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Abstract

Background
Hypothyroidism is a common endocrine disorder that increases with age. The disease manifests itself when the thyroid
gland fails to produce su�cient thyroid hormones. The disorder includes cases of congenital hypothyroidism (CH) due to
thyroid development abnormalities. However, the majority of cases in the developed world derive from dysregulation of
the hormonal feedback of the pituitary gland and the destruction of the thyroid gland by autoantibodies. In this study, we
sought to identify hypothyroidism causal genes by applying a diverse collection of genome association studies to large
populations.

Methods
The study used the UK-Biobank (UKB) database to report 13,687 cases of European ancestry and approximately 260,000
controls. To identify the associated variants, GWAS and coding-GWAS protocols were used. In addition, applying the
complementary genetic association methods of PWAS (proteome-based) and TWAS (transcriptome-based) revealed
hypothyroidism-associated genes. The prevalence among the affected population was 7.5% and 2.0% for the female and
male groups, respectively. We further developed a risk prediction model through sex strati�cation.

Results
Comparing GWAS summary statistics revealed the CH developmental program. The gene-based PWAS method identi�ed
77 statistically signi�cant genes. Most of these genes are located within the Chr6 MHC locus and are enriched with
autoimmunity-related genes. Comparing GWAS and TWAS revealed multiple facets of the etiology of hypothyroidism.
Most notably, thyroid developmental programs and dysregulation of hormone secretion capacity in the thyroid. Despite a
3.6-fold higher prevalence in females relative to males for hypothyroidism, using a permutation approach, we found no
sex-dependent genetic effect, with 98% of the associated genes being identical between the sexes. The prediction of the
polygenic risk score (PRS) for hypothyroidism is mostly derived from the female affected group.

Conclusions
This study highlights the importance of synthesizing complementary genome-wide association methods for this complex
disease. We conclude that the integration of established association methods can improve interpretability and clinical
utility.

Background
Hypothyroidism is a disorder of the endocrine system in which the thyroid gland does not produce enough hormones or
when the thyroid hormones act inadequately in target tissues (Almandoz and Gharib 2012). Hypothyroidism (EFO:
0004705) and its extreme condition, myxedema (EFO: 1001055), are signi�ed by impairment in the function of the thyroid
(Chaker et al. 2022). The thyroid gland is crucial to the metabolism of all tissues and the early development of the central
nervous system (CNS) (Patel et al. 2011). While over 10% of the world’s population exhibits some level of iodine de�ciency
that may lead to hypothyroidism, it does not apply to the developed world (Taylor et al. 2018). In the USA, the prevalence
of hypothyroidism has been shown to steadily increase over the last two decades, reaching 14.4% (clinical and preclinical)
(Wyne et al. 2022). Subclinical hypothyroidism accounts for 4–8% of the population (Fatourechi 2009). It is estimated
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that 1 in 8 people will develop a functional de�ciency of the thyroid in their lifetime, with a 3-4-fold higher likelihood of
females relative to males (Chung 2014; Luboshitzky et al. 1996; Unnikrishnan et al. 2013; Uzunlulu et al. 2007).

Primary hypothyroidism is de�ned by a failure of the thyroid gland itself. In contrast, secondary and tertiary
hypothyroidism are caused by dysfunction of the pituitary and hypothalamus glands, respectively (Chaker et al. 2022).
The diagnosis of hypothyroidism is determined by free and bound thyroid hormones in the blood, the level of TSH, and the
composition of autoantibodies to thyroid markers (Evered et al. 1973). Speci�cally, autoantibodies against thyroid-speci�c
antigens (e.g., TSHR, TG, and TPO) were found in most patients (Brown 2013). The majority of these cases can be
assigned to hypothyroidism with an autoimmunity component (e.g., Hashimoto's thyroiditis and autoimmune
hypothyroidism, Ord’s thyroiditis) (Eriksson et al. 2012). Importantly, hypothyroidism is linked to a higher incidence of
other organ-speci�c autoimmune diseases (Brown 2013; Matzaraki et al. 2017). Hyperthyroidism occurs in children in the
form of autoimmune thyroiditis (AIT) (Brown 2013). AIT re�ects some unknown defects in immunoregulation, which
translate into injury to thyroid tissue, which in turn activates apoptotic cell death and thyroiditis. The genetic basis for AIT
is unknown, but it is likely to combine genetics (estimated to account for 70% of cases) and environmental factors that
interact with predisposed genetics.

Hyperthyroidism may also be congenital, where the incidence rate is 1 in every 2000–4000 live births. Congenital
hypothyroidism (CH) is a developmental abnormality affecting the hypothalamic-pituitary-thyroid (HPT) axis (Persani et
al. 2018). Primary CH, which is associated with a missing or underdeveloped thyroid (dysgenesis), is the most common
neonatal disease and accounts for most CH. Most cases of CH occur sporadically and are frequently associated with an
increase in neonatal malformations, which can result in further complications (Léger et al. 2014). Unfortunately, the
genetics of thyroid dysgenesis are resolved in only 5% of cases (Wassner 2020). A systematic CH screen in Japanese
(Narumi et al. 2010) and Czech (Al Taji et al. 2007) individuals con�rmed the challenge of identifying causal mutations.
While the most pathogenic variants of the TSH receptor (TSHR) are nonsyndromic, mutated Gsα (GNAS1) and PDE8B,
which are components of TSHR signaling, are linked with syndromic disease (Persani et al. 2010). Candidate genes that
potentially disrupt thyroid gland formation have been linked to other rare monogenic diseases (reviewed in (Stoupa et al.
2021 32)). Mutations in numerous thyroid transcription factors (TITF-1, TITF-2, PAX-8, FOXE1, GLIS3) are mostly
syndromic (Kostopoulou et al. 2021). Additionally, mutated genes that act in the biosynthesis and cell biology of thyroid
hormones (Panicker 2011) may cause dysfunction of thyroid hormone synthesis and secretion (dyshormonogenesis).
Among these genes are thyroid peroxidase (TPO), thyroglobulin (TG), sodium iodide symporter (NIS), pendrin (PDS),
thyroid oxidase 2 (THOX2), and iodotyrosine deiodinase (IYD). The iodothyronine transporter (MCT8), which is expressed
in the thyroid gland membrane, was also shown to drive hypothyroidism, which is coupled to neurological de�cits (Park
and Chatterjee 2005). Dyshormonogenetic cases are often recessively inherited (Makretskaya et al. 2018). Interestingly,
the occurrence of mutated CH causal genes differs substantially across populations (Sun et al. 2018).

In this study, we analyzed the genetic signatures among people diagnosed with ICD-10 E03 (“other hypothyroidism”)
(Edwards et al. 2013). We asked whether the genetic effects of hypothyroidism and myxedema are associated with sex.
To this end, we applied several association methods, most notably the proteome-wide association study (PWAS) method,
which detects gene-phenotype associations through the effect of variants on protein function (Brandes et al. 2020). By
comparing results from the PWAS (Brandes et al. 2020), TWAS (Luningham et al. 2020), classical GWAS, and coding
GWAS, we shed light on the complex etiologies of hypothyroidism with or without an immunological basis. We conclude
that the integration of established association methods and partitioning the population by sex can improve interpretability
and clinical utility.

Methods

UKB processing
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The UK Biobank (UKB) is a population-based database with detailed medical, genotyping, and lifestyle information
covering ~ 500k people aged 40–69 across the UK who were recruited from 2006–2010. The analyses herein were based
on the 2019 UKB release. We restricted the analysis to European origin (codes 1, 1001, 1002, and 1003, respectively; and
ethnic background, data �eld 21000). We applied the classi�cation according to genetic ancestry (Genetic ethnic group,
data �eld 22006). We further removed genetic relatives by randomly keeping only one representative of each kinship
group.

Hypothyroidism is indexed by ICD-10 code E03. The analysis includes individuals who have any diagnosis within the main
or secondary codes (UKB data �elds 41202 and 41204, respectively) and the summary diagnosis code 41270. The latter
covers the distinct diagnosis codes a participant has recorded across all their hospital inpatient records, in either the
primary or secondary position. These �elds cover ICD-10 from E03.0 to E03.9 (total 29,478 participants), with 98.5% of
them marked as "unspeci�ed hypothyroidism", "other speci�ed hypothyroidism" (E03.8, 0.7%), "hypothyroidism due to
medicaments and other exogenous substances" (0.3%, E03.2), and CH (0.3%, E03.0-E03.1). We included "other
hypothyroidism" and excluded "iodine-de�ciency-related hypothyroidism" (E00-E02) and postprocedural hypothyroidism
(E89.0). This set of E03 with genotyping data includes 2,557 males and 11,094 females.

All GWAS and coding GWAS analyses
We used UKB processing as described above to perform GWAS and coding GWAS. UKB released genotyped data for all
participants. In the genotyping data, there are ~ 820k preselected genetic variations (from the genotyping data of the UKB
Axiome Array). Based on the UKB imputation protocol, the number of variants was expanded to 97,013,422. For the
imputed variants, we calculated the probabilistic expectation for the alternative alleles (Brandes et al. 2020). For all GWAS,
we considered variants with an MAF threshold > 0.001 and a Hardy-Weinberg equilibrium (HWE) exact test p value > 1e-6.
The SNPs retained for the analysis were those with a 100% call rate (using the geno option). For the E03 GWAS, we had
12,435 cases and 257,948 controls.

The coding GWAS analysis includes the human proteome according to UniProt-SwissProt (labeled “reviewed”). Due to
unambiguous mapping to RefSeq gene names, we cover 18,053 protein-coding genes of the ~ 20k proteins that are listed
for the human proteome. The missed genes are instances where the mapping of genes to proteins is ambiguous (e.g.,
genes with multiple protein versions). In addition, no mapping is available to nongenuine RefSeq genes such as
endogenous retroviruses (e.g., ERVK) or the constant and variable regions of immunoglobulins (e.g., IGLV and IGKV). The
2,119 UniProtKB-reviewed gene names that are not included in the PWAS analysis are listed in Additional �le 1: Table S1.
Altogether, from the overall ~ 97 M variants, we tested all 639,323 coding and splicing variants located within 18,053
protein-coding genes. For all GWAS and coding GWAS included 172 covariates that include sex (binary), year of birth
(numeric), 40 principal components (PCs) that capture the ancestry strati�cation (numeric), the UKB genotyping batch
(one-hot-encoding, 105 categories), and the UKB assessment centers associated with each sample (binary, 25 categories).

GWAS summary statistics
We used the Open Targets Genetics (OTG) platform to select current knowledge and GWAS results on hypothyroidism
(Ghoussaini et al. 2021). The OTG (release date: 6/2023) uni�es multiple sources of evidence for an inclusive list of 2007
genes, each ranked by an OT global score (range 0–1.0). Among these genes, 702 genes are supported by genetic-
associated (GA) scores based on large-scale independent GWAS summary statistics (Carvalho-Silva et al. 2019). We
extracted the list of associated variants from OTG for comparative analysis from six large-scale GWAS for associated
phenotypes. The cohorts from these GWAS ranged from 250k to 580k controls and 15k to 33k cases. The number of
independent loci in each GWAS is 115 (Neale v2, 2018), 45 (UKB Saige 2018), 65 (Sakaue et al. 2021), 160 (Donertas et al.
2021), 133 (Kichaev et al. 2019) and 67 (FinnGen, Freeze 6, 2022). Note that the study of Neale’s lab (2018, V2) focused
on European ancestry with 361,141 participants, among whom 17,574 were labeled with "hypothyroidism/myxedema
(self-reported, noncancer)", while other GWAS from UKB were performed across multiple ethnic groups (Donertas et al.
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2021). Other datasets from the OTG platform include "permanent congenital hypothyroidism" with 53 associated genes,
35 of which have a GA score > 0.5. This phenotype is a merger of Orphanet: 442 (23 genes) and EFO 0016408. Most of the
associated genes were derived from ClinVar and Orphanet (Sharo et al. 2023).

PWAS functional effect score per gene of the human proteome
The PWAS methodology (Brandes et al. 2019) assumes that causal variants in coding regions affect phenotypes by
altering the biochemical functions of the encoded protein of a gene. In summary, the functional impact rating at the
molecular level (FIRM) from the pretrained machine-learning (ML) model is then used to estimate the extent of the
damage caused to each protein in the entire proteome (Brandes et al. 2019). FIRM performance was reported and
validated for the pathological variants in ClinVar, reaching an AUC of 90% and accuracy of 82.7% (Brandes et al. 2019).
The predicted effect score of a variant is a number between 0 (complete loss of function, LoF) and 1 (no functional effect,
synonymous variant). PWAS explicitly treated in-frame indels (Brandes et al. 2020). We seek a calibrated score for the
overall protein damage at an individual level. Thus, per-variant damage predictions are aggregated at the gene level
according to recessive, dominant and hybrid gene heritability modes. On average, there are 35.4 nonsense and missense
mutations per gene that are considered for the gene-based effect score. PWAS results are based on the same set of
variants as used for the coding GWAS, i.e., 639,323 variants located within 18,053 protein-coding genes and 172
covariates.

Validation scheme
An independent cohort of FinnGen was used for the validation of genes identi�ed as statistically signi�cant by the PWAS
method (for ICD10: E03). The analysis is based on a recent version of FinnGen with ~ 350,000 individuals with no overlap
with UKB participants (Kurki et al. 2023). For validation, we used the 146 independent loci reported in Freeze 7.0 (Fz7;
spring 2021). Fr7 lists of credible genes but includes loci that failed to identify creditable genes (33 loci). Note that for
other loci, several genes have been reported. Altogether, there were 102 genes for E4_HYTHYNAS (hypothyroidism,
other/unspeci�ed) from 38,554 cases and 263,704 controls. Additional validation was performed for FinnGen Freeze 8.0
(Fz8, spring 2002). We tested the related phenotypes of E4_HYTHY_AI_STRICT (Fz8: 45,320 cases) and E4_HYTHYNAS
(Fz8: 52,828 cases). We compared the results for PheWAS Section 4 (i.e., endocrine, nutritional and metabolic diseases,
E4) analyzed by the Ristey R9 querying system (Kurki et al. 2023).

Statistical tests
Sex-speci�c statistics

We applied a procedure for assessing the possibility that the discovery of signi�cant sex-speci�c PWAS results is due to
the difference in the UKB cohort sizes (2,557 males and 11,094 females). We applied a random sampling of the sex-
speci�c ICD-10 E03 cases following matching of the group sizes (i.e., by male group). We performed 100 PWAS runs (with
repetitions) and recorded the number of occurrences (up to 100 times) for males and females. We questioned whether
genes were differentiated between sex-speci�c populations directly from the scores of the individual gene-level risk
scores. To this end, we performed a gene-based permutation analysis using the Python library mlxtend v0.21.0. The
analysis performed an association test between the risk score of each person and the label. Speci�cally, we test the per-
gene statistics of the results by running 100, 500, 1000, 5000, 10,000, 15,000, and 30,000 permutations. We applied the
Spearman rank correlation test to test the hypothesis that genes identi�ed for male and female groups originated from
identical probabilities.

Effect size statistics

To determine the effect size of a gene on hypothyroidism, we applied a measure of Cohen's d values. Cohen's d, also
known as standardized mean difference, measures the difference between two means divided by a standard deviation
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(SD) for the data. In this study, Cohen's d is the (normalized) difference in mean gene effect scores between cases and
controls (calculated independently for both dominant and recessive effect scores). For GWAS, the variant association and
effect size were calculated by PLINK 2.0 default logistic regression, which produces the z score to specify the effect size
and its directionality. Note that in GWAS, a positive z score indicates a positive correlation between hypothyroidism and
the number of alternative alleles, thereby indicating a risk variant. In PWAS, positive values indicate a positive correlation
with the gene effect scores, whose higher values mean less functional damage. Thus, negative values are indicative of
protective variants in GWAS versus risk genes in PWAS.

PRS calculation: To calculate PRS, we used the PRSice-2 protocol (Choi and O'Reilly 2019). Predictive PRS models for
coding GWAS, and all GWAS were based on a standard partition of 80:20 for the training and test sets. For all GWAS, we
used ~ 0.5 M common variants (MAF > 1e-03, a p value for HWE test larger than > 1e − 06 and 100% call rate using geno
option). In addition, we applied covariates of sex, age, UKB assessment centers, and genotype measurement batch. We
performed predictive PRS for hypothyroidism E03 by the liability scale R2 and the AUC Roc (i.e., the area under the receiver
operating characteristic curve) (Choi and O'Reilly 2019) for both sexes, male and female groups. While the R2 assesses
the amount of explained variation in the regression models, the AUC Roc evaluates the ability of the set of used variants
to discriminate between the classes (E03 vs controls).

Bioinformatics tools
For gene connectivity and protein‒protein interaction (PPI) maps, we applied STRING at a high PPI connectivity score
(Szklarczyk et al. 2021). For functional enrichment of GO annotation and KEGG pathways, we applied the Gene2Func
function of FUMA-GWAS using default parameters and a set of genes as input (Watanabe et al. 2017). All values are
reported by their adjusted p values, using the human proteome as background.

Resource and availability
FIRM model and prediction of variant-centric effect score (https://github.com/nadavbra/�rm).

Exclusion and inclusion rules per outcomes and phenotypes from FinnGen are found in
https://risteys.�nngen.�/endpoints/.

A gene-based permutation analysis using python ML library mlxtend v0.21.0; in https://github.com/rasbt/mlxtend/.

Results

Comparative GWAS results for hypothyroidism
Large-scale GWAS have been performed on several cohorts for hypothyroidism (see Methods). A comparative study
compiling six of the largest studies is shown in Fig. 1. The comparison is performed with a GWAS of
“Hypothyroidism/Myxoedema (noncancer, self-reported)” from Neale v2, 2018 that covers non-Finnish Europeans with ~ 
17.5k cases and ~ 345k controls from UKB. This study reports on 115 signi�cant (p value < 5e-8) variants. Each of the
leading variants is reported along with its most likely associated genes.

We identi�ed 21 intersecting lists for all 6 GWAS (Additional �le 1: Table S2). Note that the individual GWAS may include
overlapping participants. While accurate mapping of variants to genes is inconclusive, we observed signi�cant functional
connectivity among these overlapping associated genes (STRING PPI enrichment p value of 7.4e-07; Fig. 1B). For
example, the TPO and FOXE1 genes (Fig. 1B, blue cluster) are involved in thyroid hormone production and secretion.
Speci�cally, TPO is a key enzyme in thyroid peroxidase that acts in the iodination of tyrosine residues in thyroglobulin and
thyroid hormones, while FOXE1 is implicated in thyroid gland morphogenesis (Table 1). The clusters in Fig. 1B list genes
active in the regulation of T-cell receptors (yellow), thyroid hormone production (blue), transcriptional regulation (red), and
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chromatin modi�ers (green). We observed that the genes associated with hypothyroidism partition genes by their cellular
properties in relation to immunity, DNA-binding proteins, and numerous enzymes (Fig. 1C).

Table 1 summarizes the variants (based on the overlap of six large-scale GWAS) along with the most likely associated
genes. Most variants are common, with allele frequencies (AFs) ranging from 0.17 to 0.89. Note that for many of the
variants, linkage disequilibrium (LD) identi�es a large number of genes within the same haplotype block. In these cases,
no conclusive assignment to a particular gene is possible without �ne mapping. In fact, only 3 of the 21 lead variants are
associated with a de�nitive gene (Table 1).

Table 1
The intersection variants (total 21) from 6 large-scale hypothyroidism GWAS results

  SNP rsID Band Variant Closest gene   AFa # LD genesb  

1 rs78765971 1p13 1_107819547_GAC_G VAV3 0.09 3  

2 rs484959 1p13 1_109823461_T_C GSTM3 0.50 23  

3 rs2476601 1p13 1_113834946_A_G PTPN22 0.89 15  

4 rs11675342 2p25 2_1403856_C_T TPO 0.44 3  

5 rs1534430 2p24 2_12504610_C_T TRIB2 0.41 1  

6 rs2111485 2q24 2_162254026_A_G FAP 0.62 6  

7 rs7582694 2q32 2_191105394_C_G STAT4 0.78 7  

8 rs76897057 3q28 3_188407079_TA_T LPP 0.48 1  

9 rs34046593 4p15 4_26109971_G_A RBPJ 0.31 6  

10 rs546532456 4q31 4_148724495_C_CTT PGR 0.19 1  

11 rs2445610 8q24 8_127184843_A_G POU5F1B 0.35 2  

12 rs2123340 9p21 9_21589042_G_A IFNE 0.65 19  

13 rs7850258 9q22 9_97786731_A_G FOXE1 0.66 14  

14 rs71508903 10q21 10_62020112_C_T ARID5B 0.18 4  

15 rs736374 11p13 11_35245397_G_A CD44 0.37 7  

16 rs4409785 11q21 11_95578258_T_C SESN3 0.17 5  

17 rs3184504 12q24 12_111446804_T_C SH2B3 0.52 17  

18 rs61759532 17p13 17_7337072_C_T ACAP1 0.23 59  

19 rs10424978 19p13 19_4837545_C_A TICAM1 0.59 21  

20 rs1454294221 22q12 22_30125266_CCAG_C LIF 0.48 23

21 rs229540 22q12 22_37195250_T_G C1QTNF6 0.42 25

aAF, Allele frequency for non-Finnish European population. b# LD genes, the number of associated mapped genes
resulting from the variant to gene (V2G) OTG protocol.

The listed shared variants are quite stable and remain valid in view of additional large-scale GWAS. For example, the
addition of GWAS for autoimmune thyroid disease with 755k participants from Iceland (93 associated variants)
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(Saevarsdottir et al. 2020) had only a minor in�uence on the overall number of intersected variants (19 of 21 listed
variants). Under the assumption of accurate mapping of variants to genes (Table 1), the results expose the genetic signal
of CH. Speci�cally, TPO was reported as causal for thyroid dyshormonogenesis 2 (OMIM 274500). In the Chinese
population (Wang et al. 2017), abnormal expression of FOXE1 was linked to CH-based thyroid dysgenesis (OMIM
218700). Similarly, polymorphisms in the listed genes VAV3, SH2B3, FOXE1 and PTPN22 were identi�ed in the 23andMe
database to be associated not only with hypothyroidism but also with other autoimmune diseases (Eriksson et al. 2012).
We conclude that the shared GWAS results identi�ed pleiotropic effects of genes involved in autoimmunity and gene
developmental alterations that underlie CH.

Coding GWAS highlights the abundance of genes in the MHC
extended locus
We overcame the di�culty of variant-to-gene mapping by performing coding GWAS using ~ 640k coding variants. Figure 2
shows the results of the analysis for ~ 18k coding genes (Additional �le 1: Table S3). We report 2813 variants with a
relaxed p value of < 1e-02 and 149 and 61 variants by setting the signi�cant thresholds for p values of 1e-08 and 1e-16,
respectively. Importantly, 91% and 95% of the variants at these thresholds were associated with the extended region of
MHC in chromosome 6 (Chr6: 25 M to 34 M), respectively (Fig. 2A). For the signi�cant thresholds (p value < 1e-08), the
directionality of the variants as reducing or increasing the risk is balanced (Fig. 2B). The 61 most signi�cant variants are
associated with 19 unique genes from the MHC locus and only 3 genes from other chromosomal locations.

We conclude that the coding gene view is driven by the signature within the gene-dense immunological region of the MHC
locus.

Gene-based analysis using PWAS
The limitation of GWAS interpretability is due to the di�culty of assigning variants to their associated genes. To overcome
these limitations, we applied PWAS, which exclusively focuses on alterations in the coding gene and assesses the impact
of damaging variants on its biochemical function (Brandes et al. 2020). Based on the UKB cohort for ICD-10 E03, we
identi�ed 77 statistically signi�cant PWAS genes (FDR-q-value < 0.05). We analyzed signi�cant genes based on their risk
directionality (Fig. 3). Among the top-range genes (FDR q-value, <1e-07; 26 genes, Fig. 3A), genes with increased risk for
hypothyroidism (colored red) dominate. As expected from other complex diseases, most genes have a rather limited effect
size (calculated by Cohen’s d values). There are six genes that have Cohen’s d values >|0.06| and p values < 1.0e-16
(Fig. 3B). Among these genes, �ve genes are associated with elevated risk, and SH2B3 is a strong protective gene. A large
effect size is associated with GPR174, G protein-coupled receptor 174, a ChrX gene that plays a role in autoimmunity
pathogenesis (Napier et al. 2015). PWAS also model genes according to their inheritance modes. While for 53%,
compelling evidence suggests dominant inheritance, 12% of the genes show clear recessive inheritance (Additional �le 2:
Fig. S1).

Autoimmunity-associated genes are enriched in PWAS results for
hypothyroidism
Inspecting all identi�ed genes revealed that many of these genes are associated with the immune system, speci�cally
with autoimmunity. We asked whether the identi�ed genes may shed light on the underlying mechanisms for
hypothyroidism. To this end, we reconstructed a connectivity map among the 77 PWAS genes as represented by STRING
(Szklarczyk et al. 2021) (Fig. 4).

We found that the connectivity map is statistically signi�cant and of high con�dence (p value of 3.68e-10; with a PPI
STRING score > 0.9). The network (21 nodes) is mostly associated with cellular immunity, including antigen presentation,
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processing, and T-cell regulation. Moreover, 36 of 77 genes (47%) are located at the Chr6p22.1-p21.32 locus that speci�es
the MHC locus (hypergeometric distribution test, p value 7.3e-57).

Relationships between MHC variants involved in autoimmunity determine other aspects of immunity, such as responses
to infectious diseases and in�ammation. Strong connectivity was observed (Fig. 4A), and the extreme enrichment in
coding genes identi�ed within the MHC locus (Fig. 4B, > 60-fold higher than expected) strongly argues for the dominant
genetic signal that combines hypothyroidism and autoimmune complex diseases.

Validated hypothyroidism PWAS signi�cant genes
To test the relevance of PWAS-identi�ed genes, we sought an independent cohort that could validate the gene discovery.
To this end, we investigated the Finnish Biobank (FinnGen) as an independent validation resource for hypothyroidism.
Table 2 lists nine genes (DCLRE1B, CTLA4, TLR3, HLA-DPB1, TRMO, PCSK7, SH2B3, THOC5, and C1QTN) that were
validated from the FinnGen data and shared with the PWAS discovery. Notably, PWAS only refers to coding variants, while
like any standard GWAS, FinnGen identi�es mostly noncoding variants (Table 2). Recall that there is no overlap between
UKB and FinnGen participants (see Methods). Table 2 also shows genes associated with “Hypothyroidism (congenital or
acquired) (38.6k cases, 263.7k controls; 122 genes, phenotype a), “Hypothyroidism, strict autoimmune” (33.4k cases,
227.4k controls, 105 genes, phenotype b), and a more general term of “Disorders of the thyroid gland” (45.5k cases,
263.7k controls, 80 genes, phenotype c). Further validation is based on the independent cohort of 23&me (Eriksson et al.
2012). Several of the replicated genes were supported by �ne-mapping (TLR3, Additional �le 2: Fig. S2).

Table 2
Validation of the PWAS gene by FinnGen Fz7 for Hypothyroidism phenotypes

Symbol aFinnGen
(a,b,c)

p
value

rsID Chr:M Gene effect bAID Speci�c
publication

More
evidence

cRisk

C1QTNF6 a,b,c, 8.7E-
19

rs229541 22:37
M

Intergenic + (Frederiksen
et al. 2013)

Fine-map

23&me

I

CTLA4 a,b,c, 1.1E-
44

rs3087243 2:203
M

missense + (Braun et al.
1998)

Fine-map

23&me

I

DCLRE1B a 2.0E-
10

rs12127377 1:113
M

intron + (Ban et al.
2010)

Japan D

HLA-
DPB1

a,b,c 4.8E-
31

rs9277535 6:32 M downstream + (Huang and
Jap 2015)

Taiwan D

PCSK7 a,b,c 8.5E-
11

rs76169968 11:117
M

intron - Aging
(Donertas et
al. 2021)

  D

SH2B3 a,b,c 3.3E-
55

rs7310615 12:111
M

intron + (Auburger et
al. 2014)

23andMe D

THOC5 a 2.5E-
06

rs8140060 22:29
M

intron -     D

TLR3 a,b,c 2.6E-
10

rs3775291 4:186
M

missense + (Caturegli et
al. 2007)

Fine-map D

TRMO a,b,c 6.1E-
06

rs8140060 9:97 M intron -     D

The OT platform provides a knowledge-based resource that converts the association of genes to diseases by including
rich biological knowledge from multiple sources (e.g., literature, animal models, pathways, and drugs). Altogether, more
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than 700 genes were scored for genetic association (GA score ranges 0–1.0, see Methods; Additional �le 1: Table S5). The
overlap of the GA-listed genes and PWAS results is signi�cant (p value 6.38e-25; 10.5-fold enrichment). An even higher
enrichment was found for genes selected with a higher GA score (total top 222 genes with score > 0.3, p value 5.28e-13,
14.7-fold enrichment; Fig. 5A). Inspecting the functions of these 222 genes revealed many enzymes, membranous
receptors, secreted proteins, and genes that act in the development, synthesis, and secretion of thyroid hormones.
Surprisingly, 58% of the PWAS genes were not identi�ed by the GWAS results reported by OTG. Interestingly, none of the
top-ranked genes for “hypothyroidism” according to the OT global score (25 genes, threshold > 0.5; Additional �le 1: Table
S5) were identi�ed as signi�cant genes by PWAS. We conclude that the alternative association methodologies expose
different aspects of hypothyroidism. We con�rmed an extreme overlap with 19 of these top 25 genes as a CH-exclusive
gene set, de�ned as “permanent congenital hypothyroidism” (Orphanet: 442; EFO: 0016408). Figure 5B shows that the
genes associated with permanent CH are functionally linked (STRING PPI enrichment, p value < 1e-16). Validation of the
CH causal genes was con�rmed by independent studies analyzing patients from Korea (Jung et al. 2020) and China
(Wang et al. 2020) (colored blue, Fig. 5B).

As the vast majority of associated variants occur in noncoding regions (Edwards et al. 2013), we tested the genetic signal
that resulted from the transcriptome-wide association study (TWAS) (Luningham et al. 2020). Figure 5C emphasizes the
overlap of association studies for hypothyroidism that relied on UKB entries of European origin: the PWAS (77 genes), the
GWAS gene subset (GA score > 0.5; 136 genes), and the TWAS signi�cant expression-trait associations (110 genes). We
show that the overlap between PWAS and OT and TWAS to OT is limited to six genes. The overlapping genes are enriched
with genes of cellular immunity. On the other hand, the overlap between the TWAS and OT lists is most substantial, with
33 genes that account for 25–30% of the gene sets. Genes that are shared belong to transcription, signaling, tra�cking,
immunity, and more. Only C1QTNF6 (C1q and TNF-related 6) was shared by all three orthogonal association studies. The
shared variant was also identi�ed by the shared variant from multiple GWAS (Table 1). C1QTNF6 is known to carry two
coding mutations, rs229527 (22:37,185,445:C,A) and rs229526 (22:37,185,382:G,C), that are associated with
hypothyroidism-related phenotypes. This gene was identi�ed within a locus that is associated with a large number of
thyroid-related pathologies (Additional �le 2: Fig. S3).

In this study, we have not explicitly studied rare variants from whole genome UKB. However, based on UKB exome
sequencing (Backman et al. 2021), models were developed and reported on the relationships between thousands of traits
and diseases by analyzing rare variants from 269,171 UKB participants of European ancestry (Wang et al. 2021). The
results reported for hypothyroidism (indexed as union#E03#Other hypothyroidism) and �ltered by p value < 1e-10 include
320 variants that are mapped to 121 genes (Additional �le 1: Table S6). Similar to our observation, most variants are
associated with the extended MHC locus of Chr 6 (located at 25 M to 34 M, 87%). In terms of gene overlap, 34 (of the 77
PWAS genes) were supported by exome sequencing analysis (Wang et al. 2021). These results support the involvement of
the immune-rich MHC genetic locus in the risk for hypothyroidism. Notably, only a small fraction of the genes located in
the core segment of MHC (Chr 6: 29.5 M to 33.1 M, total 308 genes) are listed as PWAS-associated genes or identi�ed by
exome analysis, including rare variants (37 and 53 genes, respectively; Additional �le 2: Fig. S4).

Gene-based association studies by sex
The higher prevalence of ICD-10 E03 in females relative to males raised the question of whether hypothyroidism is
signi�ed by sex-dependent genetics. To this end, we applied the PWAS gene-aggregative approach separately for males
and females (Fig. 6). The Venn diagram emphasizes that females displayed 63 signi�cant genes, while only nine were
reported for males. Out of the female signi�cant genes, 7 genes (ARID3C, ATL2, HDGF, IRAK1, LRRC47, OR13A1, and
SLC15A2) did not appear to be signi�cant in the full cohort combining both sexes (Fig. 6A). On the other hand, the genes
identi�ed in males are either shared by females (7 genes) or included in PWAS results from both sexes, with only one
male-exclusive exception (THAP6, THAP domain containing 6; Fig. 6A). The Spearman rank correlation for the shared
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genes in females and males con�rmed the high correlation and similarity in gene effects between the sexes (r = 0.61, p
value = 0.14).

We performed permutation tests over the score of each gene to assess whether any of the identi�ed genes directly
displayed signi�cant differences in their assignment to females or males following 100 to 30,000 such tests (see
Methods). Importantly, at 500 permutations, the results were stable, con�rming the lack of sex-dependent genetic effects
(Fig. 6B). Only two genes (IRAK1 and GPR174) consistently and signi�cantly failed the permutation tests (p value of 3.3e-
05). Both genes are located at Chromosome X. IRAK1 (Interleukin-1 receptor-associated kinase 1) was only signi�cant in
females (Fig. 6A). IRAK1 is fundamental in initiating the innate immune response against pathogens and participates in
the antiviral state. GPR174 impacts autoimmune Addison's disease and Graves' disease (GD), and its female
preponderance was con�rmed (Napier et al. 2015). We conclude that all other identi�ed genes do not support a sex
difference for hypothyroidism.

The E03 prevalence in the analyzed UKB was 7.45% and 2.04% for females and males, respectively. As the group sizes of
females and males are markedly different, we also performed 100 independent runs for E03 by arti�cially balancing the
number of males and females. To this end, we randomly sampled from the female group the male-matched group size.
Altogether, there were 217 signi�cant genes that appeared across these runs. As many as 70% should be considered
noise, as the gene was identi�ed only by a single PWAS run (out of 100, Additional �le 1: Table S7). Genes that were
detected in > 20% of the runs showed no observed difference between the sexes (Additional �le 2: Fig. S5). We further
conclude that the reported difference in discovery rate for males and females is mostly attributed to group size
differences.

PRS re�ects the cumulative effect of the genetic variants. This allows for predicting the E03 genetic predisposition. We
performed PRS for the weighted sum of allele dosages multiplied by their corresponding effect sizes. Figure 6C (all
GWAS) and Fig. 6D (coding GWAS) show the distribution for the entire population and, according to partition by sex.
Figure 6E shows the prediction power of the PRS as calculated by the R2 and AUC-Roc for the test set (2492 cases and
51,630 controls). We conclude that the majority of the PRS predictive power is captured by variants within the coding
regions. Moreover, the separation of the population by sex validated that most genetic signals for the calculated Roc-AUC
are captured within the female group.

Discussion
In this study, we sought to identify the genetic basis of hypothyroidism (ICD-10, E03) in the adult population of the UKB.
An interest in thyroid function in adults and especially in the elderly relies on the increasing links between thyroid status
and cognitive function, cardiovascular diseases, healthy aging, and longevity (Aggarwal and Razvi 2013). It is imperative
to identify people at higher risk and tune clinical treatment to avoid negative impacts on quality of life (Hegedus et al.
2022). Hypothyroidism occurs when there are low levels of thyroid hormones and is typically treated with synthetic thyroid
hormone replacement (Persani and Bonomi 2017). Primary hypothyroidism can be roughly divided into congenital or
acquired diseases. Several diseases are linked to hypothyroidism through the destruction of the thyroid by the immune
system. These include Hashimoto's thyroiditis and Graves’ disease (GD) (Umar et al. 2010). In children, AIT is a complex
immune disorder in which each gene has only a small effect. Less common are cases of secondary or tertiary
hypothyroidism caused by insu�cient stimulation of the thyroid gland. Other forms of hypothyroidism may be associated
with organ resistance to thyroid hormone (Persani et al. 2010), with subclinical hypothyroidism being linked to older
females (Biondi et al. 2019; Dunn and Turner 2016). Our understanding of the environmental factors that contribute to
disease development is limited, and risk factors may include hormones (e.g., estrogen), stress, smoking, and dietary iodine
consumption. Cases of subclinical hypothyroidism during and after pregnancy are not discussed further (Casey et al.
2017).
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In this study, we exhaustively compared different association study methods and protocols. In a routine GWAS, variants
are statistically tested under an additive model with a case‒control setting (Korte and Farlow 2013). However, PWAS also
detects nonadditive effects and allows the aggregated effect of variants that may occur at different locations within the
same gene (i.e., a recessive model). Although only a small fraction of the genes identi�ed by PWAS have been identi�ed
with a clear recessive signal (Additional �le 1: Table S4 and Fig. S1), such inheritance modes have been mostly
overlooked by GWAS approaches (Brandes et al. 2020; Tam et al. 2019). The vast majority of the associated variants in
GWAS occur in the noncoding regions of the genome, and thus, the relevance of a SNP function to the studied phenotype
is mostly lacking (discussed in (Edwards et al. 2013)). Along with the effort to capture gene causality, TWAS was
developed to identify variants that affect the regulation of gene expression using tissue-based expression data and
Bayesian considerations (e.g., eQTL). Signi�cant variants from TWAS are located in regions that may alter the expression
levels of transcripts, with cis or trans regulation modes (Luningham et al. 2020; Maddirevula et al. 2020). As expected,
TWAS is a complementary approach exposed quite different results from GWAS �ndings (Fig. 5). Much of the overlap in
gene function between TWAS and GWAS is linked to thyroid development and hormone secretion (e.g., PAX8, FOXE1,
STAT4, TG). Interestingly, both methodologies display only a minimal signal of immunity (Khan et al. 2021).

The genetic basis for congenital hypothyroidism (CH) was exposed from population studies (Amberger et al. 2019), where
dysregulation of transcription factors (TFs) characterizes individuals with CH (Grasberger and Refetoff 2011). A
comprehensive screening of CH in family pedigrees from China identi�ed DUOX2 as the most frequently mutated gene
(Sun et al. 2018). CH, combined with neonatal diabetes mellitus, is caused by mutations in the TF GLIS3 gene (Fu et al.
2018). Other TFs, such as NR1D1 and PAX8, which are exclusively expressed in thyroid cell types, were identi�ed by GWAS
and TWAS. TFs such as FOXE1 and STAT4 were consistently identi�ed by all large-scale GWAS. These genes act during
embryogenesis to establish the pituitary, hypothalamus, and thyroid axes (Table 1). Thyroid signaling genes were highly
represented in TWAS. For example, PDE8B is expressed primarily in the thyroid to execute the TSH effects. Combining
results from multiple classical GWAS identi�ed TFs that have strong links to thyroid function (e.g., NKX2-1; NK2
homeobox 1). It is likely that the strong effect size of rare variants dominated their discovery (see OMIM lists of 34 genes
for CH, Additional �le 1: Table S9). None of the top-scoring OT genes were identi�ed by PWAS. We attribute this
discrepancy in gene �ndings to the relatively small effect sizes of the most common variants in coding genes. Recall that
GWAS identi�es strong functional elements that are ignored by PWAS. For example, a cluster of variants on chromosome
9, including rs10759927, rs7850258 and rs7030280, was signi�cantly identi�ed by classical GWAS for hypothyroidism
(with a p value ranging between 1e-82 and 2e-100). These variants occur within the introns of PTCSC2, a noncoding RNA
(ncRNA) that is expressed exclusively in the thyroid. Furthermore, accumulated data propose that CH is not restricted to
monogenic dominant mutations. Biallelic effects were suggested based on the sporadic occurrences of CH within families
(Sun et al. 2018). Additionally, evidence of parents with clinical manifestations of thyroid (functional or morphological)
supports the notion of predisposition with recessive inheritance (Léger et al. 2002). We argue that applying a recessive
model in PWAS and including a comprehensive analysis of rare variants (Wang et al. 2021) can expose the overlooked
genetics of CH.

The strongest signature of explainable hyperthyroidism is caused by dysregulation of the immune system. This signature
was revealed by applying PWAS and, to a lesser extent, coding GWAS. Testing the genetic variations associated with
thyroid autoimmunity identi�ed a strong interaction with pathways driving the immune response (Khan et al. 2021; Luo et
al. 2021). The �ndings agree with a clinical investigation that explains the mechanisms underlying thyroid autoimmunity.
Hashimoto's thyroiditis is the most common form of hypothyroidism. The autoimmune facet of hypothyroidism is
characterized by the in�ltration of T lymphocytes into the thyroid gland and autoantibodies against thyroid-speci�c genes
(e.g., thyroid peroxidase, thyroglobulin, and TSH receptor). AIT-associated genes were also identi�ed in thyroid
autoimmune Graves’ disease (GD). Among these shared genes are HLA class II (HLA-DR), protein tyrosine phosphatase 22
(PTPN22), and cytotoxic T lymphocyte antigen 4 (CTLA4) (Jacobson and Tomer 2007). The genetic signals of
autoimmune thyroiditis are shared with other immune-mediated diseases, such as T1D, celiac disease, rheumatoid
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arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. PWAS exposes many immune-related genes that carry
coding variants (e.g., PTPN22, SH2B3, and genes in the class 1 MHC region). Thus, it can help to assess the risk
prediction for autoimmunity that overlaps with hypothyroidism (Eriksson et al. 2012). It is important to note that such
enrichment in the MHC locus is speci�c to E03. We argue that an immune-related signature is a genuine contributing
signal for hypothyroidism with evidence for gene-speci�c interpretability. Note that for a large collection of tested complex
phenotypes (Brandes et al. 2020, 2021; Zucker and Linial 2022), using PWAS or coding GWAS did not identify gene
associations within the Chr 6 MHC locus.

The gene-based analysis performed in this study raised the question of whether genetic effects are distinguished by sex.
For hypothyroidism, a ratio of > 3.6:1 for females and males was reported in the UKB. This bias in prevalence was also
validated in the Finnish population, which reported 37,942 affected females and 9,616 males. Several clinical features
distinguish E03 by sex. For example, the average diagnosis age is 50.0 and 58.3 years for females and males,
respectively. Despite the differences in sex prevalence (Graham et al. 2019). We recently showed that UKB hypertension
and phenotypes of blood pressure that are more prevalent in males than females carry a strong signal by sex, where most
of the genetic signal is attributed to females (Zucker and Linial 2022). For example, signi�cant sex-dependent effects
were enriched for neuronal development and immune-related genes in cases of schizophrenia, major depression disease
(Blokland et al. 2022), autism (Lu and Cantor 2012) and Alzheimer’s disease (Gamache et al. 2020). In this study, we
showed that the sex strati�cation of hypothyroidism provided no support for genuine genetic differences between the
sexes, despite the large gap in prevalence. This is in agreement with most human traits and diseases that do not support
a mechanistic difference between the sexes (Traglia et al. 2017). With the continuous increase in statistical power due to
cohort sizes, more cases of sex-dependent genetics have been revealed (Kostyunina and McLoughlin 2021; Pirastu et al.
2021).

We conclude that comparison results that rely on capturing different aspects of the genetic signal allowed us to reveal the
complex etiology of hypothyroidism, covering recessive signals, CH, and acquired chronic damage to thyroid functionality.
The discovery bene�ted from the use of complementary association studies, which can be generalized to other polygenic
diseases with unknown etiologies. It is likely that complex diseases for which the age of diagnosis, sex prevalence and
diseases that are subjected to (wrong) alternative diagnoses could bene�t from integrating genetic association schemes.
Moreover, using coding GWAS and PWAS, we illustrate the clinical bene�ts of gene-based genetics. The results from
coding genes are more interpretable and direct, which can bene�t unexplored therapeutic targets.
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Figures

Figure 1

Summary of independent loci identi�ed from major GWAS results as compiled in the OTG portal. (A) The number of
participants in each study and the number of hypothyroidism cases are indicated by N (all) and n (cases). There are 21
variants that are shared by all six studies (colored red). The chromosomal position is shown (bottom, light blue). (B)
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STRING analysis of the 21 mapped associated genes resulted in a network of 13 genes (interaction score >0.4). The
nodes are colored by PPI clusters. Evidence of connectivity between the clusters is indicated by dashed lines. (C)
Connectivity of the 21 associated genes (Table 1) and their major functional annotations.

Figure 2

Partition of the signi�cant coding GWAS variants at different thresholds. (A) Position of the variants in the Chr6 MHC
locus and in other locations. We consider the MHC locus to span between positions 25 M and 40 M on Chr6. (B) Partition
according to the trend of variants that are protective or increase the risk for hypothyroidism.

Figure 3
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Associated genes from PWAS results. (A) Statistically signi�cant genes from PWAS for ICD-10 E03 with q-value <1e-07
(total 26 genes). Genes with an increased and decreased risk are colored purple/red and blue, respectively. (B) Effect size
(Cohen’s d) for PWAS results for the dominant model. The genes within the dashed frames are associated with Cohen’s d
>|0.06|. Positive (green font) and negative (red font) Cohen’s d values are associated with reduced and increased risk,
respectively. Additional �le 1: Table S4 lists all genes and their statistics.

Figure 4

Network relationship and functional enrichment of PWAS results (77 genes). (A) The STRING network represents the
genes connected at an interaction score >0.9. Dashed lines mark the connections between clusters. The uni�ed function
for each cluster is colored and annotated (e.g., antigen processing). (B) Enrichment analysis using the FUMA-GWAS
Gene2Func protocol. In red, the fraction of genes in the gene set; blue, the adjusted p value; orange, the overlapping genes
for each term. The top 13 KEGG pathways and bottom, the GO_MF annotations. Note the enrichment of MHC genes (HLA-
DPA1, HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPA1, HLA-G) in KEGG and GO-MF analyses.
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Figure 5

Genetic association with GWAS compiled by OTG. (A) Ranked genes by their genetic association (by GA score, total of 715
genes). The overlap of 77 PWAS genes and 222 OT genes with GA scores >0.3 for all 715 genes. (B) A network relation of
genes that are ranked by the OT global score >0.5 for the phenotype of permanent CH (total 36, 22 are connected, STRING
PPI con�dence score >0.7). The nodes are colored according to the match with the �ndings of CH causal genes from
independent cohorts from India (Kollati et al. 2020) and China (Wang et al. 2020). (C)Venn diagram of major association
resources: PWAS (77 genes), GWAS (OT, by genetic association score >0.5 (136 genes), and TWAS (transcription-based
association study) for hypothyroidism/myxedema (self-reported) with 45 loci and 110 genes. The subsets of overlapping
genes are color-coded according to their main functional annotations.
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Figure 6

Gene-based association analysis by sex (A) Venn diagram for the number of PWAS-identi�ed genes that are signi�cant (q-
value <0.05) by sex. Female- and male-speci�c genes are listed. (B) The results of the permutation test between each gene
found to be signi�cant in PWAS for male and female populations. The y-axis is the received p value for each number of
permutations (x-axis). Each gene is represented by a colored line. Distribution of a polygenic risk score (PRS) among
individuals with and without E03 diagnosis, marked as cases (pink) and controls (blue). PRS scores were calculated for
all-GWAS (C) and coding-GWAS (D) for the entire cohorts (both), females and males. (E) PRS prediction by the coe�cient
of determination (R2, left) AUC-Roc (right) for coding GWAS (orange) and all GWAS (blue) for the entire cohort (both) and
by sex. Coding GWAS variants partitioned by sex are listed in Additional �le 1: Table S8.
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