeping genes for calibration were selected from a previously described list of options based
on stable pan-cancer cell line expression in the DepMap63. qPCR was performed as previously
described66. The average of quadruplicate CT values was calculated for each gene. To normalize to
calibration genes the geometric mean of the three calibration gene CT values was subtracted from the
CDS1 CT value. To normalize to A431, the CT value of A431 was subtracted from the other cell line CT
values. By exp2 CT values were transformed to fold changes.

Forward primer (5’ to 3’) Reverse primer (5’ to 3’)
CHMP2A CGCGAGCGACAGAAACTAGAG CCCGCATCAATACAAACTTGC

VPS29 TGCAACAGTTTGCCAGCTAAA CCTCTGCAACAGGGCTAAGC

PSMB2 ATCCTCGACCGATACTACACAC GAACACTGAAGGTTGGCAGAT

CDS1 CCTTGTCATCCAAAATCTGT GAATCCTTCCCAAGTCTTTT

Lentiviral transduction
Cell lines were lentivirally transduced as previously described66. Transduced cells were always kept on
selection during cell culture in vitro. The complete selection was veri�ed by the loss of the control
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untransduced cells on selection. Low throughput CRISPR perturbation using pLentiCRISPR v2 Puro or
Blast and ectopic expression using pLX304 Blast (CDS1 & GFP)67 or pCDH Puro (mCherry) was
performed as previously described66,68. For Fig. 2e Blast resistance was introduced to mCherry-
transduced cells using pLentiCRISPR v2 Blast. In Fig. 2d sgCDS2 #1 and #2 were used and for all other
experiments sgCDS2 #2 was used. In Fig. 2e sgCDS1 was introduced using pLentiCRISPR v2 Blast.

sgCDS1:
5’ GTGTCGCCGCCACACCGCGA 3’

sgCDS2 #1:
5’ ACCAGGGCAGATCATATGAG 3’

sgCDS2 #2:
5’ AGTAAAGGAAATGAACCGG 3’

sgControl:
5’ AGCTTTCGAAATTGAGTGTC 3’

Determining (synthetic) lethality by tracking �uorescent
cells
Brie�y, after lentiviral transduction (1 day) and puromycin selection of sgRNA-transduced cells (2 days)
the indicated cell mixes were prepared. For the in vivo experiments cells were selected one day longer. To
determine lethality sgRNA-transduced cells were mixed with non-sgRNA transduced mCherry-positive
cells. On the day of mixing (day 0) and at the indicated later time points samples from each cell mix were
analyzed by �ow cytometry to determine the ratio between negative and positive cells. Final ratios were
normalized to day 0 ratios and to sgControl ratios. For lethality, normalized ratios were transformed into
percentages to get survival percentages and subtracted from 100 to get lethality percentages. To
determine synthetic lethality ectopic CDS1- or GFP-expressing cells, both transduced with the same
sgRNA, were mixed on day 0. Then, lethality was calculated for the GFP-positive cells in an identical
manner as for the mCherry-negative cells.

Flow cytometry
Flow cytometry data was collected on a BD Fortessa �ow cytometer regularly maintained in the NKI �ow
cytometry facility. One of several live/dead dyes was always included: DAPI (D9542-50MG, Sigma), PI
(537059-100MG, Merck), DRAQ7 (D15106, Thermo�sher) and �xable near IR (L34976, Thermo�sher).
0.1% BSA in PBS was used as a washing and staining solution. Samples were washed three times
(including resuspension as one wash) in 0.1% BSA in PBS, once for dead cell experiments to preserve
dead cells and six times for in vivo samples to reduce post-digestion debris. The gating strategies used
are presented in Extended Data Fig. 6.



Page 17/31

Cell line culture
Cell lines were cultured in DMEM (41966052, Gibco) 10% FCS (3101120, Sigma) or RPMI (21875034,
Thermo�sher) 10% FCS for lung and blood cancer cell lines. Cells were passaged at subculturing ratios
corresponding to 80% con�uence at the next passage. During experiments medium was supplemented
with penicillin & streptomycin (P/S, 15140122, Invitrogen).

Cell lines were authenticated using the STR pro�ling kit from Promega (B9510). BLM was pro�led by
Euro�ns (Supplementary Table 6). Public references were available for all cell lines except SK-MEL-147
and BLM. For SK-MEL-147 a reference the was requested via private correspondence69. Cells in culture
were screened for mycoplasma monthly70.

Immunoblotting
Quantitative westerns (Abby) for cleaved caspase-3 (primary 9664S; CST) with total protein were
prepared and ran according to the manufacturer’s instructions with the manufacturer’s reagents. CRISPR-
perturbed samples for cell death analysis were split on day 11 after transduction and harvested on day
12 after transduction. Samples for immunoblotting by simple western were collected as previously
described with the additional inclusion of the �oating cell fraction66. As a control, we measured cleaved
caspase-3 upon induction of apoptosis with 1 µM staurosporine (9953S, CST) in SK-MEL-2 or 200 ng/mL
TNF (11343017, Immunotools) + 10 µM TPCA-1 (S2824, Selleckchem) in BLM71,72.

Animal studies
All animal studies were approved by the animal ethics committee of the Netherlands Cancer Institute
(NKI) and performed under approved NKI CCD (Centrale Commissie Dierproeven) projects according to
the ethical and procedural guidelines established by the NKI and Dutch legislation. Mice were housed in
single-use standard cages at controlled �ltered air humidity (55%), temperature (21°C) and light cycle. All
housing material, food and water were autoclaved or irradiated before use. Animal husbandry was
previously described66. Synthetic lethality in vivo was quanti�ed as it was in vitro with the following
adaptations. Puromycin selection was not continued in vivo. 2e6 melanoma cell mixes prepared on day 0
were injected subcutaneously into the �ank of weight-randomized 13–15 week-old NOD-Scid IL2Rgnull
mice (Jax). Mice were numbered and researchers were blinded from this step onwards. Tumor sizes were
measured by caliper. Tumors were harvested, digested and processed into homogeneous single cell
solutions. Then samples were stained for human B2M (316320, Biolegend) to exclude mouse cells and
analyzed by �ow cytometry. Results were normalized to day 0 and sgControl. For each group one sample
was unblinded during �ow cytometry acquisition to set voltages and gates for all groups.

Genome-wide CRISPR perturbation
Screening was performed as published previously68,73,74. The one vector Brunello library was ampli�ed in
liquid culture at 20.000x coverage and maintenance of the original sgRNA distribution was con�rmed.
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Screen cells were transduced at an MOI of 0.3–0.7 with Polybrene (TR-1003-G, Sigma) at 8 µg/mL.
Screens were performed at 200x coverage. Novaseq was used to sequence the screen samples and the
ampli�ed Brunello library. The following sequencing primers with unique dual indexes per sample were
used:

Forward sequencing primer (N = unique index for each sample)
5’ AATGATACGGCGACCACCGAGATCTACACNNNNNNNNACACTCTTTCCCTACACGAC

GCTCTTCCGATCTTCTTGTGGAAAGGACGAAACACCG 3’

Reverse sequencing primer (N = unique index for each sample)
5’ CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCTCGACTCGGTGCCACTTTTTCAAGTT 3’

To allow drop-out of essential sgRNAs, cells were cultured for 10 days after Brunello library transduction.
After single sgControl and sgCDS2 lentivirus transduction cells were cultured for 18 days. For SK-MEL-2
comparatively little cells were available due to lethality and no hits were detected. To ensure detection of
any escape mechanism, a cryopreserved sample from day 7 was cultured until day 32 after single
sgControl and sgCDS2 transduction, and those results were used for the presented analyses.

The colony formation assays were started with screen cells on day 8. For K562, MCF7, NCI-H2030,
LPS141 and SK-MEL-2 cell lines, 125.000, 125.000, 62.500, 31.250 and 125.000 cells were seeded,
respectively. The crystal violet stainings were done when control cells had reached con�uence, which was
after 4, 14, 12, 7 and 12 days, respectively. A seeding density corresponding to the longest culture time for
MCF7 was chosen to ensure maximum sensitivity for detecting a potential difference. For K562
suspension cells, the cells were instead counted with Trypan Blue using an automatic cell counter (Biorad
TC20). In addition, lethality was tracked from day 8 until day 19 using tracker cells and used to calculate
rescue percentages. The quality control ROC-AUC curves were generated as described previously73.

Lethality and synthetic lethality rescue experiments
For the synthetic lethality rescue experiments the method to track synthetic lethality by tracking GFP-
positivity was used. The indicated cell mixes were generated 10 days after transduction with sgControl or
sgCDS2 lentivirus. After overnight attachment, treatment was started and samples were harvested to
measure GFP positivity at starting point. Cells were split and refreshed on day 3 and measured on day 7
after start of treatment. Phospholipids were complexed with BSA. 500 µM stock solutions were generated
by incubating phospholipid with 2.5% fatty-acid free BSA from Sigma (#A8806) in DMEM at 37°C for 1
hour. Liver PC (840055P-25MG) or PI (840042P-25MG) from Avanti Polar Lipids was used. Final
GFP-/GFP + ratios were normalized to input ratios and sgControl ratios to obtain the synthetic lethal
fraction. For rescue, the fold change in the synthetic lethal fraction was calculated by dividing by the
untreated synthetic lethal fractions and transformed into rescue percentages by subtraction from 1 and
multiplication by 100. The resulting rescue percentages correspond to the part of the total synthetic
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lethality that was negated in the treated conditions. For the overnight lethality rescue, CRISPR-perturbed
samples for cell death analysis were split on day 11 after transduction and harvested on day 12 after
transduction. PI (840042P-100MG) from Avanti Polar Lipids was dissolved in medium and added to the
cells at 2 mM.

Gene set enrichment analyses
Hallmark gene set enrichment analyses were performed using GSEA 4.1.0 (Java tool) with the settings
h.all.v2022.1.Hs.symbols.gmt, 25000 permutations and No_Collapse on the Pearson correlations
generated as described from DepMap or TCGA data75,76. Gene set enrichment for go term processes was
performed using Stringdb “multiple proteins” function on the list of 37 genes signi�cant only in the four
CDS1-negative cell lines77.

Lipidomics
Quantitative targeted lipidomics was carried out using a �ow-injection assay employing lipid class
separation by differential mobility spectroscopy and selective multiple reaction monitoring (MRM) per
lipid species (Lipidyzer platform). A detailed description of lipid extraction, software and the quantitative
nature of the approach can be found elsewhere78–80. Brie�y, after the addition of > 60 deuterated internal
standards, lipids were extracted using methyl tert-butyl ether. Organic extracts were subsequently dried
under a gentle stream of nitrogen and reconstituted in running buffer. Lipids were subsequently analyzed
using �ow-injection in MRM mode employing a Shimadzu Nexera series HPLC and a Sciex QTrap 5500
mass spectrometer. For further analysis, lipidomic data normalized to cell number was used to calculate
the quadruplicate fold changes for plotting and statistical analysis.

Proteomics
Frozen cell pellets were heated for 7 min. at 950C in 1x S-Trap Lysis buffer (5% SDS, 50 mM TEAB pH
8.5), after which DNA was sheared by probe sonication. Aliquots comprising 50 µg of protein were
reduced with 20 mM DTT (20 min. at 550C) and alkylated with 40 mM iodoacetamide (30 min. at room
temperature in the dark), after which proteins were digested overnight with trypsin (Sigma-Aldrich;
enzyme/substrate ratio 1:10) on S-Trap Micro spin columns according to the manufacturer’s instructions
(ProtiFi, NY, USA). Peptides were eluted, vacuum-dried and stored at -80°C until LC-MS/MS analysis. LC-
MS/MS was performed by nanoLC-MS/MS on an Orbitrap Exploris 480 mass spectrometer (Thermo
Scienti�c) connected to a Proxeon nLC1200 system. Peptides were directly loaded onto the analytical
column (ReproSil-Pur 120 C18-AQ, 2.4µm, 75 µm × 500 mm, packed in-house) and eluted at 250 nL/min
in a 90-minutes gradient containing a non-linear increase from 6–30% solvent B (solvent A was 0.1%
formic acid/water and solvent B was 0.1% formic acid/80% acetonitrile). The Exploris 480 was run in
data-independent acquisition (DIA) mode, with full MS resolution set to 120,000 at m/z 200, MS1 mass
range was set from 350–1400, normalized AGC target was 300% and maximum IT was 45ms. DIA was
performed on precursors from 400–1000 in 48 windows of 13.5 Da with an overlap of 1 Da. Resolution
was set to 30,000 and normalized CE was 27.
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RAW �les were analyzed with DIA-NN (version 1.8) using standard settings81. Fragment spectra were
searched against the Swissprot human database (version 2022_02; 20,375 entries) by selecting ‘FASTA
digest for library-free search’; Trypsin/P was speci�ed as protease speci�city allowing a maximum of 1
miscleavage; N-terminal excision (M) and carbamidomethylation (C) were selected as �xed modi�cations
and match between runs was applied. Protein group abundances were extracted from the DIA-NN result
�les, imported into Perseus (1.6.15.0) and Log2-transformed82. For each cell line, values were �ltered for
presence in at least 4 out of 4 replicates in at least the WT or sgCDS2 sample group. Missing values were
replaced by an imputation-based normal distribution using a width of 0.3 and a downshift of 2.4.
Differentially expressed proteins were determined using a two-sided t-test (thresholds: p-value < 0.05 and
2Log abundance ratio [sgCDS2/sgControl] < -0.4 ^ > 0.4).

Light microscopy
Live cells stained with BODIPY (2 µM, D3922) were imaged on a regularly maintained Zeiss Axio Observer
Z1 microscope at the NKI imaging facility using PhaseContrast- and Fluorescence-equipment. A home-
built temperature-controlled live cell chamber and 5% CO2 incubation system were used. Data was
analyzed using a custom ImageJ code. Brie�y, for each condition low complexity area on phase contrast
was excluded to calculate cell area and BODIPY �uorescence was used to calculate lipid area. Cell lines
were imaged 14 days (SK-MEL-2) or 20 days (NCI-H2030) days after transduction.

Electron microscopy
Correlative light electron microscopy (CLEM) was performed as described before83,84. Brie�y, for CLEM
150–300 nm cryosections of cells were placed onto an EM-grid, stained with Nile red (Sigma, 72485) and
Hoechst 33342 (Thermo Fisher, H3570) and imaged with a Wide-�eld Fluorescence Microscope (Leica
DM6, 100x oil objective). After washing and contrasting for EM purposes, the identical grid was imaged
using a transmission electron microscope (Talos L120c Thermo Fisher, with Ceta 16M camera).

Statistics and replication
Signi�cance was tested and depicted as indicated. To ensure reproducibility, we addressed experimental
variation by including multiple replicates, we addressed biological variation by including multiple cell
lines and we employed multiple methods whenever possible.
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Figure 1

Computational analyses identify CDS1-CDS2 as a common and cancer-associated SLI

a) Schematic depicting the bioinformatic pipeline for identifying cancer-speci�c SLIs using TCGA (left)
and DepMap (right).
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b)  The correlation (Pearson’s r) between RNA, proteomic, mutation or methylation anchor gene data and
gene dependency data in cancer cell lines for previously validated synthetic lethal pairs. The rank of the
known target gene partners was plotted for each data type. n (cancer cell lines) = 913 (RNA), 299
(protein), 986 (damaging mutation) and 513 (methylation).

c) Top predicted synthetic lethal pairs, named by their target gene and anchor gene, respectively. Y-axis
presents the correlation (Pearson’s r) between the expression of the anchor gene and the dependency on
the target gene (DepMap). X-axis presents the average reduction in anchor expression in patient tumor
samples compared to patient healthy tissue samples (TCGA). Increases in expression are plotted as a 0%
reduction. Bonferroni-corrected Pearson-associated p-values were used to determine signi�cance cut-off.
n = 913 cancer cell lines and 10.005 patient samples (9264 tumor, 741 healthy).

d) For each cancer lineage the percentage of ΔCDS2 or ΔPARP lethal cancer cell lines (DepMap) was
plotted against the percentage of BRCA1/2-mutated or low CDS1-expressing cancer cell lines. The cut-off
for the latter was log2(TPM+1) of 1.5. The cut-off for lethality was CERES<-0.5. A CERES of -1
corresponds to core essential, whereas a CERES of 0 corresponds to non-essential34. For each cell line
data for the most essential PARP gene (out of 13) was included in the analysis. n = 906 cancer cell lines
(40 breast).

e) Probability of survival for patients with the highest and lowest quartile of CDS1 expression of patient
tumor samples (TCGA). The hazard ratio for the CDS1-low quartile was 1.90 [1.715-2.106] compared to
the CDS1-high quartile. Log-rank Mantel-Cox test was used. n = 10163 patients.

f) Calibration gene-normalized RNA expression in healthy tissue samples (GTEx), cancer cell lines
(DepMap), ΔCDS2 lethal cancer cell lines (DepMap, CERES<-0.5) and ΔCDS2 non-lethal cancer cell lines
(DepMap, CERES>-0.5) are presented in violin plots for the genes B2M, E2F1, CDKN2B and CDS1. The
three dotted lines in each violin represent the quartile cut-offs. For signi�cant differences the percentual
change in average TPM was indicated. For controls one overall average was indicated. Kruskal-Wallis test
followed up by Dunn’s test was used. n = 17382 healthy tissue samples and 913 cancer cell lines (657
ΔCDS2 non-lethal and 256 ΔCDS2 lethal).

g) Calibration gene-normalized CDS1 protein levels in matched healthy lung and lung tumor samples47.
The three dotted lines in each violin represent the quartile cut-offs. Mann-Whitney test was used. n = 110
tumor samples and 102 adjacent healthy lung samples.

P-values were indicated by * (<0.05), ** (<0.01) and *** (<0.001).
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Figure 2

CDS1 and CDS2 constitute a synthetic lethal gene pair across cancer types in vitro and in melanoma in
vivo

a) Plot depicting synthetic lethality upon CRISPR perturbation of CDS2 (ΔCDS2 lethality) and CDS1 RNA
expression for cancer cell lines (DepMap). Cancer cell lines were categorized by CDS1 RNA levels and cell



Page 26/31

lines used for validation are marked. Histograms depicting the distribution were added for both axes. n =
913 cancer cell lines.

b) Plot depicting CDS1 RNA expression as measured by RNA sequencing (DepMap) or qPCRanalysis. The
correlation (Pearson’s r) and the associated p-value (p) were added. Average of two independent
experiments with each n = 4 replicates for 8 cancer cell lines.

c) Diagram depicting the method for quantifying lethality upon CRISPR perturbation using �uorescent
tracker cells. The mCherry-positive percentage was quanti�ed by �ow cytometry.

d) Graph depicting cumulative lethality 14d after CRISPR perturbation of CDS2using tracker cells (panel
c). CDS2 sgRNAs, positive control sgRNA (RPL19) and negative control sgRNA (sgControl) were included.
Two-way ANOVA followed up by Dunnett’s test was used. n = 3 replicates for 7 cancer cell lines with 2
CDS2 sgRNAs. Independent experiment repeat in panel e (3 cancer cell lines) and Fig. 3b (4 cancer cell
lines); the latter also includes an additional CDS1-high cancer cell line.

e) For two CDS1-negative cell lines (NCI-H2030 and SK-MEL-2) CDS1 or GFP (control) was ectopically
expressed and 14d ΔCDS2 lethality was determined using tracker cells (panel c). For one CDS1-high cell
line CDS1(sgCDS1, versus sgControl) was perturbed by CRISPR and 8d ΔCDS2 lethality was determined
using tracker cells (panel c). Two-way ANOVA followed up by Tukey’s test was used. n = 3 replicates for 3
cancer cell lines, A431 and NCI-H2030/SK-MEL-2 are separate experiments.

f) Left: diagram depicting method for quantifying synthetic lethality using ectopic CDS1 or GFP
expression. The GFP-positive percentage was quanti�ed by �ow cytometry. Right: graph depicting
quanti�cation of synthetic lethality in melanoma. Two-way ANOVA followed up by Sidak’s test was used.
n = 3 replicates for 4 cancer cell lines.

g) Graph depicting snapshot of the total protein normalized level of cleaved caspase-3 in ΔCDS2 or
control samples of BLM and SK-MEL-2 cell lines, as determined by quantitative western blotting (Abby).
Two-way ANOVA followed up by Sidak’s test was used. n = 3 replicates for 2 cancer cell lines.

h) Left: diagram depicting the in vivo variant of the method for quantifying synthetic lethality. Right:
graph depicting quanti�cation of the in vivo synthetic lethality in two melanoma cell line models. Two-
way ANOVA followed up by Sidak’s test was used. n = 6 NOD-Scid IL2Rgnull mice per group each for 2
cancer cell lines.

P-values were indicated by * (<0.05), ** (<0.01) and *** (<0.001).
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Figure 3

No common escape mechanism for ΔCDS2 lethality

a) Diagram depicting the method used to screen for ΔCDS2 lethality escape mechanisms. One CDS1-high
cancer cell line and four CDS1-negative cancer cell lines were screened.

b) The lethality of the screen cells between day 15 and day 25. Lethality was quanti�ed using �uorescent
tracker cells as depicted in Fig. 2c. Two-way ANOVA followed up by Sidak’s test was used. n = 3 replicates
for 5 cancer cell lines.

c) As a quality control, each control arm was compared with the original library to detect essential genes
(true positives) over non-essential genes (true negatives). The resulting area under the receiver operator
curve (ROC-AUC) values for each screen are presented. A ROC-AUC above 90% of maximum is considered
outstanding for CRISPR screens73. n = 1 for 5 cancer cell lines at 200x coverage with 4 sgRNA per gene
and 1000 sgControls in the CRISPR library.
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d) Graph depicting the screen hits identi�ed in 3/4 or all 4 CDS1-negative cancer cell lines. Effect size was
calculated using the average ΔCDS2 lethality in the lethality assays with screen cells (panel b) and the
fold-change enrichment of the second-best guides for each gene. Benjamini-Hochberg corrected p-values
from MAGeCK resulted in the indicated signi�cance. n = 1 for 4 cancer cell lines at 200x coverage with 4
sgRNA per gene and 1000 sgControls in the CRISPR library.

P-values were indicated by * (<0.05), ** (<0.01) and *** (<0.001).
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Figure 4

Mesenchymal cancers depend on CDS2 for PI synthesis

a) Left: method for phenotyping ΔCDS2 lethal/CDS1-low cancer cell lines and ΔCDS2 non-lethal/CDS1-
high cancer cell lines (DepMap) (illustrative). Right: genome-wide calculated Pearson correlations. Five
genes enriched on either side are marked. Bonferroni corrected Pearson associated p-values were used to
determine signi�cance cut-off. n = 913 cancer cell lines.

b) Diagram depicting the core CDS1/2 pathway. The lethality upon perturbation (color) and lineage
speci�c expression patterns (grey boxes on the left) of each enzyme in the pathway are indicated
(DepMap). For abbreviations, see bottom of �guredescription. Gene dependency is represented by CERES.
n = 913 cancer cell lines.

c) Correlation between ΔCDS2 lethality and ΔCDIPT lethality, ΔPIK3CAlethality, PIK3CA inhibitor lethality
(Alpelisib) or the pan-PI3K inhibitor lethality (Copanlisib) in solid cancer cell lines (DepMap). The
Bonferroni corrected Pearson correlation associated p-values were used. n (cancer cell lines) = 865
(CDIPT and PIK3CA), 428 (Copanlisib) and 441 (Alpelisib).

d) Rescue of synthetic lethality upon supplementation with phosphatidylinositol (PI) or
phosphatidylcholine (PC, control). The method to quantify synthetic lethality was introduced in Fig. 2f. PI
and PC were complexed with lipid free bovine serum albumin. Two-way ANOVA followed up by Dunnett’s
test was used. n = 3 replicates for 2 cancer cell lines.

P-values were indicated by * (<0.05), ** (<0.01) and *** (<0.001).

PA = phosphatidic acid, CDS = cytidine diphosphate diacylglycerol synthase, CDP-DAG = cytidine
diphosphate diacylglycerol, CDIPT = cytidine diphosphate diacylglycerol synthase inositol-3-
phosphatidyltransferase, PI = phosphatidylinositol, PIK3C = phosphatidylinositol-4,5-bisphosphate 3-
kinase, PIP = phosphatidylinositol phosphate
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Figure 5

Expression of either CDS1 or CDS2 is required for lipid homeostasis

a) Diagram depicting the samples generated for quantifying lipids and proteins. One CDS1-high cancer
cell line and four CDS1-negative cancer cell lines were analyzed.
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b) Five ΔCDS2 lipid class changes are presented (full results in Extended Data Fig. 5a). The stars indicate
the number of CDS1-negative cell lines with at least two-star signi�cant lipid alterations compared to the
CDS1-high cell line. Two-way ANOVA followed up by Sidak’s test was used. n = 4 replicates for 5 cancer
cell lines.

c) Average ΔCDS2 protein changes for the four CDS1-negative cancer cell lines (y-axis) were plotted
against the ΔCDS2 protein changes in the CDS1-high cancer cell line (x-axis). Signi�cance was
determined by students T test. n = 4 replicates for 5 cancer cell lines.

d) Cell areas staining positive for the lipid compartment dye BODIPY in live cell imaging. Two-way ANOVA
followed up by Sidak’s test was used. n = 4 replicates for 2 cancer cell lines.

e) Representative combined light and transmission electron microscopy image of a sgControl and a
sgCDS2 SK-MEL-2 cell stained for lipids (Nile Red) and DNA (Hoechst). n = 1 for 1 cancer cell line, an
independent experiment was performed for quanti�cation (panel d).

f) Cartoon depicting lipid compartments and the CDS2 pathway. The ΔCDS2 lipid class changes in the
four CDS1-negative cell lines are marked by arrows. Abbreviations below.

(b) Signi�cance was indicated by one * for each cell line with p-value<0.01 (d) P-values were indicated by
* (<0.05), ** (<0.01) and *** (<0.001).

DG = diacylglycerol, DGKs = diacylglycerol kinases, PA = phosphatidic acid, CDS = cytidine diphosphate
diacylglycerol synthase, CDP-DAG = cytidine diphosphate diacylglycerol, PA = phosphatidic acid, CDIPT =
cytidine diphosphate diacylglycerol synthase inositol-3-phosphatidyltransferase, PI =
phosphatidylinositol, TG = triglycerides, CE = cholesterol esters
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