-
Yuan, H., Ge, T., Zhou, P., Liu, S., Roberts, P., and Zhu, H., et al. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J. Soils Sediments. 13(5), 877–886. doi: 10.1007/s11368-013-0664-8 (2013).
-
Chen, S., Waghmode, T. R., Sun, R., Kuramae, E. E., Hu, C., and Liu, B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome. 7(1), 227–232. doi: 10.1186/s40168-019-0750-2 (2019).
-
Montiel-Rozas, M. M., Domínguez, M. T., Madejón, E., Madejón, P., Pastorelli, R., and Renella, G. Long-term effects of organic amendments on bacterial and fungal communities in a degraded mediterranean soil. Geoderma. 332, 20–28. doi: 10.1016/j.geoderma.2018.06.022 (2018).
-
Chen, Q., Ding, J., Zhu, D., Hu, H., Delgado-Baquerizo, M., and Ma, Y., et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141(C), 107686. doi: 10.1016/j.soilbio.2019.107686 (2020).
-
Su, X., Li, G., Cotner, J. B., Wei, L., Wang, Y., and Pan, T., et al. Long-term organic fertilization changes soil active bacterial composition and multifunctionality: rna-based bacterial community and qpcr-based smartchip analysis. J. Soils Sediments. 21(2), 799–809. doi: 10.1007/s11368-020-02854-2 (2012).
-
Sun, R., Zhang, X., Guo, X., Wang, D., Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry. 88, 9–18. doi: https://doi.org/10.1016/j.soilbio.2015.05.007 (2015).
-
Li, Y., Liu, X., Zhang, L., Xie, Y., Cai, X., and Wang, S., et al. Effects of short-term application of chemical and organic fertilizers on bacterial diversity of cornfield soil in a karst area. J. Soil Sci. Plant Nutr. 20(4), 2048–2058. doi: 10.1007/s42729-020-00274-2 (2020).
-
Xiao, E., Ning, Z., Xiao, T., Sun, W., Jiang, S. Soil bacterial community functions and distribution after mining disturbance. Soil Biology and Biochemistry. 157, 108232. doi: https://doi.org/10.1016/j.soilbio.2021.108232 (2021).
-
Kim, M. J., Do, H., Cho, G., Jeong, R. D., Kwak, Y. S. Comparison of microbial community of rhizosphere and endosphere in kiwifruit. Plant Pathol. J. 35(6), 705–711. doi: 10.5423/PPJ.NT.08.2019.0216 (2019).
-
Chen, Y., Lv, X., Qin, Y., Zhang, D., Zhang, C., and Song, Z., et al. Effects of different botanical oil meal mixed with cow manure organic fertilizers on soil microbial community and function and tobacco yield and quality. Front. Microbiol. 14, 1191059. doi: 10.3389/fmicb.2023.1191059 (2023).
-
Kubartová, A., Ranger, J., Berthelin, J., Beguiristain, T. Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microb. Ecol. 58(1), 98–107. doi: 10.1007/s00248-008-9458-8 (2009).
-
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., and Taylor, C. M., et al. Picrust2 for prediction of metagenome functions. Nat. Biotechnol. 38(6), 685–688. doi: 10.1038/s41587-020-0548-6 (2020).
-
Lu R. Methods of Soil Agrochemical Analysis, 2000, Beijing: Science Press. (In Chinese)
-
Chen, S., Zhou, Y., Chen, Y., Gu, J. Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics. 34(17), i884-i890. doi: 10.1093/bioinformatics/bty560 (2018).
-
Magoč, T., Salzberg, S. L. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27(21), 2957–2963. doi: 10.1093/bioinformatics/btr507 (2011).
-
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. Dada2: high-resolution sample inference from illumina amplicon data. Nat. Methods. 13(7), 581–583. doi: 10.1038/nmeth.3869 (2016).
-
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., and Hollister, E. B., et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541. doi: 10.1128/AEM.01541-09 (2009).
-
Dou, S., Shan, J., Song, X., Cao, R., Wu, M., and Li, C., et al. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere. 30(2), 159–167. doi: 10.1016/S1002-0160(20)60001-7 (2020).
-
Xun, W., Zhao, J., Xue, C., Zhang, G., Ran, W., and Wang, B., et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in south china. Environ. Microbiol. 18(6), 1907–1917. doi: 10.1111/1462-2920.13098 (2016).
-
Zhao, W., Ma, L., Xu, J., Tang, J., Zhang, J., and Zhao, B. Effect of Application of Straw and Wood Peat for a Short Period on Soil Organic Matter and Microbial Community in Composition and Function in Fluvo-aquic Soil. Acta Pedologica Sinica. 57, 153–164. doi: 10.11766/trxb201811300537 (2020).
-
Nguyen, T. T. N., Wallace, H. M., Xu, C., Van Zwieten, L., Weng, Z. H., and Xu, Z., et al. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 636, 142–151. doi: https://doi.org/10.1016/j.scitotenv.2018.04.278 (2018).
-
Zhang, Q., Shamsi, I. H., Xu, D., Wang, G., Lin, X., and Jilani, G., et al. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 57, 1–8. doi: https://doi.org/10.1016/j.apsoil.2012.02.012 (2012).
-
Bhatti, A. A., Haq, S., Bhat, R. A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111, 458–467. doi: 10.1016/j.micpath.2017.09.036 (2017).
-
Wang, J., Song, Y., Ma, T., Raza, W., Li, J., and Howland, J. G., et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 112, 42–50. doi: https://doi.org/10.1016/j.apsoil.2017.01.005 (2017).
-
Xun, W., Huang, T., Zhao, J., Ran, W., Wang, B., and Shen, Q., et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry. 90, 10–18. doi: 10.1016/j.soilbio.2015.07.018 (2015).
-
Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., and Wu, M., et al. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75(7), 2046–2056. doi: 10.1128/AEM.02294-08 (2009).
-
Fierer, N., Bradford, M. A., Jackson, R. B. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil. Ecology. 88(6), 1354–1364. doi: 10.1890/05-1839 (2007).
-
Xun, W., Xiong, W., Huang, T., Ran, W., Li, D., and Shen, Q., et al. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil. Appl. Soil Ecol. 100, 38–44. doi: https://doi.org/10.1016/j.apsoil.2015.12.003 (2016).
-
Anderson, C. R., Peterson, M. E., Frampton, R. A., Bulman, S. R., Keenan, S., and Curtin, D. Rapid increases in soil ph solubilise organic matter, dramatically increase denitrification potential and strongly stimulate microorganisms from the firmicutes phylum. Peerj. 6, e6090. doi: 10.7717/peerj.6090 (2018).
-
Chen, Z., Ma, S., Liu, L. L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in china. Bioresour. Technol. 99(14), 6702–6707. doi: 10.1016/j.biortech.2007.03.064 (2008).
-
Fraser, T. D., Lynch, D. H., Bent, E., Entz, M. H., Dunfield, K. E. Soil bacterial phod gene abundance and expression in response to applied phosphorus and long-term management. Soil Biology and Biochemistry. 88, 137–147. doi: https://doi.org/10.1016/j.soilbio.2015.04.014 (2015).
-
Bjelić, D., Marinković, J., Tintor, B., Mrkovački, N. Antifungal and plant growth promoting activities of indigenous rhizobacteria isolated from maize (zea mays l.) Rhizosphere. Commun. Soil Sci. Plant Anal. 49(1), 88–98. doi: 10.1080/00103624.2017.1421650 (2018).
-
Ding, Y., Wang, J., Liu, Y., Chen, S. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in beijing region. J. Appl. Microbiol. 99(5), 1271–1281. doi: 10.1111/j.1365-2672.2005.02738.x (2005).
-
Kloepper, J. W., Ryu, C., Zhang, S. Induced systemic resistance and promotion of plant growth by bacillus spp. Phytopathology. 94(11), 1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259 (2004).
-
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hamonts, K., Anderson, I. C., and Singh, B. K. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol. Biochem. 111, 10–14. doi: 10.1016/j.soilbio.2017.03.013 (2017).
-
Zhang, Y. G., Liu, Q., Wang, H. F., Park, D. J., Guo, J. W., and Kim, C. J., et al. Nocardiopsis ansamitocini sp nov., A new producer of ansamitocin p-3 of the genus nocardiopsis. Int. J. Syst. Evol. Microbiol. 66, 230–235. doi: 10.1099/ijsem.0.000703 (2016).
-
He, Y., Ding, N., Shi, J., Wu, M., Liao, H., and Xu, J. Profiling of microbial plfas: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biology and Biochemistry. 57, 625–634. doi: https://doi.org/10.1016/j.soilbio.2012.07.027 (2013).
-
Tang, X., Zhong, R., Jiang, J., He, L., Huang, Z., and Shi, G., et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. Bmc Biotechnol. 20, 3. doi: 10.1186/s12896-020-00606-1 (2020).
-
Xia, Q., Liu, X., Gao, Z., Wang, J., Yang, Z. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern loess plateau. Peerj. 8, e8853. doi: 10.7717/peerj.8853 (2020).
-
Kitashova, A., Schneider, K., Fürtauer, L., Schröder, L., Scheibenbogen, T., and Fürtauer, S., et al. Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. Photosynth. Res. 147(1), 49–60. doi: 10.1007/s11120-020-00795-y (2021).
-
Chen, L., Cheng, Z., Xu, M., Yang, Z., Yang, L. Effects of nitrogen deficiency on the metabolism of organic acids and amino acids in oryza sativa. Plants. 11, 2576. doi: 10.3390/plants11192576 (2022).
-
Wu, Z., Hao, Z., Sun, Y., Guo, L., Huang, L., and Zeng, Y., et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot panax notoginseng. Applied Soil Ecology : A Section of Agriculture, Ecosystems & Environment. 107, 99–107. doi: 10.1016/j.apsoil.2016.05.017 (2016).
-
Singh, R., Paul, D., Jain, R. K. Biofilms: implications in bioremediation. Trends in Microbiology (Regular Ed.). 14(9), 389–397. doi: 10.1016/j.tim.2006.07.001 (2006).
-
Velmourougane, K., Prasanna, R., Saxena, A. K. Agriculturally important microbial biofilms: present status and future prospects. J. Basic Microbiol. 57(7), 548–573. doi: 10.1002/jobm.201700046 (2017).
-
Chodak, M., Golebiewski, M., Morawska-Ploskonka, J., Kuduk, K., Niklinska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65(3), 1627–1637. doi: 10.1007/s13213-014-1002-0 (2015).
-
Zhao, P., Liu, J., Jia, T., Luo, Z., Li, C., and Chai, B. Assembly mechanisms of soil bacterial communities in subalpine coniferous forests on the loess plateau, china. J. Microbiol. 57(6), 461–469. doi: 10.1007/s12275-019-8373-7 (2019).