1 Blundell, T. L. & Srinivasan, N. Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proc Natl Acad Sci U S A 93, 14243-14248, doi:10.1073/pnas.93.25.14243 (1996).
2 Levy, E. D., Boeri Erba, E., Robinson, C. V. & Teichmann, S. A. Assembly reflects evolution of protein complexes. Nature 453, 1262-1265, doi:10.1038/nature06942 (2008).
3 Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29, 105-153, doi:10.1146/annurev.biophys.29.1.105 (2000).
4 Andre, I., Strauss, C. E., Kaplan, D. B., Bradley, P. & Baker, D. Emergence of symmetry in homooligomeric biological assemblies. Proc Natl Acad Sci U S A 105, 16148-16152, doi:10.1073/pnas.0807576105 (2008).
5 Plaxco, K. W. & Gross, M. Protein complexes: the evolution of symmetry. Curr Biol 19, R25-26, doi:10.1016/j.cub.2008.11.004 (2009).
6 Simon, A. J. et al. Supercharging enables organized assembly of synthetic biomolecules. Nat Chem 11, 204-212, doi:10.1038/s41557-018-0196-3 (2019).
7 Kobayashi, N. & Arai, R. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr Opin Biotechnol 46, 57-65, doi:10.1016/j.copbio.2017.01.001 (2017).
8 Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415-420, doi:10.1038/nature25157 (2017).
9 King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171-1174, doi:10.1126/science.1219364 (2012).
10 Yeates, T. O. Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. Annu Rev Biophys 46, 23-42, doi:10.1146/annurev-biophys-070816-033928 (2017).
11 Alberstein, R., Suzuki, Y., Paesani, F. & Tezcan, F. A. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly. Nat Chem 10, 732-739, doi:10.1038/s41557-018-0053-4 (2018).
12 Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98, 2217-2221, doi:10.1073/pnas.041614998 (2001).
13 Lai, Y. T., Cascio, D. & Yeates, T. O. Structure of a 16-nm cage designed by using protein oligomers. Science 336, 1129, doi:10.1126/science.1219351 (2012).
14 Brodin, J. D., Carr, J. R., Sontz, P. A. & Tezcan, F. A. Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci U S A 111, 2897-2902, doi:10.1073/pnas.1319866111 (2014).
15 Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680-687, doi:10.1126/science.aad8865 (2016).
16 Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320-327, doi:10.1038/nature19946 (2016).
17 Hsia, Y. et al. Design of a hyperstable 60-subunit protein dodecahedron. [corrected]. Nature 535, 136-139, doi:10.1038/nature18010 (2016).
18 Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873-875 (2006).
19 Douglas, T. & Young, M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 393, 152-155 (1998).
20 Steinmetz, N. F., Cho, C. F., Ablack, A., Lewis, J. D. & Manchester, M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine 6, 351-364, doi:10.2217/nnm.10.136 (2011).
21 Czapar, A. E. & Steinmetz, N. F. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Curr Opin Chem Biol 38, 108-116, doi:10.1016/j.cbpa.2017.03.013 (2017).
22 Lizotte, P. H. et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11, 295-303, doi:10.1038/nnano.2015.292 (2016).
23 Wynne, S. A., Crowther, R. A. & Leslie, A. G. W. The crystal structure of the human hepatitis B virus capsid. Mol Cell 3, 771-780, doi:Doi 10.1016/S1097-2765(01)80009-5 (1999).
24 Kang, S. et al. Implementation of p22 viral capsids as nanoplatforms. Biomacromolecules 11, 2804-2809, doi:10.1021/bm100877q (2010).
25 Young, M., Willits, D., Uchida, M. & Douglas, T. Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46, 361-384 (2008).
26 Wen, A. M. & Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 45, 4074-4126, doi:10.1039/c5cs00287g (2016).
27 Perlmutter, J. D. & Hagan, M. F. Mechanisms of virus assembly. Annu Rev Phys Chem 66, 217-239, doi:10.1146/annurev-physchem-040214-121637 (2015).
28 Asor, R., Schlicksup, C. J., Zhao, Z., Zlotnick, A. & Raviv, U. Rapidly Forming Early Intermediate Structures Dictate the Pathway of Capsid Assembly. J Am Chem Soc 142, 7868-7882, doi:10.1021/jacs.0c01092 (2020).
29 Kler, S. et al. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism. Journal of the American Chemical Society 134, 8823-8830, doi:10.1021/ja2110703 (2012).
30 Lutomski, C. A. et al. Hepatitis B Virus Capsid Completion Occurs through Error Correction. J Am Chem Soc 139, 16932-16938, doi:10.1021/jacs.7b09932 (2017).
31 Zlotnick, A., Johnson, J. M., Wingfield, P. W., Stahl, S. J. & Endres, D. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 38, 14644-14652 (1999).
32 Schlicksup, C. J. et al. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. Elife 7, doi:10.7554/eLife.31473 (2018).
33 Conway, J. F. et al. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91-94 (1997).
34 Zhao, Z. et al. Structural Differences between the Woodchuck Hepatitis Virus Core Protein in the Dimer and Capsid States Are Consistent with Entropic and Conformational Regulation of Assembly. J Virol 93, doi:10.1128/JVI.00141-19 (2019).
35 Packianathan, C., Katen, S. P., Dann, C. E., 3rd & Zlotnick, A. Conformational changes in the hepatitis B virus core protein are consistent with a role for allostery in virus assembly. J Virol 84, 1607-1615, doi:10.1128/JVI.02033-09 (2010).
36 Bourne, C. R., Katen, S. P., Fulz, M. R., Packianathan, C. & Zlotnick, A. A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry 48, 1736-1742, doi:10.1021/bi801814y (2009).
37 Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453-457, doi:10.1126/science.1220869 (2012).
38 Paik, T. & Murray, C. B. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks. Nano Lett 13, 2952-2956, doi:10.1021/nl401370n (2013).
39 Zhang, Z. & Glotzer, S. C. Self-Assembly of Patchy Particles. Nano Lett 4, 1407-1413, doi:10.1021/nl0493500 (2004).
40 Jiang, S. et al. Janus particle synthesis and assembly. Advanced Materials 22, 1060-1071, doi:10.1002/adma.200904094 (2010).
41 Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578-581, doi:10.1038/nature11619 (2012).
42 Zhao, Z., Wang, J. C., Segura, C. P., Hadden-Perilla, J. A. & Zlotnick, A. The integrity of the intradimer interface of the Hepatitis B Virus capsid protein dimer regulates capsid self-assembly. ACS Chem Biol, doi:10.1021/acschembio.0c00277 (2020).
43 Contino, N. C. & Jarrold, M. F. Charge detection mass spectrometry for single ions with a limit of detection of 30 charges. Int. J. Mass Spect. 345–347, 153–159 (2013).
44 Harms, Z. D., Selzer, L., Zlotnick, A. & Jacobson, S. C. Monitoring Assembly of Virus Capsids with Nanofluidic Devices. ACS Nano 9, 9087-9096, doi:10.1021/acsnano.5b03231 (2015).
45 Kondylis, P. et al. Evolution of Intermediates during Capsid Assembly of Hepatitis B Virus with Phenylpropenamide-Based Antivirals. Acs Infectious Diseases 5, 769-777, doi:10.1021/acsinfecdis.8b00290 (2019).
46 Zhou, J. et al. Characterization of Virus Capsids and Their Assembly Intermediates by Multicycle Resistive-Pulse Sensing with Four Pores in Series. Anal Chem 90, 7267-7274, doi:10.1021/acs.analchem.8b00452 (2018).
47 Hengen, P. Purification of His-Tag fusion proteins from Escherichia coli. Trends Biochem Sci 20, 285-286, doi:10.1016/s0968-0004(00)89045-3 (1995).
48 Stray, S. J., Johnson, J. M., Kopek, B. G. & Zlotnick, A. An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly. Nat Biotechnol 24, 358-362, doi:10.1038/nbt1187 (2006).
49 Zlotnick, A. et al. In vitro screening for molecules that affect virus capsid assembly (and other protein association reactions). Nature Protocols 2, 490-498 (2007).
50 Walker, A., Skamel, C. & Nassal, M. SplitCore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci Rep 1, 5, doi:10.1038/srep00005 (2011).
51 Pumpens, P. & Grens, E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology 44, 98-114, doi:10.1159/000050037 (2001).
52 Schodel, F. et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J Virol 66, 106-114 (1992).
53 Kratz, P. A., Bottcher, B. & Nassal, M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci U S A 96, 1915-1920 (1999).
54 Peyret, H. et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 10, e0120751, doi:10.1371/journal.pone.0120751 (2015).
55 Holmes, K. et al. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers. J Biol Chem 290, 16238-16245, doi:10.1074/jbc.M114.622035 (2015).
56 Pierson, E. E. et al. Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry. J Am Chem Soc 136, 3536-3541, doi:10.1021/ja411460w (2014).
57 Shreffler, W. G., Lencer, D. A., Bardina, L. & Sampson, H. A. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol 116, 893-899, doi:10.1016/j.jaci.2005.06.033 (2005).
58 Lee, L. S. et al. A Molecular Breadboard: Removal and Replacement of Subunits in an Hepatitis B Virus Capsid in progress (2017).
59 Singh, S. & Zlotnick, A. Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J Biol Chem 278, 18249-18255, doi:10.1074/jbc.M211408200 (2003).
60 Kondylis, P., Schlicksup, C. J., Zlotnick, A. & Jacobson, S. C. Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem, doi:10.1021/acs.analchem.8b04824 (2018).
61 Wang, J. C., Mukhopadhyay, S. & Zlotnick, A. Geometric Defects and Icosahedral Viruses. Viruses 10, pii: E25, doi:10.3390/v10010025 (2018).
62 Motwani, T. & Teschke, C. M. Architect of Virus Assembly: the Portal Protein Nucleates Procapsid Assembly in Bacteriophage P22. Journal of virology 93, doi:10.1128/JVI.00187-19 (2019).