1 de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758−2781 (2008).
2 Rahmati, M., Safdari, M.-S., Fletcher, T. H., Argyle, M. D. & Bartholomew, C. H. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer–Tropsch Synthesis. Chem. Rev. 120, 4455-4533 (2020).
3 Yang, C., Zhao, H. B., Hou, Y. L. & Ma, D. Fe5C2 Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis. J. Am. Chem. Soc. 134, 15814−15821 (2012).
4 Studt, F. et al. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science 320, 1320−1322 (2008).
5 Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86−89 (2008).
6 Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917−920 (2017).
7 de Smit, E. et al. Stability and Reactivity of epsilon-chi-theta Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling mu(c). J. Am. Chem. Soc. 132, 14928-14941 (2010).
8 Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84−87 (2016).
9 Liu, X. et al. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas. ACS Catal. 7, 4867–4875 (2017).
10 Pique, O. et al. Subsurface Carbon: A General Feature of Noble Metals. Angew. Chem. Int. Ed. 58, 1744–1748 (2019).
11 Rinaldi, A. et al. Dissolved carbon controls the initial stages of nanocarbon growth. Angew. Chem. Int. Ed. 50, 3313−3317 (2011).
12 Harutyunyan, A. R. et al. Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity. Science 326, 116−120 (2009).
13 Chiang, W. H. & Sankaran, R. M. Linking Catalyst Composition to Chirality Distributions of as-Grown Single-Walled Carbon Nanotubes by Tuning NixFe1-x Nanoparticles. Nat. Mater. 8, 882−886 (2009).
14 Yang, F. et al. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts. Nature 510, 522−524 (2014).
15 Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).
16 Zhao, Q., Xu, Z., Hu, Y., Ding, F. & Zhang, J. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci. Adv. 2, 1501729 (2016).
17 Yang, F. et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem. Rev. 120, 2693–2758 (2020).
18 Wang, H. et al. Catalysts for Chirality Selective Synthesis of Single-Walled Carbon Nanotubes. Carbon 81, 1−19 (2015).
19 Xiang, R. & Maruyama, S. Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes. Roy. Soc. Open Sci. 5, 180345 (2018).
20 Magnin, Y., Amara, H., Ducastelle, F., Loiseau, A. & Bichara, C. Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362, 212−215 (2018).
21 Ago, H. et al. Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano 4, 7407−7414 (2010).
22 Dai, B. et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2, 522 (2011).
23 An, H. et al. Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO2. Sci. Adv. 5, 9459 (2019).
24 Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).
25 Zhang, L. et al. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by In Situ Transmission Electron Microscopy. ACS Nano 11, 4483−4493 (2017).
26 Lin, P. A. et al. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. J. Catal. 349, 149−155 (2017).
27 Diarra, M., Zappelli, A., Amara, H., Ducastelle, F. & Bichara, C. Importance of Carbon Solubility and Wetting Properties of Nickel Nanoparticles for Single Wall Nanotube Growth. Phys. Rev. Lett. 109, 185501 (2012).
28 Ding, F. et al. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 8, 463–468 (2008).
29 Cao, K. et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nat. Commun. 9, 3382 (2018).
30 Fiawoo, M. F. et al. Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control. Phys. Rev. Lett. 108, 195503 (2012).
31 Huang, M. & Ruoff, R. S. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. Acc. Chem. Res. 53, 800−811 (2020).
32 Huang, M. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289−295 (2020).
33 Wu, T. R. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 15, 43-47 (2016).
34 Su, D. S., Zhang, B. & Schlögl, R. Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chem. Rev. 115, 2818−2882 (2015).
35 Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004).
36 Yoshida, H. et al. Visualizing Gas Molecules Interacting with Supported Nanoparticulate Catalysts at Reaction Conditions. Science 335, 317−319 (2012).
37 Luo, L. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17, 514−518 (2018).
38 Yang, F. et al. Atomic Scale Stability of Tungsten-Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. J. Am. Chem. Soc. 141, 5871–5879 (2019).
39 Zhang, X. et al. Revealing the Hidden Face of Ni@Au Core-Shell Catalyst During Reaction. Nat. Catal. 3, 411–417 (2020).
40 Wang, R. The dynamic of the peel. Nat. Catal. 3, 333–334 (2020).
41 Picher, M., Lin, P. A., Gomez-Ballesteros, J. L., Balbuena, P. B. & Sharma, R. Nucleation of Graphene and Its Conversion to Single-Walled Carbon Nanotubes. Nano Lett. 14, 6104–6108 (2014).
42 Rodríguez-Manzo, J. A. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotechnol. 2, 307−311 (2007).
43 He, M. et al. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Sci. Rep. 3, 1460 (2013).
44 Jia, K. et al. Copper-Containing Carbon Feedstock for Growing Superclean Graphene. J. Am. Chem. Soc. 141, 7670−7674 (2019).
45 Chen, Z., Liu, L. & Chen, Q. One-pot template-free synthesis of urchin-like Co2C/Co3C hybrid nanoparticles. Mater. Lett. 164, 554–557 (2016).
46 Pohl, D., Wiesenhutter, U., Mohn, E., Schultz, L. & Rellinghaus, B. Near-surface strain in icosahedra of binary metallic alloys: segregational versus intrinsic effects. Nano Lett. 14, 1776−1784 (2014).