Quantum state preparation is a vital process in quantum computing and quantum information processing. The ability to accurately and reliably prepare specific quantum states is essential for a variety of applications. One of the promising applications of quantum computers is quantum simulation. This requires preparing a quantum state that represents the system we’re trying to simulate. This research introduces a novel simulation algorithm, the multi-Split-Steps Quantum Walk (multi-SSQW), designed to learn and load complicated probability distributions using parameterized quantum circuits (PQC) with a variational solver on classical simulators. The multi-SSQW algorithm is a modified version of the split-steps quantum walk, enhanced to incorporate a multi-agent decision-making process, rendering it suitable for modeling financial markets. The study provides theoretical descriptions and empirical investigations of the multi-SSQW algorithm to demonstrate its promising capabilities in probability distribution simulation and financial market modeling. Taking advantage of quantum computation, the multi-SSQW model's complex financial distributions and scenarios with high accuracy, providing valuable insights and mechanisms for financial analysis and decision-making. The multi-SSQW’s key benefits include its modeling flexibility, stable convergence, and instantaneous computation. These advantages underscore its rapid modeling and prediction potential in dynamic financial markets.