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Abstract
Background

Intestinal flora disorder and immune abnormalities have been reported in systemic lupus erythematosus
(SLE) patients. Few researches indicated the intestinal status in Chinese SLE patients. Berberine (BBR)
showed significant effects on regulating the intestinal flora, repairing gut barriers and regulating immune
cells. This study mainly explored intestinal flora and metabolites in local Chinese SLE patients and the
influence of BBR to MRL/Lpr mice.

Methods

16S high-throughput sequence and gas chromatographic technique were used to analyzed the intestinal
flora and metabolites in SLE patients. MRL/Lpr mice were oral treated with BBR in low, medium and high
dosages for 6 weeks. Urine protein was monitored. After the procedure, gintestinal status of MRL/Lpr
mice were analyzed like human. A wide range of autoantibodies were tested. Kidney tissue was analyzed
for C3, 1gG and IgM expressions and colon tissue was analyzed for gut barrier markers. Flow cytometry
determined the immune cells.

Results

Dysbacteriosis and abnormal metabolism influenced the Chinese lupus pathogenesis. BBR treatment
reduced the urine protein, inhibited the auto-antibodies and ameliorated lupus nephritis (LN) in MRL/Lpr
mice. In addition, BBR altered the relative abundance of Bacteroides and Verrucomicrobia and the butyric
acid content in colon of MRL/Lpr mice. The increase of tight junction protein also indicated that the gut
barrier was repaired by BBR. Treg and Tfr cells in spleen and mesenteric lymph node (MLN) were
increased.

Conclusions

These results revealed a therapeutic effect of berberine on SLE from gut microbiota to immune status.

1. Introduction

Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disease defined by autoantibody
formation, histiocytic infiltration and terminal organ damage. Lupus nephritis (LN) is the most severe
organ manifestations and the leading cause of lupus mortality [1, 2]. The hyperactivity of autoimmune T
and B cells leads to immunoreactions with autoantibodies generation and systemic inflammatory
response. Glomerular deposition of autoimmune complexes is the most pathological change in SLE.
Systemic inflammatory activation results in acute or chronic systemic inflammatory symptoms, such as
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gastrointestinal reactions. Thus, down-regulation of activated T and B cells is a legitimate way for SLE
treatment [3—-5].

The thriving development of microbiota research have shown the significantly abnormal microflora
structure in SLE patients, such as the increased proportion of Bacteroides and lower
Firmicutes/Bacteroidetes (F/B) ratio [6—8]. In the study including 61 SLE patients, the microflora was
significantly correlated with SLE disease activity index (SLEDAI) [8]. High levels of short-chain-fatty acids
(SCFAs) from fecal samples of 21 patients were observed, especially the acetate and propionate [9].
Lactobacillus treatment targeting intestinal flora of MRL/ Lpr mice significantly alleviated SLE disease
manifestations. The “leaky” gut situation was eased by the increased expression of barrier-tight-function
protein [10]. These researches suggested the potential role of gut microbiota in lupus pathogenesis.
Meanwhile, modulating gut microbiomes can be a potential therapeutic method to SLE.

Berberine (BBR) is an important natural isoquinoline alkaloid extracted from coptis chinensis and cypress
needles [11]. BBR exhibits its surprising therapeutic effects in the regulation of immunoregulation.
Meanwhile, intestinal flora plays an essential role in the metabolism of BBR. In the treatment of obese
rats [12], BBR showed the ability of significantly enriching the SCFA-producing bacteria which is
represented by Bacteroides. When used to relieve the symptoms of colitis [13, 14], the metabolite of BBR
increased the abundance of Bacteroides and regulated intestinal epithelial barrier dysfunction by
enhancing the tight junction proteins, Z0-1 and occludin. BBR also increased the proportion of Foxp3*
Treg cells in the spleen and mesenteric lymph nodes (MLN). These results demonstrated that BBR
ameliorated diseases via modulating intestinal flora and its metabolites, protecting colonic integrity, and
regulating immune cells. Given the existing studies, BBR may be a promising agent worthy to be explored.

In the current study, for the first time, we analyzed the intestinal flora and metabolites of Chinese SLE
patients. Meanwhile, we creatively apply BBR to SLE treatment, monitoring the effect of ameliorating
intestinal dysbacteriosis to multiple organ damages and over-activated immune system. Our findings
provide new insights into the treatment of autoimmune diseases.

2. Materials And Method
2.1 Research participants and sample collection

This study included stool samples from 104 SLE patients and 90 health controls from Affiliated Hospital
of Nantong University during June 2017 to February 2019. Informed consent was obtained from each
participant. All patients met the 2009 American College of Rheumatology (ACR) classification criteria for
SLE [15]. Exclusion criteria were listed as follows: 1) Pregnancy or breast-feeding; 2) Recent or current
medical disorder (cardiac, respiratory, gastrointestinal, neurological, endocrine, malignancy, etc); 3)
History of probiotics within 2 weeks or antibiotics within 3 months before admission; 4) If on
immunosuppressant, the dose must be stable for 4 weeks before the sample collection. The gender and
age-matched healthy controls (N) were recruited from the Health Examination Centre of Affiliated Hospital
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of Nantong University. The inclusion of human participants and supporting documentation were
approved by the Affiliated Hospital of Nantong University Ethics Committee (2017-K002). All fecal
specimens of participants were collected in a sealed fecal storage box after defecation and stored at
-80°C after collection.

2.2 Experimental animal and treatments

Fourty six-week-old female MRL/Lpr mice and ICR mice were bought from Shanghai Sushang Biological
Technology Co., LTD. The mice were in the SPF environment of animal research center of Nantong
University and were housed three to four per cage at 23-24 °C with a 12-h/12-h light/dark cycle with free
access to food and water. This animal study was proved by the Institutional Animal Care and Use
Committee of Nantong University (S20200313-014).

These mice were divided into five groups (8 mice/group): control ICR mice (N) and MRL/Lpr mice (S)
were treated with saline. The dose of BBR in person is 0.3g-0.9g/day. According to Meeh-Rubner equation
[16], MRL/Lpr mice (L, M and H) were treated with BBR in the daily amount of 60mg/kg, 120mg/kg and
180mg/kg. Urine was collected for 24 h and detected by the Bradford Protein Assay Kit (Solarbio, Beijing).
After the appearance of lupus nephritis (Fig. 3B), mice were given saline or berberine orally. After 6 weeks'
treatment, mice were sacrificed. Serum, faeces and organs samples were collected. The kidneys and
colons were formalin-fixed and paraffin-embedded and sliced at 4 ym thickness for further staining.
Serum antibody level (dsDNA, ANA, C3, C4) in mice was detected by ELISA (Jingmei Biotechnology,
China). The entire progress was showed in Fig. 3A.

2.3 16S high-throughput (16S rRNA ) sequencing and short-
chain fatty acid detection

16S rRNA sequencing of intestinal flora in intestinal faeces was completed in Sangon Biotech (Shanghai)
Co., LTD. Microbial DNA was extracted by QlAamp® Fast DNA Stool Mini Kit (QIAGEN, Germany). The V3-
V4 hypervariable regions of the microbiota 16S rRNA gene were amplified with primers 341F (5'-
CCTACGGGNGGCWGCAG-3') and 805R (5-GACTACHVGGGTATCTAATCC-3").

Data analyses were performed by the Sangon platform. The detection of intestinal metabolites, short-
chain fatty acids, was carried out by Wuhan Huada Medical Laboratory Co. LTD (supplementary Fig. 1).
Thermo Trace1300-Thermo TSQ9000 tandem mass spectrometry and SIM mode were used for forward
detection. Tracefinder (Thermo Fisher Scientific, Waltham, MA, USA) was used for data processing. After
calculation, the absolute content of target compounds in samples was obtained. The datasets used and
analysed during the study are available from the corresponding author.

2.4 Extraction of total DNA of fecal sample and quantitative
real-time Polymerase Chain Reaction (QRT-PCR).
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The QlAamp® Fast DNA Stool Mini Kit (QIAGEN, Germany) was used to obtain the total DNA from the
sample of faeces. The DNA sample was diluted with RNase free water (Beyotime, China) into 5ng/ul and
performed the real-time quantitative PCR. According to the bacterial colony 16S rRNA V3 sequence, the
specific primers of total bacteria, Bacteroides and Firmicutes were designed and synthesized by Biomics
Biotechnology, China. Sequences and reaction systems were showed in supplementary Tables 1 and 2.
The procedure was operated in the Roche cobas z 480.

2.5 Histo-morphological Staining

The colon and kidney sections were stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS) and
Masson's trichrome respectively (Solarbio, Beijing). HE staining monitored the histological change, PAS
staining evaluated the inflammatory cell infiltration and Masson'’s trichrome staining determined the
degree of fibrosis. Pathological histology was observed by a biological microscope.

2.6 Immunofluorescence

Kidney slides were dewaxed and incubated with antigen retrieval solution and 3% H,0, (Solarbio, China).
The kidney tissues were blocked by gout serum (Maxim,China). For direct immunofluorescence, sections
were labeled with anti-C3 antibody (ab11862, Abcam), anti-lgM antibody (ab150121, Abcam) and anti-IgG
antibody (ab150083, Abcam) for 30-60 min at room temperature. DAPI was used to stain the cell nuclei.
Immunofluorescence staining of colon sections were similar to the above steps, with antibodies like anti-
Z0-1 antibody (ab216880, Abcam) and anti-occludin antibody (ab216327, Abcam).

2.7 Western blot

Total protein was extracted from colon tissues using protein lysate (RIPA: PMSF = 100:1, Beyotime,
China) and determined by a BCA Protein Assay kit (Beyotime, China). Proteins blotted with antibodies to
Z0-1 (ab216880, Abcam, China) and occludin (ab216327, Abcam, China). -actin (110007, CST, China)
served as the internal control. An enhanced chemiluminescence kit (ECL, Millipore, USA) was used to
display the blots.

2.8 Flow cytometry

Lymphocytes were isolated from the tissue homogenates of spleen and mesenteric lymph nodes (MLN).
The following primary antibodies were used in the process: mouse BV510-CD3 (Cat. 100233, BioLegend),
FITC-CD4 (Cat. 100405, BioLegend), APC-CD25 (Cat. 101909, BioLegend), PE-Cy7-CXCRS5 (25-7185-82,
eBioscience), PE-Foxp3 (12-5773-82, eBioscience), FITC-CD21 (Cat. 123407, BioLegend), PE-Cy7-CD23
(25-0232-82, eBioscience), Alexa Fluor 700-CD19 (Cat. 115527, BioLegend), BV785-CD25 (Cat. 102051,
BioLegend), BV510-CD3 (Cat. 100353, BioLegend), APC-NK1.1 (17-5941-82, eBioscience). Cell subsets
were analysed on a BD LSRFortossaTM flow cytometer (BD Biosciences, USA) with FACSDiva Software
(BD Biosciences) and FlowJo Software (Tree Star Inc., USA).

2.9 Statistical Analysis
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Quantitative data were expressed as mean + S.E.M. Differences determined by two-tailed t-test were used
for two-group comparisons and One-way ANOVA was used for multiple comparisons. Pvalues<0.05
indicated the experimental results are reliable.

3. Results

3.1 The intestinal flora and metabolites influenced the
disease activity of Chinese SLE patients.

In our study, 16S high-throughput sequencing were conducted in faeces from 40 SLE patients and 26
normal people. There was no significant difference between community richness (Fig. 1A) and diversity
(Fig. 1B) in two groups. Gut microbiota in two groups showed the similar composition (Fig. 1C). Itis
noteworthy that SLE patients showed higher abundance of Bacteroidetes and lower abundance of
Firmcutes (Fig. 1C). Similar flora composition showed in the MRL/Lpr mice which indicated the MRL/Lpr
mice could be used as dysbacteriosis model of SLE (Fig. 5C).

Then, Stool samples from 64 normal people and 64 SLE patients were collected to validated the above
conclusion. The results of qRT-PCR showed higher Firmcutes/ Bacteroidetes (F/B) ratio in SLE patients
(Fig. 1D). The F/B ratio was negatively correlated with SLEDAI score (Fig. 1E). These results
substantiated the dysbacteriosis in SLE patients and its relationship in disease development.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) technique
was applied to identify functional categories (Fig. 2). And the related functions such as immune system
diseases, membrane transport, amino acid metabolism were quite different between two groups. Gas
chromatography technology was applied to analysis the metabolism (Table 1). Almost all the tested
SCFAs found statistically significant results in SLE and LN patients, especially the propanoic acid and
butyric acid. We could conclude that dysbacteriosis and abnormal metabolism can influence Chinese
lupus pathogenesis.

Page 7/26



Table 1

Analysis of fecal short-chain fatty acids in healthy controls and SLE patients with different disease
activity. The differences in specific short-chain fatty acids between healthy controls (N), SLE patients (S)
and SLE patients with lupus nephritis (LN) were assessed by gas chromatography-mass spectrometry
(GC-MS). N: n =26, male: female=1: 25, 38.25+ 14.32 years. S: n = 23, male: famale = 0:23, 40.30 £ 2.796
years. LN: n=17, male: famale=1: 16, 31.71 + 2.405 years. a Unpaired t test. P values in bold are < 0.05.
Variables are summarized as mean + S.E.M.

Short-chain-fatty N (n=26) S(n=23) LN(=17) pyalue?
acids(ng/mg)
NvsS Nvs Svs
LN LN
Acetic acid 4.0+1.04 42+098 36+1.00 0.8993 0.8035 0.6999
Propanoic acid 105.7 + 402+ 1542+ 0.0471 0.3618 0.0070
30.89 10.52 44.50
Butyric acid 207.2+ 68.5+ 267.1% 0.0243 0.4643 0.0014
53.25 21.22 59.71
Isobutyric acid 18.6+257 26.5% 38.4+7.00 0.2459 0.0049 0.2204
6.32
N-Valeric acid 9231 752+ 193.0+ 0.5126 0.0469 0.0336
17.38 19.07 54.78
Isovaleric acid 42.2+5.71 471+ 03.3% 0.6578 0.0066 0.0325
9.87 19.62
Caproic acid 23.3+6.68 29.6t 247+7.32 04868 0.8859 0.6064
6.13

3.2 Berberine treatment alleviated the disease symptoms of
MRL/Lpr mice.

In this study, berberine was used to treat the animal model of SLE- MRL/Lpr mice. At the end of
procedure, body weight was not statistically different between BBR treatment and saline treatment

(Fig. 3C). The decrease of urine protein suggesting the relieving effect of berberine on lupus nephritis
(Fig. 3D). The concentration of dsDNA and ANA antibodies was increased in the serum of BBR treated
MRL/Lpr mice, while the complement C3 and C4 was decreased (Fig. 3E-H). Next, we assessed renal
histopathological changes (Fig. 4A). The HE, PAS and Masson staining results demonstrated serious
mesentery proliferation, inflammatory cell infiltration and renal interstitial in MRL/Lpr mice. We found
that BBR gradually alleviated kidney pathological changes in MRL/Ipr mice in a dose-depended manner.
The immune complex-induced vascular inflammation are key mechanisms in the development of LN [17].
The classical generation of C3 is originated by C1q directly binding to complement-fixing antibodies- IgM
and IgG. Glomerular deposition of C3, IgG and IgM were significantly high in MRL/Lpr mice (Fig. 4B). The
deposition of complement C3 and immunoglobulin IgM and IgG in all BBR treatment groups were
significantly reduced compared with control MRL/Lpr mice. These results indicated that BBR treatment
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relieved autoantibody secretion, alleviated nephritis conditions and ameliorated the renal pathological
damage of MRL/Lpr mice.

3.3 Berberine regulated intestinal flora and metabolites in
MRL/Lpr mice.

It has been reported that berberine regulated intestinal flora as an anti-inflammatory agent, especially
increasing the proportion of Bacteroides[18, 19]. MRL/Lpr mice showed increasing gut microbiota
richness and diversity, while BBR significantly abrogated the differences in MRL/Ipr mice (Fig. 5A, B). At
the phylum level (Fig. 5C), Bacteroidetes and Verrucomicrobia was increased gradually in MRL/Ipr mice
treated with BBR at all dose. Firmicutes was decreased distinctly in the MRL/Ipr mice treated with BBR at
medium and high dose, where Bacteroidetes became the dominant bacteria. As the result of flora
adjustment, the expression of major SCFAs in fecal sample surprisingly increased, especially the butyric
acid and n-valeric acid (Table 2).

Table 2
Berberine enhance the expression of butyic acid and N-Valeric acid in MRL/Lpr mice.

The differences in specific short-chain fatty acids between five groups of mice were assessed by gas
chromatography-mass spectrometry (GC-MS). a one-way ANOVA. P values in bold are < 0.05. Variables
are summarized as mean + S.E.M.

Short-chain- N ) L M H a

fatty acids Pvalue

(ng/mg) g;_ é)' g)_ g;_ g;_ SvsN SvsL SvsM SvsH

Acetic acid 83+ 44+ 55+ 86+ 58+ 0.0558 0.3843 0.2121 0.2948
1.58 098 0.78 3.10 0.80

Propanoicacid  7.63 6.8+ 71+ 96% 7.4+ 0.4098 0.6800 0.1611 0.4988
t 0.62 0.64 1.84 0.65
0.82

Butyric acid 19.8 11.4 19.0 36.5 204 0.0117 0.1206 0.1345 0.0389
+ + + + +

219 189 421 1571 3.47

Isobutyric acid 6.6+ 6.5+ 79+ 80% 6.8+ 0.9099 0.4545 0.3487 0.8018
0.80 0.73 1.63 1.36 0.648

N-Valeric acid 37.4 14.5 39.4 46.0 411 0.0101 0.0155 0.1385 0.0065
s + T

7.45 1.95 8.82 1996 8.10

Isovaleric acid 16.4 9.8+ 18.1 214 13.4 0.1464 0.0883 0.2502 0.2502

+ 1.09 t +6.25 ¢
4.17 3.44 2.82

Caproic acid 49+ 43+ 44+ 51+ 4.1+ 0.0694 0.6525 0.1226 0.3430
0.23 0.17 0.18 0.48 0.13
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3.4 Berberine enhanced intestinal barrier function in
MRL/Lpr mice.

Mechanical barrier refers to the intact intestinal mucosal epithelial cells and the tight connections
between the epithelial cells [20, 21]. The main manifestations of MRL/Lpr mice were destruction of
epithelial structure and goblet cells. The intervention of berberine completed the intestinal tissue structure
tends, rearranged goblet cells and reduced the intestinal inflammation, especially in MRL/Lpr mice
treated with high BBR dose (Fig. 6A).

Western blot was used to analysis the protein Z0O-1 and occludin (Fig. 6B, C). The MRL/Lpr mice showed
significant deficiency of both proteins, while the protein expression level of ZO-1 increased significantly in
group M and H and the expression of occludin increased in all BBR-treated mice. Immunofluorescence
staining showed that MRL/Lpr mice were also deficient in related proteins, while in all BBR-treated
groups, Z0-1 and occludin were significantly enhanced (Fig, 6D). The application of berberine enhance
the intestinal barrier function.

3.5 Berberine regulated immune function in MRL/Lpr mice.

Immune manifestation of SLE is the most direct embodiment of the abnormal activation of the immune
system. The abnormal activation of T and B cells directly leads to the harmful changes in immune
functions [22—-25]. As shown in Fig. 7A, B, the decreased spleen index and lymph nodes index directly
showed the amelioration of immune activation in the BBR-treated group. Smaller spleen size was quite
obviously in group M and H (Fig. 7C).

Lymphocytes from MLN and spleen were obtained and detected by flow cytometry. Statistical results
indicated that Treg and Tfr cells were increased in the MRL/Lpr spleen after the berberine treatment
(Fig. 7D, F). Meanwhile, the proportion of Treg cells in MLN was enhanced (Fig. 7E, G). However, no
significant results were found for B cells and NK cells (supplementary Fig. 2, 3).

4. Discussion

Previous studies have reported interactions between the gut microbiota and alterant homeostatic balance
in SLE patients. Further researches revealed the correlation between the abnormal abundance of the
Firmcutes and Bacteroidetes and disease activity in SLE [8, 26]. Gut microbiota are associated with the
pathogenesis of disease through intestinal metabolites- SCFAs [27, 28], While few reports mentioned the
abnormal gut metabolites in SLE patients [9]. Our investigation, for the first time, illustrated the
relationships between gut microbiota, intestinal metabolites and disease activity in Chinese SLE patients.

In MRL/Lpr mice, berberine significantly eased splenomegaly and increased Treg, Tfr in spleen and MLN.
Abnormal autoantibodies in the circulation and kidney damage changed, too. Metabolism of berberine is
confined in the gut lumen [29]. Increasing evidences showed that intestinal microbiota is the target of
berberine [30]. Like in colitis mice, BBR increased the abundance of Bacteroidetes and ameliorated
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intestinal epithelial barrier function via enhancing the expressions of tight junction proteins (Z0-1 and
occludin) in MRL/Lpr mice. As a member of butyrate-producing communities [31], increasing of
Bacteroidetes leads to the production of butyric acids. Butyrate showed the ability of enhancing the
intestinal barrier [14, 32, 33] and facilitating the generation of Treg cells [34, 35]. Therefore, the repaired
“leaky” gut and a shift of immune balance could explain how berberine remitted lupus disease in
MRL/Lpr mice.

The gastrointestinal tract is the largest immune organ which leading the regulation of immune
homeostasis. Intestinal epithelial barrier showed strong interactions with the gut microbiome and
immune system [36]. Recent studies indicated composition of the gut microbiome modulated
metabolites, which affect the gut barrier. It is noteworthy that intestinal barrier disruption can be related to
increased susceptibility to immune diseases [20, 37]. Current studies confirmed the dysregulation of
intestinal flora and metabolites (SCFAs) in SLE. Decreased tight junction protein [38] and increased
circulating endotoxin [26] indicated the change of intestinal permeability in MRL/Lpr mice and SLE
patients. Oral BBR treatment in MRL/Lpr mice altered the proportion of Bacteroidetes and butyric acids,
which directly repaired the intestinal epithelial barrier.

Treg cells prevent autoimmune diseases and maintain a stable immune state [39].Treg cells were
considered to be inhibitors of lupus disease, which resulted in delayed disease progression and reduced
mortality in lupus prone mice [40]. Increasing Treg cells proportion was observed with Berberine treatment
[41, 42]. Butyrate promotes differentiation of Foxp3* Treg cells in vivo [34]. Tfr cells compete intensively
with Tfh on germinal center B cells, promoting the production of high-affinity antibodies and limiting the
overall expansion of antigen-specific B cell clones [43]. In mice model, the loss of Tfr cells leads to the
proliferation of Tfh and GCB cells, as well as the production of antibodies [44, 45]. Those fact may
explain the increased Tfr cells in berberine treated mice.

Together with the change of immune cells, BBR treatment do improve lupus nephropathy in MPL/Ipr
mice. The level of anti-dsDNA antibodies can reflect disease activity, while antinuclear antibodies (ANAs)
mediated tissue deposition of immune complexes [2, 46]. Serum C3 and C4 were correlated with disease
activity to some degree [47]. Low C3 was associated with renal involvement and poor renal prognosis
[48]. Our results showed that BBR was able to ease nephropathy in MRL/Lpr mice as reducing level of
urine protein, serum immunological markers and improving kidney function. In addition, BBR was able to
down-regulate the urine protein, which indicated increase proximal tubular reabsorption and glomerular
filtration rate. Furthermore, BBR show the ability of inhibiting complement cascade via preventing the
consumption of serum C3 and C4. The effect of BBR on lupus nephritis was confirm by histopathological
study and immunofluorescence. BBR was able to improve the damaged kidney to the relatively normal
glomerular structure and inhibit the levels of local C3, IgG and IgM.

Our study highlights current status of intestinal dysbacteriosis in Chinese patients with SLE and
differences in intestinal metabolites among patients with different disease states. The regulation of
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intestinal flora and the repairment of gut barrier by intestinal metabolites in BBR treated mice seemed to
be the factor that directed the immune responses and disease outcomes (Fig. 8).

5. Conclusions

In conclusion, gut microbiome regulated the disease development in Chinese SLE patients. Also, BBR
treatment modulates the lupus syndrome via the regulation of gut microbiota. The application of
berberine is a relatively safe and convenient way. However, it is difficult to promote this method due to the
complexity of individual flora and diverse microflora in different disease activities. Therefore, further
investigations will focus on the effects of berberine and its metabolites on intestinal function and
systemic immunity.

6. Abbreviations

SLE

systemic lupus erythematosus; BBR:Berberine; LN:Lupus nephritis; MLN:Mesenteric lymph node;
F/B:Firmicutes/Bacteroidetes; SLEDAI:SLE disease activity index; SCFAs:Short-chain-fatty acids;
Treg:Regulatory T cells; Tfh:T follicular helper cells; GCB:Germinal center B cells; dsDNA:Double-stranded
DNA; ANA:Antinuclear antibody; C3:Complement 3; C4:Complement 4; HE:hematoxylin-eosin; PAS:periodic
acid-Schiff; H,0,:Hydrogen peroxide; RIPA:RIPA Lysis buffer; PMSF:Phenylmethanesulfonyl fluoride;

BCA:Bicinchonininc acid; IgG:immunoglobulin G;
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Figure 1

Gut microbiota composition differ significantly between healthy controls and SLE patients. (A) Gut
microbiota richness: ACE and Chao index of faeces of healthy controls (N: n = 26, male: female= 1: 25,
38.25+14.32 years) and SLE patients (S: n = 40, male: female= 1: 39, 38.83+13.83 years). (B) Gut
microbiota diversity: Shannon, Simpson and Coverage index of healthy controls (N: n = 26, male: female=
1: 25, 38.25+14.32 years) and SLE patients (S: n = 40, male: female= 1: 39, 38.83+13.83 years). (C)
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Bacterial taxa at the phylum level are shown in barplot and detail percentage of bacterial taxa are shown
in pie plot (healthy control, N: n = 26, male: female= 1: 25, 38.25+14.32 years. SLE patients, S: n = 40,
male: female= 1: 39, 38.83+13.83 years). (D) Ratio of Firmcutes to Bacteroidetes (F/B) in faeces of
healthy controls (N: n = 64, male: female= 2: 62, 38.25+14.32 years) and SLE patients (S: n = 64,male:
female=2: 62,38.83+13.83 years). ***p < 0.001by two-tailed unpaired Student’s t-test. (E) The association
between Systemic lupus erythematosus disease activity index (SLEDAI) and F/B, R2=0.07993, P=0.0236.
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PICRUSt function prediction (healthy control, N: n = 26, male: female= 1: 25, 38.25+14.32 years. SLE
patients, S: n = 40, male: female= 1: 39, 38.83+13.83 years).
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Figure 3

Berberine treatment relieves the kidney function and autoantibody secretion in MRL/Lpr mice. (A)
Schematic diagram of berberine (BBR) treatment, tissue preparation and experimental protocols. The BBR
treatment started at the time of the urine protein level >1mg/24h in MRL/Lpr mice. Mice were divided into
five groups, 8 mice per group. Group N: control mice treated with saline, i.g; Group S: control MRL/Lpr
mice treated with saline, i.g; Group L: BBR low dose MRL/Lpr mice treated with BBR 60mg/kg/d, i.g;
Group M: BBR medium dose MRL/Lpr mice treated with BBR 120mg/kg/d, i.g; Group H: BBR high dose
MRL/Lpr mice treated with BBR 180mg/kg/d, i.g. Mice were monitored for 6 weeks before sacrificed.
Serum, faeces and tissue sample were collected for further experiment. (B) Urine protein level >1mg/24h
in MRL/Lpr mice in 8-weeks-old. (C) BBR treatment do no difference to the body weight of MRL/Lpr mice.
(D) BBR treatment reduced 24 h urine protein levels in MRL/Lpr mice. n = 8 for each group.*p < 0.05,**p <
0.01 by one-way ANOVA. (E-H) BBR treatment decreased the secretion of antibody dsDNA and ANA, and

increased the secretion of complement C3 and C4. n = 8 for each group.*p < 0.05,**p < 0.01,***p <
0.001,****p < 0.0001 by one-way ANOVA.
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HE staining

PAS staining

Masson staining

vv)

Figure 4

Berberine treatment relieves immume complex desposition in glomerulus of MRL/Lpr mice. (A)
Representative images of renal sections stained with HE, PAS and Masson of five group of mice. Original
magnification: x200. (B) Immunofluorescent staining of C3 (red), IgM (yellow) and IgG (green) for renal
sections from of five group of mice. Original magnification: x200.
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Berberine modulate gut microbiota in MRL/Lpr mice. (A) Gut microbiota richness: ACE and Chao index of
faeces of five group of mice. n = 8 for each group. (B) Gut microbiota diversity: Shannon, Simpson and
Coverage index of five group of mice. n = 8 for each group. (C) Bacterial taxa at the phylum level are
shown in barplot and detail percentage of bacterial taxa are shown in pie plot. n = 8 for each group.
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Figure 6

Responses of colonic mucosa barrier function of MRL/Lpr mice toward berberine treatments. (A)
Representative images of colon sections stained with HE of five groups of mice. Original magnification:
x100 and x200. (B) Western blot analysis of ZO-1 protein in colon tissue from five groups of mice. The
same volume was loaded per lane and the levels of ZO-1 were normalized to the expression levels of 3-
actin. *p < 0.05, **p < 0.01, ***p < 0.001by unpaired t-test. (C)Western blot analysis of Occludin protein in
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colon tissue from five groups of mice. The same volume was loaded per lane and the levels of Occludin
were normalized to the expression levels of B-actin. *p < 0.05 by unpaired t-test. (D) Immunofluorescent

staining of Occludin (red) and Z0-1 (green) for colon sections from of five group of mice. Original
magnification: x200.

A

0.0207

0.0151 ]

=]

C Spleen

N m—
u““l“lllﬂl“llmﬂw“ﬂmlj.

P

|

M

R

H e com:
R LD LR )

*
*

“H
e

Spleen Index
g
o

g

TRECyT-A] CRCAS
< —~

L w . 4
{PE-A} :Foupd

F
5 Ak —30 -
§ 20 o° [ried é ey e [
=4 ——
v wkkk < : .
2 15-{,— w 20 —
ot ol $aid v @ % i
w = : o oh? '
e™ {, % o 210 ‘5 %
E‘ 5 & g %: N
= ol * =l
NS L MMH N S L MH
G
~ 10 . 3
$ ok § v
S 8 — | & v
g ' ST
=1 - 4
o 4] - - " % 4
S L M H S L M H
Figure 7

Page 23/26



Berberine inhibits the abnormal activation of the immune system in MRL/Lpr mice via the activation of
Treg and Tfr cells in spleen and MLN. (A) Spleen index: spleen weght to body weight in five groups of
mice. n=8 in each group. *p < 0.05,**p < 0.01,****p < 0.0001 by one-way ANOVA. (B) lymph nodes index:
lymph nodes weght to body weight in five groups of mice. n=8 in each group. (C) Berberine treatment
inhibited spleen enlargement. (D) Flow cytometry dot plots of Treg and Tfr cells in spleen of five groups
of mice. n=8 in each group. (E)Flow cytometry dot plots of Treg and Tfr cells in MLN of four groups of
mice. n=8 in each group. (F) Quantification of Treg (left) and Tfr (right) cells in spleen of five groups of
mice. n=8 in each group.*p < 0.05, **p < 0.01, ****p < 0.0001 by one-way ANOVA. (G) Quantification of
Treg (left) and Tfr (right) cells in MLN of four groups of mice. n=8 in each group. **p < 0.01, ****p <
0.0001 by one-way ANOVA.
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Figure 8

Gut microbiota and metabolites were abnormal in Chinese SLE patients. The rapeutic effects of berberine
in MRL/Lpr mice. Chinese SLE patients showed the increased Bacteroidetes and abnormal SCFAs in gut.
Oral treatment of berberine changed the intestinal flora and SCFAs, enhanced the intestinal barrier,
recovered the kidney and rugulated the immune system in MRL/Lpr mice. SLE, Systemic Lupus
Erythematosus; SCFAs, short-chain-fatty acids; dsDNA, double- stranded deoxyribonucleic acid
antibodies; ANA, antinuclear antibody; Treg, regulatory T cells; Tfr, follicular regulatory T cells.
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