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Abstract
The global challenges presented by multidrug-resistant Acinetobacter baumannii infections have
stimulated the development of new treatment strategies. We reported that OmpW is a potential
therapeutic target in Acinetobacter baumannii. Here, a library of 11,648 natural compounds was
subjected to a primary screening using QSAR models generated from a ChEMBL dataset with >7,000
compounds with their reported MIC values against A. baumannii followed by a structure-based virtual
screening against OmpW. In silico ADME evaluation was conducted to assess the drug-likeness of these
compounds. The ten highest-ranking compounds were found to bind with an energy score ranging from
-7.8 to -7.0 kcal/mol where most of them belonged to curcuminoids. To validate these findings, one lead
compound exhibiting promising binding stability as well as favourable pharmacokinetics properties,
namely demethoxycurcumin was tested against a panel of A. baumannii strains to determine its
antibacterial activity using microdilution and time-kill curve assays. To validate whether the compound
binds to the selected target, an OmpW-deficient mutant was also studied and compared to the wild-type.
Our results demonstrate that demethoxycurcumin in monotherapy and in combination with colistin is
active against all A. baumannii strains. Moreover, an increased bacterial growth was observed in the
OmpW-deficient mutant suggesting the importance of OmpW for the compound to exhibit its antibacterial
activity. Finally, the compound was found to significantly reduce the interaction of A. baumannii with host
cells suggesting its anti-virulence properties. Collectively, this study demonstrates artificial intelligence as
a promising strategy for the discovery of curcuminoids as antimicrobial agents for combating A.
baumannii infections.

INTRODUCTION
Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) has become a serious problem in recent
years, with potentially devastating impacts on the economy and human life [1]. The need for more
effective and safer antimicrobial compounds has become increasingly urgent in the post-antibiotic era
[1]. A. baumannii, one of the six superbug ESKAPE pathogens, is a global priority pathogen for the
development of effective antimicrobial therapies, due to rapid changes in the genetic constitution of A.
baumannii and the plasticity to acquire different resistance mechanisms [2–4]. The scarce development
of efficient antibiotics against this microorganism has sparked renewed scientific interest in finding
effective antimicrobial agents capable of killing, inhibiting growth, or inhibiting the activity of essential
virulence factors of A. baumannii [5].

The extensive functions of outer membrane proteins (OMPs) in GNB have led to their identification as
potential drug targets [6]. Among the OMPs, outer membrane protein W (OmpW) is a porin playing a
pivotal role in the uptake of nutritional substances such as iron [7]. Several studies have highlighted the
relevance of OmpW as a potential drug target in GNB. For instance, researchers investigated how A.
baumannii adapts to low oxygen conditions during infection. They found that OmpW was downregulated
in hypoxic conditions. To understand its role as a virulence factor, they studied the effects of OmpW loss
in A. baumannii. They discovered that the absence of OmpW reduced in vitro the bacterium's ability to
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adhere to and invade host cells, to cause cell death and to form biofilm without affecting its growth, and
in vivo the pathogenicity of A. baumannii [8]. Similarly, V. cholerae mutant strains lacking OmpW showed
reduced colonization in the mouse intestine compared to strains expressing OmpW [9]. The collective
evidence from these studies strongly suggests that OmpW plays a crucial role in bacterial pathogenesis
and could be a promising target for the development of drugs aimed at combating GNB infections.

Natural products have long been a subject of great interest in the development of novel antimicrobial
drugs [10]. These products, derived from plants, animals, and microorganisms, have been used for
centuries by various traditional medicine systems to treat infections [11].

Chemical libraries enable comprehensive virtual drug screening by offering a diverse range of
compounds. Large databases enhance the integration of advanced methods like machine learning and
artificial intelligence for accurate prediction of drug properties. For example, MIT researchers used
artificial intelligence to identify a potent new antibiotic known as halicin. This compound demonstrates
efficacy against a wide range of bacteria, including some that exhibit resistance to all known antibiotics.
Furthermore, halicin displayed no significant side effects in mice, prompting researchers to plan further
development and clinical trials [12]. Recently discovered by researchers at the University of Toronto in
2021, abaucin exhibits promising efficacy against the lethal superbug A. baumannii. Although still in
early development, it holds significant potential in the treatment of drug-resistant infections [13].

Thus, the objective of the present study was to screen a large library of natural products with potential
activity against A. baumannii using “in silico” and “in vitro” assays. The screening focused on
compounds targeting the function of OmpW. A library of 11,648 natural compounds was retrieved from
Ambinter chemical library, and an in-silico approach combining data-driven and molecular modeling
methods for drug discovery was employed. Artificial based quantitative-structure activity relationship
(QSAR) models were developed to predict the bioactivity of the natural products against A. baumannii.
The retained compounds were subsequently subjected to molecular docking screens and ADME
evaluation to assess their pharmacological and pharmacokinetic profiles. The best compounds, which
exhibited a strong affinity for OmpW along with favourable pharmacokinetic properties were further
evaluated through molecular dynamics simulations. Finally, a lead candidate was subjected to in vitro
testing to assess its potential for inhibiting A. baumannii growth.

RESULTS

QSAR screening
The quality of the developed machine learning and deep learning based QSAR classification models was
assessed using the receiver operating characteristic (ROC) curve, which plots the true positive rate
against the false positive rate [14]. Notably, all the classification models achieved an area under the curve
(AUC) values higher than 0.80 as shown in Figure 1. The performance of the QSAR models was further
evaluated using various performance metrics, as presented in Table 1. The convolutional neural network
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(CNN) model performed exceptionally well on the testing and validation sets and was selected to predict
the activity of Ambinter natural compounds library. At this stage, 1,193 compounds out of 6,151 were
predicted as active against A. baumannii and were selected for the structure-based virtual screening
study. 

Docking screens of natural products
The quality assessment of the AlphaFold model of OmpW, according to Ramachandran plot, shows
92.2% of residues of are in most favourable regions, 7.2% in allowed regions, 0.6% in generously
disallowed regions and 0.0% in disallowed regions. Validation of the OmpW structure using PROSA-web
shows Z-score value of −4.95 which is within the range of scores typically found for native proteins of
similar size (Figure 2A and 2B). The predicted active compounds were subjected to molecular docking
screens, and their binding affinities were ranked accordingly. Specifically, we observed that the highest-
ranking compounds exhibit binding scores ranging from -7.0 to -7.8 kcal/mol and belong to curcuminoids
as shown in Figure 2C. The amino acids involved in the ligand binding are presented in Table 2. 

Docking poses of the highest-ranking compounds are displayed in Figure 3. In brief, the structural
analysis of the docked compounds reveals consistent hydrogen bond formation between the hydroxyl (-
OH) group of the phenyl ring in curcuminoids and the amino acid residue GLN-23. Furthermore, we
detected additional hydrogen bond interactions implicating key residues, namely ASN-104, THR-109, and
LYS-195, situated within the periplasmic site of OmpW. Additionally, our analysis reveals multiple
instances of hydrophobic interactions, with notable involvement of amino acid residues PHE-59, HIS-101,
ASN-144, and GLN-146.

ADME evaluation
A significant proportion, approximately 40%, of drug candidates fail during clinical trials primarily due to
inadequate ADME properties [15]. In silico ADME prediction offers a rapid method to assess the drug-
likeness of a compound by calculating its physicochemical properties. This approach substantially
reduces the time and resources required during the overall drug development process. In this study,
SwissADME (http://www.swissadme.ch/) was employed to compute various pharmacokinetic properties
of the highest-scoring compounds to evaluate their drug-likeness and suitability for further experimental
studies [16]. ADME properties for the selected compounds are shown in Table 3. The results reveal that all
the compounds possess a good lipophilicity in accordance with Lipinski’s rule of five, moreover water
solubility values were found to be in the recommended range for most drugs. Intestinal absorption was
found to be high in all the compounds. Out of the top ten compounds tested for blood-brain barrier (BBB)
permeability, only five were found to be unable to penetrate the BBB. This is a crucial finding, as
antibacterial compounds should not exert their effects on the central nervous system (CNS). None of the
compounds were found to act as a P-gp substrate, thus their bioavailability is not impacted by this

http://www.swissadme.ch/
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protein. Finally, PAINS test has revealed four compounds presenting one alert in their structure due to the
presence of the catechol group which can result in non-specific binding with various target proteins.

Molecular dynamics simulations and binding free energy
In the molecular docking study, the protein structure was treated as rigid. To gain deeper insights into the
protein-ligand interactions, molecular dynamics simulations were performed on the docked complexes in
a water environment for 100 ns. The root-mean square deviation (RMSD) was measured relative to the
OmpW structure bound to the selected candidates. Figure 4A illustrates the protein RMSD values for the
top four complexes, showing a consistently stable RMSD of 0.3 nm during most of the simulation, except
for Amb22174074, which displayed higher fluctuations exceeding 0.3 nm in the last 20 ns. The analysis
of the ligand RMSD showed values between 0.1 and 0.25 nm for most ligands, suggesting minor
conformational changes during the simulation. However, the ligand Amb8399162 deviated from this
trend, with an RMSD of 0.35 nm, suggesting a more significant conformational change (Figure 4B). In
Figure 4C, the graph illustrates the variations observed in each amino acid. Notably, the N-terminal region
exhibited the highest fluctuations, which is a common characteristic. For all other residues, minor
fluctuations of approximately 0.1 nm were observed, except for Amb8399162, which displayed
fluctuations higher than 0.2 nm in certain regions of the periplasm. Finally, hydrogen bonds within a
proximity of 0.35 nm were documented. Figure 4D depicts the hydrogen bonds observed at 100 ns, with
Amb2698241 forming four hydrogen bonds, highlighting its stable and consistent binding to the protein.
The average free binding energy of the selected complexes was determined using the g_mmpbsa
package [17]. 

The binding energy was computed by combining the scores of Van der Waals energy, electrostatic energy,
polar solvation, and SASA energy as presented in Table 4. The highest binding energy was observed in
Amb2698241 (-45.23 kJ/mol) suggesting a strong binding to the target protein.

Antibacterial activity
The best compound exhibiting the lowest docking score as well as favourable ADME properties was
demethoxycurcumin (Amb2698241). The MIC was then assessed using microdilution assays against
different reference A. baumannii ATCC 17978 strain, its isogenic mutant deficient in OmpW, and colistin-
resistant A. baumannii clinical isolates. Demethoxycurcumin inhibited bacterial growth at a concentration
of 64 µg/mL for all the studied strains (Table 4). 

Colistin potentiation is critical for safeguarding this last resort antibiotic as it is often our only treatment
option against highly resistant Gram-negative pathogens. We examined whether demethoxycurcumin can
sensitize colistin-resistant clinical strain CR17. Chequerboard assay showed that demethoxycurcumin at
>=1 mg/L demonstrated synergy with colistin against CR17 strain. Demethoxycurcumin >= 8 mg/L in
combination with colistin increased the activity of colistin against CR17 strain, with a fractional inhibitory
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concentration index (FICI) of <0.2 (Figure 5A). In addition, the combination between 16 mg/L
demethoxycurcumin and 1 mg/L colistin exhibited a synergistic effect during 2 and 4 h, reducing
significantly the bacterial growth compared with colistin demethoxycurcumin alone (Figure 5B).

Using bacterial growth assays, we examined the antibacterial activity of demethoxycurcumin
against ATCC 17978 and ΔOmpW strains. Figure 5C reveals that A. baumannii ATCC 17978exhibits rapid
growth, reaching 0.5 OD within the first 4 h. However, a noticeable disparity in growth is observed between
the control sample and the samples treated with demethoxycurcumin, particularly at higher compound
concentrations (2xMIC and 4xMIC). A similar trend of growth inhibition is observed in the ΔOmpW strain,
although it demonstrates a higher OD value compared to A. baumannii ATCC 17978 in presence of
demethoxycurcumin treatment.This disparity in growth can be attributed to the resistance of the mutant
strain to the compound, as the absence of OmpW may hinder the compound's ability to exert its effect, as
indicated by the findings of the molecular docking study. 

In addition, and to evaluate the effect of demethoxycurcuminon A. baumannii interaction with host cells,
we studied the adherence of ATCC 17978 and ΔOmpW strains to HeLa cells for 2 h in the presence
of demethoxycurcumin. Treatment with demethoxycurcumin at 1xMIC reduced the adherence of ATCC
17978 and ΔOmpW strains to HeLa cells by 36% and 16%, respectively (Figure 5D).

DISCUSSION
In this study, we present a multi-stage approach for screening bioactive compounds from extensive
databases. This approach combines data-driven QSAR models and structure-based virtual screening
methods for drug discovery. Our classification models demonstrated strong performance in
distinguishing between active and inactive compounds, achieving AUC values ranging from 0.85 to 0.96
for the testing set and 0.84 to 0.96 for the validation set. The results of molecular docking indicated
binding affinities spanning from − 5.4 to -7.8 kcal/mol. Notably, the top-scoring compounds belong to the
curcuminoid chemical class, recognized for their antibacterial activities [18, 19].

Analysis of molecular interactions revealed a consistent hydrogen bond formation with GLN-23 in most
of the compounds under study. Additional hydrophobic interactions involved the amino acids: PHE-59,
HIS-101, ASN-144, and GLN-146. Molecular dynamics analysis of the first four complexes displayed
remarkable stability throughout the simulation, except for the tricyclic compound Amb22174074, which
exhibited some deviations, leading to an RMSD of 0.3 nm. This observation could be attributed to the
inherent limited flexibility of this compound, prompting conformational changes in the protein.

Furthermore, our investigation identified van der Waals energy as the primary contributor to the stability
of the complexes, as determined by the MMPBSA method. To validate our in-silico results, we assessed a
lead candidate, demethoxycurcumin, for its in vitro activity in monotherapy and in combination with
colistin against an extensive range of A. baumannii strains, including colistin-resistant strains. This lead
candidate presents an antibacterial activity as showed by microdilution and time-kill curve assays.
Notably, a reduction in compound activity against OmpW-deficient mutant has been observed in the time-
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kill curve assay. Li et al. showed that demethoxucurcumin present antibacterial activity in monotherapy
and combination with gentamicin against another pathogen, the methicillin-resistance Staphylococcus
aureus [20]

Our findings suggest the crucial role of the OmpW in facilitating the compound's activity. Previous studies
reported the binding of colistin and tamoxifen metabolites to OmpW [21, 22].

Bacterial adhesion to and invasion into host cells are important steps in causing A. baumannii infection
[23]. It is well-known that OmpW plays a key role in host-pathogen interactions. Deletion of OmpW
reduced A. baumannii’s adherence and invasion into host cells, as well as its cytotoxicity [8]. Similarly, in
the absence of OprG, which is homologous to OmpW in P. aeruginosa, this pathogen was significantly
less cytotoxic against human bronchial epithelial cells [24]. OmpW is essential for A. baumannii to
disseminate between organs and to cause the death of mice, as observed for other pathogens such as
Vibrio cholerae [25]. Motley et al. reported an increase in OmpW expression during E. coli infection in a
murine granulomatous pouch model [26], and OmpW has been shown to protect E. coli against host
responses, conferring resistance to complement-mediated killing and phagocytosis [27, 28]. All these
previous studies indicated that OmpW could be a potential drug target in GNB to develop new treatments.
However, no data have been reported on the effect of natural products on host-A. baumannii interactions.
To our knowledge, this study provides the first evidence for the effect of demethoxycurcumin in reducing
A. baumannii’s adherence to host cells. Moreover, this effect is consistent with time-kill curve data.
Further studies are needed, such as animal infection models, to validate the potential use of
demethoxycurcumin as monotherapy and in combination with antibiotics used in clinical settings.

In summary, this study demonstrated a multi-step computational and experimental approach to identify
natural products as potential therapeutics targeting the OmpW protein of A. baumannii.
Demethoxycurcumin was validated as an active lead compound both in vitro and in reducing bacterial
interaction with host cells. Further investigations are necessary, such as testing in animal models of
infection, to validate the therapeutic potential of targeting OmpW by demethoxycurcumin and related
natural products.

MATERIALS AND METHODS

QSAR modeling
A bioactivity dataset from the ChEMBL database, which comprised the chemical structures of 11,014
compounds along with their reported MIC values against A. baumannii was acquired [29]. To ensure the
reliability of the data, the dataset by only keeping those with MIC values of the same unit (mg/L) was
carefully curated. For duplicate compounds with multiple reported activities, a mean value was calculated
and only one entry was kept in the study using the Pandas library in Python [30]. The processed dataset
consisted of 3,196 compounds. To classify the compounds, molecules with reported MIC values < 32
were labelled as active while molecules with MIC > 64 were labelled as inactive. This resulted in 1,310
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active compounds and 816 inactive compounds. For further analysis, the RDKit cheminformatics suite to
generate 2,048 bits of molecular descriptors using Morgan fingerprints [31]. These descriptors were
derived from the compounds' SMILES representation and were based on the widely used extended-
connectivity fingerprints (ECFP4) [32]. To train and evaluate our QSAR models, the datasets were
partitioned using a 3:1:1 ratio for train/test/validation, as shown in Fig. 6.

To evaluate the performance of the machine learning and deep learning models, several statistical
metrics described previously were employed [33]. These metrics encompassed the calculation of
sensitivity (Eq. 1), specificity (Eq. 2), predictive positive value (Eq. 3), predictive negative value (Eq. 4),
accuracy (Eq. 5), and Matthews’ correlation coefficient (Eq. 6). The equations used for computing these
metrics were as follows:

 (1)  (2)

 (3)  (4)

 (5)  (6)

Protein structure preparation
As the full three-dimensional structure of none of the proteins was available in the Protein Data Bank
(PDB), the homology model of OmpW was downloaded from AlphaFold (Uniprot ID: A0A335FU53) [34].
The online server GalaxyRefine (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) was used to
refine and improve the quality of three-dimensional protein models [35]. The platform employs a multi-
step approach that involves side chain rebuilding, side-chain repacking, and molecular dynamics
simulation to achieve overall structure relaxation. Subsequently, PROCHECK algorithm was employed
through SAVES webserver (https://saves.mbi.ucla.edu/) [36] to generate Ramachandran plots, while
ProSA-web was used to assess model accuracy and statistical significance using a knowledge-based
potential [37].

Binding site detection
The plausible binding pockets for the selected OmpW protein structure was predicted using PrankWeb
ligand binding site prediction webserver (https://prankweb.cz/) [38, 39]. Figure S1 depicts the 3D
structure of OmpW with their predicted binding pockets shown as residues with different colours. The
predicted binding pockets scores, grid coordinates and residue IDs are shown in Table S1.

Structure-based virtual screening
The natural compounds were retrieved from Ambinter natural compounds library
(https://www.ambinter.com/). 11,648 compounds were evaluated for their druglikeness by computing
their physicochemical properties such as molecular weight, LogP, number of hydrogen bond

SE = TP

(TP+FN)
SP = TN

(FP+TN)

Q+ = TP

(TP+FP )
Q− = TN

(TN+FN)

ACC =
(TP+TN)

(P+N)
MCC =

(TP×TN)–(FP×FN)

√(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)
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donors/acceptors and the number of rotatable bonds. According to Lipinski’s rule of five only 6,151
compounds were retained for further analysis [40]. Structure-based virtual screening was performed using
AutoDock Vina with a Perl script to automate the molecular docking process as published in our previous
study [41, 42]. The 3D structure of OmpW were optimized using AutoDockTools by adding polar
hydrogens and computing Kollman charges [43]. The grid box was centred around the coordinates
provided by PrankWeb for the best-scoring pockets. The pocket (2) located near the periplasmic of the β-
barrel structure was selected for molecular docking as mentioned in the literature [44].

Molecular dynamics simulations and binding free energy
calculation
Molecular dynamics simulations were performed using GROMACS (version 2019.3) [45] to evaluate the
stability of selected candidates in complex with OmpW. The CHARMM36 force field generated the protein
topology file, while the CGENFF server assigned parameters to ligands [46]. TIP3P water model solvated
the protein-ligand systems in a cubic box, with Na + and Cl − ions added for charge neutrality. To optimize
the energy, the steepest descent technique was employed, setting Fmax not to exceed 1000 kJ/mol/nm.
Subsequently, two consecutive 1 ns simulations using canonical NVT, and isobaric NPT ensembles were
performed to equilibrate the systems at 300 Kelvin and 1 bar pressure. All simulations were conducted
under periodic boundary conditions (PBC), and long-range electrostatic interactions were handled using
the particle mesh Ewald method [47]. For data collection, 100 ns molecular dynamics simulations were
conducted [48, 49]. To analyse the dynamic behaviour of the selected complexes, various geometric
properties such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and
hydrogen bonds were calculated using GROMACS package.

The binding free energies of the screened complexes were calculated using the Molecular Mechanics
Poisson–Boltzmann Surface Area (MM-PBSA) method [50]. The binding free energy (ΔEbinding) is
determined using the following equations:

1

Equation (1) is the total MMPBSA energy of the protein-ligand complex, where EOmpW and Einhibitor are the
isolated proteins and ligands’ total free energies in solution, respectively.

2

Equation (2) defines the generalized MMPBSA as the sum of four energies: electrostatic (ΔGelec), van der
Waals (ΔGvdw), polar (ΔGsolv), and SASA (ΔGsasa).

Antibacterial activity assays

ΔEbinding = Ecomplex − (Einhibitor + EOmpW )

ΔGbinding = ΔGvdW + ΔGelec + ΔGsolv + ΔGsasa
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Microdilution assay. The MIC of demethoxycurcumin was determined against ATCC 17978 strain and
isogenic mutant deficient in OmpW and seven colistin-resistant A. baumannii clinical strains 24 clinical
strains in two independent experiments using the broth microdilution method, in accordance with the
standard guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [51]. A
5x105 CFU/mL inoculum of each strain was cultured in Luria Bertani (LB) and added to U bottom
microtiter plates (Deltlab, Spain) containing demethoxycurcumin. The plates were incubated for 18 h at
37 ºC.

Bacterial growth curve assay. To determine the antibacterial activity, bacterial growth curves of the ATCC
17978 strain and its isogenic deficient in OmpW (ΔOmpW), and CR17 strain were performed in duplicate
in 96-well plate (Deltlab, Spain). An initial inoculum of 5x105 cfu/mL was prepared in LB in the presence
of 1xMIC, 2xMIC, and 4xMIC of demethoxycurcumin. A drug-free broth was evaluated in parallel as a
control. Plates were incubated at 37ºC with shaking, and bacterial growth was monitored during 24 h
using a microtiter plate reader (Tecan Spark, Austria).

Checkerboard assay. The assay was performed on a 96-well plate as previously described [52]. Colistin
was 2-fold serially diluted along the x axis, whereas demethoxycurcumin was 2-fold serially diluted along
the y axis to create a matrix, where each well consists of a combination of both agents at different
concentrations. Bacterial cultures grown overnight were then diluted in saline to 0.5 McFarland turbidity,
followed by 1:50 further dilution LB and inoculation on each well to achieve a final concentration of
approximately 5.5x105 cfu/mL. The 96-well plates were then incubated at 37°C for 18 h and examined for
visible turbidity. The fractional inhibitory concentration (FIC) of the colistin was calculated by dividing the
MIC of colistin in the presence of demethoxycurcumin by the MIC of colistin alone. Similarly, the FIC of
demethoxycurcumin was calculated by dividing the MIC of demethoxycurcumin in the presence of
colistin by the MIC of rafoxanide alone. The FIC index was the summation of both FIC values. FIC index
values of ≤ 0.5 were interpreted as synergistic.

Human cell culture
HeLa cells was grown in 24-well plates in DMEM supplemented with 10% heat-inactivated fetal bovine
serum (FBS), vancomycin (50 mg/L), gentamicin (20 mg/L), amphotericin B (0.25 mg/L) (Invitrogen,
Spain), and 1% HEPES in a humidified incubator with 5% CO2 at 37°C. HeLa cells were routinely passaged
every 3 or 4 days. Immediately before infection, HeLa cells were washed three times with prewarmed PBS
and further incubated in DMEM without FBS and antibiotics [53].

Adhesion assay
HeLa cells were infected with 1×108 CFU/ml of A. baumannii ATCC 17978 and ΔOmpW strains in
absence and presence of 1xMIC of demethoxycurcumin at a multiplicity of infection (MOI) of 100 for 2 h
with 5% CO2 at 37°C. Subsequently, infected HeLa cells were washed five times with prewarmed PBS and
lysed with 0.5% Triton X-100. Diluted lysates were plated onto LB agar (Merck, Spain) and incubated at
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37°C for 24 h for enumeration of developed colonies and then the determination of the number of
bacteria that attached to HeLa cells [8].

Statistical Analysis
Group data are presented as means ± standard errors of the means (SEM). The student t-test was used to
determine differences between means using GraphPad Prism 9. A p-value < 0.05 was considered
significant.
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Tables
Table 1. Performance metrics of the generated classification models on the testing and validation sets.

Dataset Model SE SP Q+ Q- ACC MCC

Testing set Random Forest 0.89 0.92 0.88 0.94 0.91 0.82

Support Vector Machine 0.88 0.91 0.85 0.93 0.90 0.78

K-Nearest Neighbors 0.88 0.93 0.88 0.92 0.91 0.80

Naive Bayes 0.58 0.96 0.96 0.56 0.72 0.53

Convolutional Neural Network 0.83 0.96 0.95 0.88 0.90 0.81

Validation set Random Forest 0.86 0.91 0.86 0.91 0.89 0.77

Support Vector Machine 0.81 0.91 0.86 0.87 0.87 0.72

K-Nearest Neighbors 0.79 0.96 0.94 0.85 0.88 0.77

Naive Bayes 0.53 0.93 0.94 0.49 0.66 0.45

Convolutional Neural Network 0.81 0.97 0.96 0.86 0.90 0.80

SE: Sensitivity (true positive rate); SP: Specificity (false positive rate); Q+: positive predictive value; Q-:
negative predictive value; ACC: Accuracy; MCC: Matthews’ correlation coefficient.

Table 2. Structure-based virtual screening results of the selected natural compounds against OmpW
of A. baumannii.
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Compound Binding
score
(kcal/mol)

Hydrogen bonds Hydrophobic interactions

Amb22174074 -7.8 GLN-23, SER-193, LYS-195 PHE-59, HIS-101, ASN-144, GLN-
146, LYS-195

Amb8401505 -7.7 GLN-23, PHE-102, ASN-104,
ASN-144, TRP-153, SER-193

PHE-59, HIS-101, LYS-103, ASN-
144, LYS-195

Amb2698241 -7.5 GLN-23, HIS-101, SER-193,
LYS-195

PHE-59, THR-109, ASN-144, GLN-
146, LYS-195

Amb8399162 -7.4 GLN-23, ASN-104, SER-193,
LYS-195

PHE-59, LYS-103, THR-109, ASN-
144, LYS-195

Amb8401506 -7.4 PHE-102, ASN-104, GLN-146,
LYS-195

PHE-59, HIS-101, LYS-103, LYS-
195

Amb22172936 -7.4 GLN-23, ARG-107, THR-109,
TRP-153, LYS-195

HIS-101, LYS-103, THR-109, ASN-
144, GLN-146, LYS-195

Amb22173712 -7.4 GLN-23, THR-109, SER-193,
LYS-195

PHE-59, HIS-101, LYS-103, THR-
109, ASN-144, GLN-146, LYS-195

Amb10550080 -7.3 GLN-23, ASN-104, THR-109,
ASN-152, SER-193

PHE-59, HIS-101, LYS-195

Amb23604248 -7.2 ASN-104, THR-109, ASN-144,
GLN-146, SER-193

PHE-59, LYS-103, THR-109

Amb23604228 -7.0 GLN-23, ASN-104, ASN-144,
SER-193, LYS-195

GLN-23, ASN-104, ASN-144, SER-
193, LYS-195

 

Table 3. ADME properties prediction results for the selected compounds.
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Compound LogPo/w LogS GI absorption BBB P-gp substrate PAINS

Amb22174074 4.14 -4.88 High Yes No 0 alert

Amb8401505 2.77 -3.73 High No No Catechol_A

Amb2698241 3.00 -3.92 High No No 0 alert

Amb8399162 3.48 -4.01 High Yes No 0 alert

Amb8401506 3.16 -3.87 High Yes No Catechol_A

Amb22172936 3.03 -4.17 High Yes No 0 alert

Amb22173712 3.55 -4.02 High Yes No 0 alert

Amb10550080 2.16 -3.11 High No No Catechol_A

Amb23604248 2.11 -3.11 High No No Catechol_A

Amb23604228 2.86 -3.39 High Yes No 0 alert

 

Table 4. List of average and standard deviations of all energetic components including the binding
energy taken from MM-PBSA analysis.

Complex MMPBSA (kJ/mol)

ΔGbind ΔGvdW ΔGelec ΔGsolv ΔGsasa

Amb22174074 -35.03±20.08 -118.74±16.41 -45.52±24.70 144.30±33.25 -15.10±1.63

Amb8401505 -41.92±17.02 -122.42±15.16 -42.96±15.32 139.20±22.25 -15.74±1.58

Amb2698241 -45.23±17.96 -115.48±18.37 -37.25±11.57 122.31±23.21 -14.81±1.54

Amb8399162 -39.11±16.56 -143.59±18.84 -35.11±16.60 156.61±30.64 -17.01±1.94

ΔGbind: Binding energy; ΔGvdW : van der Waals energy; ΔGelec: Electrostatic energy; ΔGsolv: Polar solvation
energy; ΔGsasa: Solvent accessible surface area energy.

Table 4. MIC results for the studied compounds against different wild type, colistin-resistant and OmpW-
deficient A. baumannii.
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A. baumannii strain  MIC (mg/L)

Colistin Demethoxycurcumin

ATCC 17978 0.25 64

ATCC17978 ΔOmpW 0.25 64

Ab11 256 64

Ab20 64 64

Ab21 128 64

Ab22 128 64

Ab99 64 64

Ab113 256 64

CR17 32 64

Figures

Figure 1

ROC curves and AUC values depict the performance of the generated QSAR classification models on the
testing and validation sets.
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Figure 2

PROCHECK tool was used to create Ramachandran plots for OmpW (A). Additionally, the overall model
quality for OmpW was assessed using PROSA-web, revealing a Z-Score of -4.95 (B). Chemical structures
of the top ten highest-scoring compounds against OmpW (C).
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Figure 3

Binding conformations of the top four highest-ranking natural products: Amb22174074 (A), Amb8401505
(B), Amb2698241 (C), and Amb8399162 (D) in complex with OmpW’s periplasmic region.
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Figure 4

Molecular dynamics simulations analysis through Protein RMSD (A), Ligand RMSD, (B), RMSF (C) and
hydrogen bonds at 100 ns (D).
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Figure 5

In vitro antibacterial activity of demethoxycurcumin. Representative heat plots of microdilution
checkerboard assay for the combination of colistin and demethoxycurcumin against colistin-resistant A.
baumannii CR17 strain (A). Bacterial growth for colistin and demethoxycurcumin monotherapy and
combination therapy against colistin-resistant A. baumannii CR17 strain during 24 h incubation. The
concentrations of colistin and demethoxycurcumin are 1 and 16 mg/L, respectively, *P<0.05: treatment vs
no treatment, #P<0.05: colistin vs demethoxycurcumin, †P<0.05: colistin vs demethoxycurcumin plus
colistin (B), Bacterial growth curve plots of A. baumannii ATCC 17978 and A. baumannii ΔOmpW (C) in
the absence and presence of demethoxycurcumin treatment at different concentrations. Analysis of A.
baumannii ATCC 17978 and ΔOmpW adhesion to HELA host cells with and without demethoxycurcumin
treatment, *P<0.05: treatment vs no treatment (D).
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Figure 6

QSAR modeling workflow to predict novel compounds against A. baumannii.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SUPPLEMENTALDATA.docx

https://assets.researchsquare.com/files/rs-3664762/v1/8684a7210efb82957f2f199f.docx

