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Abstract

Background
Amyotrophic lateral sclerosis (ALS) is a fatal and fast progressive motoneuron degenerative disorder.
There are still no drugs capable to slower disease evolution or to improve life quality of ALS patients. In
that scenario, the cell therapy has emerged as an alternative to be investigated in clinical ALS.

Method
Taking the advantage of Proteomics and Protein-Protein Interaction Network analyses combined to
bioinformatics, possible cellular mechanisms and molecular targets related to mesenchymal stem cells
(MSC, 1x106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal
�uid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSC
thirty days after cell therapy.

Results
Proteomics showed 220 deregulated proteins in CSF of ALS subjects. Bioinformatic enriched analyses
evidenced APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG, as highlighted targets as well as
extracellular matrix and cell adhesion molecules as possible mechanisms related to the presence of MSC
in CSF of ALS subjects.

Conclusions
We have demonstrated a possible role of extracellular matrix/cell adhesion molecules and their related
highlighted targets to the presence of autologous MSC in CSF ALS patients.

Trial Registration:
Clinicaltrial.gov identi�er NCT0291768. Registered 28 September 2016.

Background
Mesenchymal stem cells (MSC) have been tested clinically for amyotrophic lateral sclerosis (ALS), a fatal
motor neurodegenerative disease (1, 2). Indeed, indications of MSC-induced motor neuron protection
experimentally (3, 4) as well as clinically (5–10) in ALS have been obtained.

Recent reports have shown that the ability of MSC to induce neuroprotection and repair events (11, 12) in
neurodegenerative disorders may involve their paracrine ability to interact with diseased milieu (13, 14),
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thus further indicating the importance of extracellular matrix (ECM) in local MSC effects (15). Indeed,
MSC are able to detect and to react to speci�c local molecular signs (16, 17) that in turn may produce
and secrete soluble bioactive molecules and extracellular vesicles (13, 18) with potential impact to
neurodegenerative processes.

Studies have explored the regulation of ECM proteins and cell adhesion molecules in the search for
speci�c molecular targets of cellular events related to neurodegeneration (19), neurodegenerative
disorders (20, 21) and neuroprotection (20), however it is still lacking information on speci�c molecular
responses and related possible mechanisms of MSC in neurodegeneration experimentally or clinically
(22, 23).

Therefore, this study used a large Proteomic analysis in combination to Protein interaction network and
molecular modeling to obtain further indications on cellular mechanisms and related molecular targets in
the CSF of ALS subjects thirty days after an intrathecal deliver of autologous bone marrow-derived MSC.

MSC bene�ts for ALS are tested due to its potential ability to trigger motor neuron protective events (24,
25), which might be mediated by MSC paracrine mechanisms involving speci�c molecules, a matter that
deserve further investigation (25, 26).

Methods

ALS Subjects, MSC Infusion and CSF Withdrawn
This study is a subproject of a Phase I/II Clinical Trial (www.clinicaltrials.gov; NCT02917681) that tested
safety and preliminary effects of intrathecal (subarachnoid space of lumbar vertebrae, L3-L5) autologous
bone marrow-derived mesenchymal stem cell (MSC) infusion (106 cells/kg− 1 body weight) that was
conducted (2016–2019) at Neurology Division of Clinics Hospital of Medical School of University of Sao
Paulo, Brazil. Study was approved by local Ethics Committee. Patients were clinically evaluated to
inclusion/exclusion criteria and had their ALS diagnosis rechecked. Once included, ALS subjects signed
informed consent. Subjects were accompanied monthly for three and seven months, respectively, before
and after cell infusion. After bone marrow aspiration of ALS subjects, MSCs were individually isolated
and expanded at Core for Cell Technology, Ponti�cal Catholic of University of Parana, Brazil, according
previous description (27). CSF (10 ml) was collected from subarachnoid lumbar space of ALS subjects
immediately before MSC infusion and also 30 days later. The �rst 5 ml were delivered for standard
clinical laboratory tests, including bacteriological and biochemical analyses, and next 5 ml were used for
molecular analysis of this study. CSF samples were centrifuged at 1,000 × g for 10 minutes at 4 ºC,
aliquoted (1 ml) into polypropylene cryogenic tubes and stored at -80°C until further analyses. All
samples were processed within 30 minutes of collection.

Proteomics

http://www.clinicaltrials.gov/
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Mass spectrometry-based proteomic analysis of CSF from ALS subjects. CSF (1 ml) of ALS subjects were
�ltered using ultracentrifugation devices with a molecular cut-off of 10 kDa. Proteins in retentate were
reduced by addition of dithiothreitol to a �nal concentration of 10 mM, alkylated with iodoacetamide
(�nal concentration of 40 mM) and digested with trypsin (1:50 enzyme to protein ratio). Reaction was
stopped (1% tri�uoroacetic acid), resulting peptides were puri�ed (primed Oligo R3 reversed phase SPE
micro-column) and dried (28). Samples were then veri�ed by a nLC-MS/MS analysis using an analytical
platform, notably the nano�ow liquid chromatography with linear trap quadrupole (LTQ) Orbitrap mass
spectrometers. Peptides were separated by nano ultra-high performance liquid chromatography tandem
mass spectrometry (nUHPLC LC-MS/MS) according previous description (29).

Deregulated proteins using LTQ Orbitrap. Proteins that were identi�ed to be deregulated in CSF of ALS
subjects 30 days after MSC infusion in comparison to CSF of same subjects before cell delivery were
selected and their proteotypic peptides mapped in PeptideAtlas database. Selected m/z values were
monitored across all gradient and their MS/MS spectra were recorded in order to perform a database
search using MaxQuant software (30). Speci�cally, http://www.mcponline.org/ downloaded from 17
engine Andromeda (31) was used to search for MS/MS spectra against a database composed by Uniprot
Human Protein Database (32) with a 4.5ppm tolerance level for MS, and 20ppm for MS/MS. Furthermore,
ceruloplasmin and reelin proteins, were selected as internal control. Proteins detected in seven out of
eight samples with their peptides identi�ed by at least 6 samples with MS/MS spectral search were
considered for further analyses. At the end, label free quanti�cation normalized values were used.
Bioinformatics and statistical details are described below.

Statistical Analysis. All datasets were tested for normal distribution before applying parametric tests.
Proteomic data were processed using Perseus computational platform v.1.6.14.0 (https://cox-
labs.github.io/coxdocs/). Label Free Quantitation (LFQ) data were log2-transformed, protein reverse,
contaminants and only by site were removed. Imputation was performed by replace missing values from
normal distribution with a width of 0.3 and down shift of 1.8. Statistical analysis of LFQ data employing
the paired t-test and Benjamini-Hochberg correction, FDR < 0.05, p ≤ 0.05 (Graphpad Prism) identi�ed
deregulated proteins in CSF of ALS subjects 30 days after MSC infusion compared to CSF of subjects
before cells.

Protein-Protein Interaction Network
Interactions among proteomic deregulated proteins in Network were evaluated using Cytoscape
GeneMANIA plug-in (version 3.8.2), by highlighting “path” and “physical” interactions (33). Subsequently,
Network nodes were obtained using the centrality parameters “degree” and “betweenness” (Cytoscape
CentiScaPe plug-in). Node degree is a measure of local structure in networks that determines the number
of edges at each node, and betweenness is a global structure measure in networks that identify the
number of shortest paths that pass through a speci�c node when directly or indirectly connecting pairs of
nodes (34). Furthermore, it was created a set of top 15 proteins with the highest betweenness and degree
values. After elimination of repetitions, a set high representative molecules in Network was created based
on 220 deregulated proteins.
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Bioinformatics
In order to evaluate possible mechanisms, and their related molecular targets, to the presence of MSC
delivered in CSF of ALS subjects, deregulated proteins described by Proteomics were submitted to
cellular/molecular functional enrichments by employing speci�c bioinformatics tools described below.

Functional Enrichment Analysis. Deregulated proteins pointed by proteomic study were analyzed by
means of Database for Integrated Annotation, Visualization and Discovery (DAVID,
https://david.ncifcrf.gov) that identi�ed pathways (KEGG - Kyoto Encyclopedia of Genes and Genomes)
and Gene Ontology categories (Biological Process, Cellular component and Molecular Function) based on
their speci�c set of deregulated proteins (35, 36), according to speci�c levels of signi�cance for KEGG
and Gene Ontology (0.00001 ≤ p ≥ 0.01, see legend of Table 2).

REVIGO. In order to further highlight cellular and molecular mechanisms among described enriched
DAVID categories, REVIGO (http://revigo.irb.hr) was applied (37) to group such categories in
Superclusters, based on distribution of the SimRel semantic similarity measure (default in REVIGO).
REVIGO summarizes long Gene Ontology categories (Biological Process, Cellular Component and
Molecular function) by reducing functional redundancies, and also visualizes the remaining Gene
Ontology categories.

Highlighted Deregulated Proteins in CSF. Proteins of REVIGO Gene Ontology Superclusters were identi�ed.
Following, intersections of sets of proteins of Superclusters identi�ed common molecules by means of
Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/). Intersections among Superclusters
were considered for Biological Process (up to 3), Cellular Component (up to 4), and Molecular Function
(up to 2), to reach a maximal 27 molecules of each intersection. Thus, three Supercluster sets of
overlapped proteins of Biological Process, Cellular Component, and Molecular Function were created.
Subsequently, intersections of these 3 Supercluster sets and the Set of high representative molecules in
the Network identi�ed common molecules in the sets, considering their presence in at least 3 sets as well
as a presence of a minimal of 1 molecule from Network set. Following these criteria, Highlighted
molecules with 100% representation (presented in the 4 sets) and 75% representation (presented in 3
sets) were identi�ed. Indeed, the nine �nal molecules with the greatest intersections were considered as
possibly more prominent molecular targets and related molecular/cellular mechanisms related to the
presence of MSC in CSF of ALS subjects.

Extracellular Matrix and Cell Adhesion Molecules MeSH. Based on the fact that biological/molecular
aspects of “Extracellular Matrix” and “Cell Adhesion Molecules” have been well described in biological
events related to MSC function in injured tissues, the Medical Subject Headings (MeSH) “Matrix
extracellular” and “Cell Adhesion Molecules” were used to point out their related categories among all
described KEGG, Biological Process, Cellular Component, and Molecular Function categories, whose
terms indicated similarity to above MeSH terms. Proteins of those “Matrix extracellular” and “Cell
Adhesion Molecules” MeSH-related categories were indicated (symbols) in the list of 220 proteomic



Page 7/37

identi�ed deregulated proteins (* for “Extracellular Matrix” and # for “Cell Adhesion Molecules”; see
results). Subsequently, the number of molecules belonging to those categories were de�ned and
corresponded percentages of total number of deregulated proteins were calculated.

Results

Demographic Information of ALS Subjects
Demographic Information of 24 ALS subjects included in the study are summarized in Table S1. Subjects
were Caucasian (14 males and 10 females), who showed clinical history of spinal (n = 19) and bulbar (n 
= 5) disease onset. The averages of patient age at the time of disease onset and of disease evolution
until the �rst CSF collection were 52.12 years and 53.21 months, respectively.

Deregulated Proteins in CSF of ALS Subjects
Mass spectrometry-based proteomics identi�ed two hundred-twenty deregulated proteins [n = 86 (fold > 
1.0) upregulated and n = 134 (fold < 1.0) downregulated] in the CSF of ALS subjects 30 days after MSC
intrathecal infusion compared to CSF of subjects collected before cells (Table 1). Deregulated proteins
were statistically signi�cant with a q-value of less than 0.1 (Table 1).
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Table 1
Deregulated proteins in CSF of ALS subjects 30 days after MSC infusion

Protein Name Symbol Fold q-
values

Alpha-2-macroglobulin A2M * 1.07 0.06

Actin, alpha cardiac muscle 1 ACTC1 * 1.33 0.08

Actin, cytoplasmic 2 ACTG1 * 1.25 0.08

Agrin AGRN * 0.91 0.03

Alpha-2-HS-glycoprotein AHSG * 1.08 0.09

CD166 antigen ALCAM *# 0.87 0.08

Fructose-bisphosphate aldolase C ALDOC * 0.89 0.03

Protein AMBP AMBP *# 1.12 0.03

Angiogenin ANG * 0.89 0.03

Amyloid-like protein 1 APLP1 # 0.93 0.03

Amyloid-like protein 2 APLP2 * 0.86 0.04

Apolipoprotein A-I APOA1 * 1.18 0.03

Apolipoprotein A-II APOA2 * 1.16 0.03

Apolipoprotein A-IV APOA4 * 1.12 0.08

Apolipoprotein B-100 APOB * 2.25 0.04

Apolipoprotein E APOE * 0.92 0.03

Apolipoprotein L1 APOL1 * 1.18 0.05

Apolipoprotein M APOM * 1.25 0.02

Amyloid beta A4 protein APP *# 0.82 0.02

N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 2 B3GNT2 * 0.55 0.09

Beta-1,4-glucuronyltransferase 1 B4GAT1 * 0.88 0.02

Brevican core protein BCAN # 0.86 0.01

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Complement C1q subcomponent subunit A C1QA * 1.16 0.05

Complement C1q subcomponent subunit B C1QB * 1.25 0.01

Complement C1q subcomponent subunit C C1QC * 1.22 0.03

Complement C1r subcomponent C1R * 1.16 0.03

Complement C1r subcomponent-like protein C1RL * 1.22 0.01

Complement C1s subcomponent C1S * 1.14 0.01

Complement C2 C2 * 1.08 0.07

Complement C3 C3 * 1.10 0.03

Complement C4-A C4A * 1.12 0.08

C4b-binding protein alpha chain C4BPA * 1.69 0.03

Neuropeptide-like protein C4orf48 C4orf48 * 0.90 0.05

Complement C5 C5 * 1.14 0.02

Complement component C6 C6 * 1.18 0.01

Complement component C8 alpha chain C8A * 1.10 0.03

Complement component C8 beta chain C8B * 1.12 0.03

Complement component C9 C9 * 1.10 0.08

Carbonic anhydrase 1 CA1 * 29.56 0.01

Voltage-dependent calcium channel subunit alpha-2/delta-1 CACNA2D1 * 0.91 0.02

Cell adhesion molecule 1 CADM1 *# 0.89 0.02

Cell adhesion molecule 2 CADM2 # 0.87 0.02

Cell adhesion molecule 3 CADM3 # 0.88 0.01

Calreticulin CALR * 0.92 0.03

Cerebellin-1 CBLN1 * 0.58 0.05

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Cerebellin-3 CBLN3 * 0.86 0.09

Monocyte differentiation antigen CD14 CD14 * 1.13 0.07

Complement decay-accelerating factor CD55 * 0.85 0.04

CD59 glycoprotein CD59 * 0.87 0.03

CD5 antigen-like CD5L * 1.55 0.02

Cadherin-10 CDH10 0.74 0.02

Cadherin-13 CDH13 *# 0.92 0.07

Complement factor B CFB * 1.12 0.03

Complement factor D CFD * 1.07 0.07

Complement factor H CFH * 1.10 0.03

Complement factor I CFI * 1.12 0.02

Co�lin-1 CFL1 * 0.42 0.05

Secretogranin-1 CHGB * 0.91 0.05

Chitinase-3-like protein 1 CHI3L1 * 0.84 0.03

Neural cell adhesion molecule L1-like protein CHL1 *# 0.93 0.05

Calsyntenin-1 CLSTN1 *# 0.82 0.01

Calsyntenin-3 CLSTN3 * 0.80 0.02

Beta-Ala-His dipeptidase CNDP1 * 0.93 0.08

Ciliary neurotrophic factor receptor subunit alpha CNTFR 0.83 0.03

Contactin-2 CNTN2 # 0.87 0.01

Contactin-associated protein-like 4 CNTNAP4 # 0.77 0.04

Collagen alpha-1(I) chain COL1A1 *# 1.48 0.00

Collagen alpha-2(I) chain COL1A2 * 1.53 0.00

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Collagen alpha-1(III) chain COL3A1 * 1.48 0.00

Collagen alpha-1(VI) chain COL6A1 *# 0.91 0.03

Carboxypeptidase B2 CPB2 * 1.16 0.03

Carboxypeptidase E CPE *# 0.83 0.02

Carboxypeptidase Q CPQ * 0.85 0.03

Cartilage acidic protein 1 CRTAC1 * 0.94 0.06

Cystatin-C CST3 * 0.93 0.08

Cathepsin D CTSD * 0.89 0.02

Protein CutA CUTA * 0.84 0.09

Stromal cell-derived factor 1 CXCL12 * # 1.40 0.01

C-X-C motif chemokine 16 CXCL16 * 0.84 0.03

Decorin DCN * 0.90 0.09

Delta and Notch-like epidermal growth factor-related receptor DNER 0.82 0.02

Extracellular matrix protein 1 ECM1 * 0.95 0.09

Endothelin-3 EDN3 * 0.85 0.03

Gamma-enolase ENO2 * 0.84 0.03

Ectonucleotide pyrophosphatase/ phosphodiesterase family
member 2

ENPP2 * 0.90 0.03

Ephrin type-A receptor 4 EPHA4 # 0.89 0.03

Ephrin type-A receptor 5 EPHA5 0.62 0.03

Coagulation factor XII F12 * 1.07 0.07

Prothrombin F2 * 1.11 0.01

Coagulation factor V F5 * 0.89 0.01

Protein lifeguard 2 FAIM2 0.87 0.07

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Protein FAM3C FAM3C * 0.91 0.03

Protocadherin Fat 2 FAT2 * 0.80 0.05

Fibulin-5 FBLN5 * 0.93 0.06

Fetuin-B FETUB * 1.11 0.07

Fibrinogen alpha chain FGA *# 1.35 0.01

Fibrinogen beta chain FGB *# 1.22 0.04

Fibroblast growth factor receptor 2 FGFR2 * 0.85 0.02

Fibrinogen gamma chain FGG *# 1.24 0.03

Fibroleukin FGL2 * 1.41 0.02

Folate receptor beta FOLR2 * 1.44 0.03

Follistatin-related protein 4 FSTL4 * 0.80 0.07

Plasma alpha-L-fucosidase FUCA2 0.88 0.05

Polypeptide N-acetylgalactosaminyltransferase 2 GALNT2 * 1.20 0.08

Vitamin D-binding protein GC * 1.07 0.07

Rab GDP dissociation inhibitor alpha GDI1 2.46 0.05

Glypican-1 GPC1 * 0.81 0.02

Glutamate receptor 4 GRIA4 0.86 0.07

Hyaluronan-binding protein 2 HABP2 *# 1.20 0.03

Protein HEG homolog 1 HEG1 * 0.86 0.08

Beta-hexosaminidase subunit alpha HEXA * 0.81 0.03

Haptoglobin-related protein HPR * 1.31 0.03

Histidine-rich glycoprotein HRG * 1.13 0.03

Serine protease HTRA1 HTRA1 * 0.85 0.01

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Iduronate 2-sulfatase IDS 0.83 0.03

Insulin-like growth factor II IGF2 * 0.90 0.06

Insulin-like growth factor-binding protein complex acid labile
subunit

IGFALS *# 1.17 0.05

Insulin-like growth factor-binding protein 2 IGFBP2 * 1.06 0.08

Insulin-like growth factor-binding protein 7 IGFBP7 *# 0.88 0.02

Ig alpha-1 chain C region IGHA1 * 1.09 0.03

Ig alpha-2 chain C region IGHA2 * 1.16 0.04

Ig mu chain C region IGHM * 1.57 0.01

Immunoglobulin J chain IGJ 1.28 0.04

Immunoglobulin lambda-like polypeptide 5 IGLL5 * 1.38 0.03

Inositol monophosphatase 3 IMPAD1 0.88 0.08

Inter-alpha-trypsin inhibitor heavy chain H1 ITIH1 * 1.19 0.02

Inter-alpha-trypsin inhibitor heavy chain H2 ITIH2 * 1.21 0.01

Inter-alpha-trypsin inhibitor heavy chain H4 ITIH4 * 1.14 0.01

Inter-alpha-trypsin inhibitor heavy chain H5 ITIH5 * 0.87 0.05

Kallikrein-6 KLK6 * 0.87 0.03

Kininogen-1 KNG1 * 1.07 0.09

Lysosome-associated membrane glycoprotein 2 LAMP2 * 0.83 0.09

Phosphatidylcholine-sterol acyltransferase LCAT * 0.87 0.03

Plastin-2 LCP1 * 1.27 0.01

Galectin-1 LGALS1 * 1.15 0.09

Prolow-density lipoprotein receptor-related protein 1 LRP1 0.87 0.03

Leucine-rich repeat-containing protein 4B LRRC4B # 0.91 0.07

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.



Page 14/37

Protein Name Symbol Fold q-
values

Limbic system-associated membrane protein LSAMP # 0.92 0.04

Latent-transforming growth factor beta-binding protein 2 LTBP2 * 1.13 0.04

Latent-transforming growth factor beta-binding protein 4 LTBP4 * 0.85 0.03

Lumican LUM * 1.08 0.07

Lymphatic vessel endothelial hyaluronic acid receptor 1 LYVE1 *# 0.82 0.05

Lysozyme C LYZ * 1.35 0.01

Cell surface glycoprotein MUC18 MCAM *# 0.89 0.02

Multiple epidermal growth factor-like domains protein 8 MEGF8 * 0.88 0.02

72 kDa type IV collagenase MMP2 * 1.10 0.02

Moesin MSN *# 6.99 0.02

Neural cell adhesion molecule 1 NCAM1 *# 0.94 0.05

Neurocan core protein NCAN *# 0.92 0.04

Neuronal growth regulator 1 NEGR1 *# 0.84 0.00

Protein kinase C-binding protein NELL2 NELL2 * 0.90 0.01

Neogenin NEO1 # 0.92 0.03

Neurofascin NFASC *# 0.90 0.05

Nidogen-1 NID1 * 1.23 0.01

C-type natriuretic peptide NPPC * 0.80 0.03

Neuronal pentraxin-1 NPTX1 0.84 0.03

Neuronal pentraxin receptor NPTXR 0.88 0.03

Neuronal cell adhesion molecule NRCAM *# 0.89 0.01

Neuritin NRN1 * 0.91 0.09

Neurexin-1 NRXN1 # 0.85 0.01

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Neurexin-2 NRXN2 # 0.88 0.03

Neurexin-3 NRXN3 # 0.89 0.03

Neurotrimin NTM # 0.90 0.04

Oligodendrocyte-myelin glycoprotein OMG # 0.87 0.01

Opioid-binding protein/cell adhesion molecule OPCML *# 0.87 0.04

Alpha-1-acid glycoprotein 1 ORM1 * 1.12 0.05

Protocadherin-9 PCDH9 0.83 0.02

Procollagen C-endopeptidase enhancer 1 PCOLCE * 1.06 0.06

Phosphatidylethanolamine-binding protein 1 PEBP1 * 0.90 0.03

Phosphatidylethanolamine-binding protein 4 PEBP4 * 0.90 0.04

Pro�lin-1 PFN1 * 1.61 0.03

N-acetylmuramoyl-L-alanine amidase PGLYRP2 * 1.10 0.03

Phospholipase D3 PLD3 * 0.78 0.04

Plasminogen PLG * 1.09 0.03

Plexin-B2 PLXNB2 * 0.90 0.04

Protein O-linked-mannose beta-1,2-N-
acetylglucosaminyltransferase 1

POMGNT1 0.77 0.00

Serum paraoxonase/arylesterase 1 PON1 * 1.17 0.02

Peptidyl-prolyl cis-trans isomerase A PPIA * 1.30 0.04

Lysosomal Pro-X carboxypeptidase PRCP * 0.86 0.03

Proline-rich transmembrane protein 3 PRRT3 0.90 0.07

Prosaposin PSAP * 0.94 0.07

Prostaglandin-H2 D-isomerase PTGDS * 0.92 0.05

Receptor-type tyrosine-protein phosphatase gamma PTPRG * 0.83 0.02

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Receptor-type tyrosine-protein phosphatase zeta PTPRZ1 0.90 0.03

Nectin-1 PVRL1 0.89 0.09

Dihydropteridine reductase QDPR * 0.85 0.02

Retinoic acid receptor responder protein 2 RARRES2 * 0.87 0.01

Reelin RELN *# 0.82 0.03

RGM domain family member B RGMB # 0.86 0.03

Ribonuclease pancreatic RNASE1 * 0.88 0.03

Reticulon-4 receptor RTN4R * 0.81 0.03

Reticulon-4 receptor-like 2 RTN4RL2 * 0.85 0.05

Serum amyloid A-4 protein SAA4 * 1.16 0.04

Secretogranin-2 SCG2 * 0.93 0.08

Secretogranin-3 SCG3 * 0.91 0.03

Semaphorin-7A SEMA7A * 0.83 0.03

Kallistatin SERPINA4 * 0.71 0.09

Corticosteroid-binding globulin SERPINA6 * 1.15 0.08

Antithrombin-III SERPINC1 * 1.10 0.02

Alpha-2-antiplasmin SERPINF2 * 1.12 0.02

Plasma protease C1 inhibitor SERPING1 * 1.08 0.03

Neuroserpin SERPINI1 * 0.76 0.05

Seizure protein 6 homolog SEZ6 * 0.90 0.05

Seizure 6-like protein SEZ6L 0.90 0.08

Seizure 6-like protein 2 SEZ6L2 0.89 0.03

Tyrosine-protein phosphatase non-receptor type substrate 1 SIRPA *# 0.85 0.09

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Protein Name Symbol Fold q-
values

Superoxide dismutase [Cu-Zn] SOD1 * 0.89 0.04

SPARC SPARC * 0.84 0.02

SPARC-like protein 1 SPARCL1 * 0.91 0.03

Testican-1 SPOCK1 *# 0.85 0.03

Spondin-1 SPON1 *# 0.88 0.03

Transforming growth factor-beta-induced protein ig-h3 TGFBI *# 1.20 0.01

Thy-1 membrane glycoprotein THY1 *# 0.90 0.08

Metalloproteinase inhibitor 1 TIMP1 * 1.32 0.01

Transmembrane protein 132A TMEM132A* 0.87 0.03

Tripeptidyl-peptidase 1 TPP1 * 0.76 0.01

Transthyretin TTR * 0.90 0.06

Vitronectin VTN *# 1.11 0.03

WAP four-disul�de core domain protein 1 WFDC1 * 0.84 0.09

Kunitz and NTR domain-containing protein 2 WFIKKN2 * 0.86 0.02

Two hundred-twenty deregulated proteins [n = 86 (fold > 1.0) upregulated and n = 134 (fold < 1.0)
downregulated] were identi�ed in cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis (ALS)
subjects 30 days after mesenchymal stem cell (MSC) intrathecal infusion compared to CSF of
subjects collected before cells (n = 24). Fold refers to mean of LFQ intensities of CSF 30 days after
MSC infusion by mean of LFQ intensities of CSF before infusion (n = 24). Molecules related to
Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules”, are indicated
with symbols * and #, respectively (see text for details.
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Table 2
KEGG pathways and Gene Ontology categories

K ID KEGG pathways n

K1 hsa04610 Complement and coagulation cascades 33

K2 hsa05150 Staphylococcus aureus infection 15

K3 hsa05133 Pertussis 13

K4 hsa05322 Systemic lupus erythematosus 13

K5 hsa04514 Cell adhesion molecules (CAMs) 13

K6 hsa05020 Prion diseases 10

K7 hsa04512 ECM-receptor interaction 7

BP ID Biological Process n

BP1 GO:0007155 cell adhesion 34

BP2 GO:0002576 platelet degranulation 28

BP3 GO:0010951 negative regulation of endopeptidase activity 27

BP4 GO:0006508 Proteolysis 27

BP5 GO:0045087 innate immune response 25

BP6 GO:0006958 complement activation, classical pathway 22

BP7 GO:0030198 extracellular matrix organization 19

BP8 GO:0006898 receptor-mediated endocytosis 18

BP9 GO:0030449 regulation of complement activation 15

BP10 GO:0006956 complement activation 15

BP11 GO:0044267 cellular protein metabolic process 14

BP12 GO:0007411 axon guidance 13

BP13 GO:0001523 retinoid metabolic process 11

BP14 GO:0007417 central nervous system development 11

BP15 GO:0042730 Fibrinolysis 10

KEGG pathways (K) and Gene Ontology categories by means of DAVID (Database for Annotation,
Visualisation, and Integrated Discovery) analysis based on 220 deregulated proteins identi�ed in
cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem
cell intrathecal infusion compared to CSF collected before cells. Corrected p-values for multiple tests
using Benjamin-Hochberg (FDR) method are: p < 0.01, categories of K; p < 0.00001, categories of
Biological Process (BP) and Cellular Component (CC); p < 0.0001, categories of Molecular Function
(MF). Categories of KEGG and GO strands were ranked according to their number (n) of proteins.
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K ID KEGG pathways n

BP16 GO:0042157 lipoprotein metabolic process 9

BP17 GO:0008203 cholesterol metabolic process 9

BP18 GO:0022617 extracellular matrix disassembly 9

BP19 GO:0001558 regulation of cell growth 9

BP20 GO:0006957 complement activation, alternative pathway 8

BP21 GO:0042158 lipoprotein biosynthetic process 6

BP22 GO:0034375 high-density lipoprotein particle remodeling 6

BP23 GO:0007597 blood coagulation, intrinsic pathway 6

BP24 GO:0043691 reverse cholesterol transport 6

BP25 GO:0019835 Cytolysis 6

BP26 GO:0034380 high-density lipoprotein particle assembly 5

BP27 GO:0051918 negative regulation of �brinolysis 5

CC ID Cellular Component n

CC1 GO:0070062 extracellular exosome 146

CC2 GO:0005615 extracellular space 111

CC3 GO:0005576 extracellular region 111

CC4 GO:0005886 plasma membrane 83

CC5 GO:0072562 blood microparticle 46

CC6 GO:0031012 extracellular matrix 29

CC7 GO:0009986 cell surface 26

CC8 GO:0005578 proteinaceous extracellular matrix 23

CC9 GO:0009897 external side of plasma membrane 19

CC10 GO:0031093 platelet alpha granule lumen 17

CC11 GO:0043025 neuronal cell body 17

KEGG pathways (K) and Gene Ontology categories by means of DAVID (Database for Annotation,
Visualisation, and Integrated Discovery) analysis based on 220 deregulated proteins identi�ed in
cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem
cell intrathecal infusion compared to CSF collected before cells. Corrected p-values for multiple tests
using Benjamin-Hochberg (FDR) method are: p < 0.01, categories of K; p < 0.00001, categories of
Biological Process (BP) and Cellular Component (CC); p < 0.0001, categories of Molecular Function
(MF). Categories of KEGG and GO strands were ranked according to their number (n) of proteins.
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K ID KEGG pathways n

CC12 GO:0031225 anchored component of membrane 15

CC13 GO:0043202 lysosomal lumen 13

CC14 GO:0034364 high-density lipoprotein particle 9

CC15 GO:0034361 very-low-density lipoprotein particle 7

CC16 GO:0005579 membrane attack complex 5

CC17 GO:0034366 spherical high-density lipoprotein particle 5

CC18 GO:0005577 �brinogen complex 5

MF ID Molecular Function n

MF1 GO:0005509 calcium ion binding 33

MF2 GO:0005102 receptor binding 26

MF3 GO:0004252 serine-type endopeptidase activity 23

MF4 GO:0004867 serine-type endopeptidase inhibitor activity 19

MF5 GO:0008201 heparin binding 14

MF6 GO:0050839 cell adhesion molecule binding 11

MF7 GO:0004866 endopeptidase inhibitor activity 9

MF8 GO:0005518 collagen binding 8

MF9 GO:0004869 cysteine-type endopeptidase inhibitor activity 6

MF10 GO:0017127 cholesterol transporter activity 5

MF11 GO:0005319 lipid transporter activity 5

MF12 GO:0060228 phosphatidylcholine-sterol O-acyltransferase activator activity 4

KEGG pathways (K) and Gene Ontology categories by means of DAVID (Database for Annotation,
Visualisation, and Integrated Discovery) analysis based on 220 deregulated proteins identi�ed in
cerebrospinal �uid (CSF) of amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem
cell intrathecal infusion compared to CSF collected before cells. Corrected p-values for multiple tests
using Benjamin-Hochberg (FDR) method are: p < 0.01, categories of K; p < 0.00001, categories of
Biological Process (BP) and Cellular Component (CC); p < 0.0001, categories of Molecular Function
(MF). Categories of KEGG and GO strands were ranked according to their number (n) of proteins.

Functional Enrichment Analysis
Cellular and molecular events possibly related to MSC therapy demonstrated by KEGG pathways and
Gene Ontology categories are shown in Table 2. Respective number of molecules and p-value are also
seen in Table 2. Furthermore, proteins related KEGG and Gene Ontology events are pointed in Table S2.
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Additionally, Superclusters, as well as their respective protein number, that were formed by REVIGO from
Gene Ontology categories of Biological Process, Cell Component and Molecular Function are shown in
Table 3. Figure S1 illustrates an image of a REVIGO Biological Processes cluster. Importantly, the
overlapped proteins among speci�c Gene Ontology Superclusters, according to proposed method, are
seen in Table 3, thus highlighting important proteins of DAVID enriched analysis among those
proteomics-indicated 220 deregulated molecules in CSF of ALS subjects 30 days after autologous MSC
intrathecal infusion.
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Table 3
Highly representative molecules in superclusters

Biological Process

  Superclusters N Overlapping Proteins

A Lipoprotein biosynthesis 67 A B C D E G APP

B Receptor-mediated endocytosis 48 A B D E F FGA

C Cell adhesion 34 A B F G H APOA1, APOA2, APOA4, APOE

D Innate immune response 33 B D G H I APOL1

E Extracellular matrix organization 27 A B C E VTN

F Central nervous system development 26 A B D F SERPING1

G Cholesterol metabolismo 15 A B G H APOB, LCAT

H Lipoprotein metabolismo 9 B D E F FGB

I Cytolysis 6 B F G H APOM

      A B C AMBP

      A B D CFD, CFI

      A B F HRG, PLG, SERPINF2

      A C E SPOCK1, TGFBI

      A C F RELN

      A D I C5

      A E G TTR

      B E F FGG

      B G H LRP1

      C E F NCAN

Cell Component

  Superclusters N Overlapping Proteins

REVIGO of Gene Ontology categories pointed in DAVID (Database for Annotation, Visualization, and
Integrated Discovery) analysis using the 220 deregulated proteins identi�ed in cerebrospinal �uid
(CSF) of amyotrophic lateral sclerosis (ALS) subjects 30 days after intrathecal infusion of
mesenchymal stem cells (MSC) compared to CSF collected before cells. Signi�cantly enriched (FDR < 
0.05) for Gene Ontology processes in each supercluster. Representatives are joined into superclusters
of loosely related terms, visualized with different colors (illustrated in Figure S1). Molecules
overlapping in supercluster of Biological Processes, Cell Components and Molecular Functions
categories grouped by REVIGO. N: number of molecules present in each supercluster.
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Biological Process

  Superclusters N Overlapping Proteins

A Extracellular region 111 A B C D E FGA, FGB, FGG, PLG, SPARC

B External side of plasma membrane 95 A B C D AGRN, HRG, KNG1

C Fibrinogen complex 85 A B C E AMBP, APOA1, CALR, FGFR2

D Lysosomal lumen 30 A B C F APOE, C4A, SOD1

E Cell surface 26 A B D E APP

F Neuronal cell body 17 A B E G CD55

G Anchored component of membrane 15 A C D E SERPINF2

      A C D G BCAN

      B C D G GPC1

      B E F G CNTN2, RTN4R

Molecular Function

  Superclusters N Overlapping Proteins

A Heparin binding 46 A B C F2

B Collagen Binding 38 A D E APOE

C Serine-type endopeptidase activity 23 B C D C3

D Phosphatidylcholine - sterol O -
acyltransferase activator activity

13 A B APP, ANG, HRG, KNG1, NID1,
NRXN1, PCOLCE, SPARC,
SPARCL, VTN

E Lipid transporter activity 6 AC C1S, C1R, F12, HABP2

      A E APOB

      B C PLG

      B D A2M, C5

      C D C4A

REVIGO of Gene Ontology categories pointed in DAVID (Database for Annotation, Visualization, and
Integrated Discovery) analysis using the 220 deregulated proteins identi�ed in cerebrospinal �uid
(CSF) of amyotrophic lateral sclerosis (ALS) subjects 30 days after intrathecal infusion of
mesenchymal stem cells (MSC) compared to CSF collected before cells. Signi�cantly enriched (FDR < 
0.05) for Gene Ontology processes in each supercluster. Representatives are joined into superclusters
of loosely related terms, visualized with different colors (illustrated in Figure S1). Molecules
overlapping in supercluster of Biological Processes, Cell Components and Molecular Functions
categories grouped by REVIGO. N: number of molecules present in each supercluster.
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Biological Process

  Superclusters N Overlapping Proteins

      DE APOA1, APOA2, APOA4

REVIGO of Gene Ontology categories pointed in DAVID (Database for Annotation, Visualization, and
Integrated Discovery) analysis using the 220 deregulated proteins identi�ed in cerebrospinal �uid
(CSF) of amyotrophic lateral sclerosis (ALS) subjects 30 days after intrathecal infusion of
mesenchymal stem cells (MSC) compared to CSF collected before cells. Signi�cantly enriched (FDR < 
0.05) for Gene Ontology processes in each supercluster. Representatives are joined into superclusters
of loosely related terms, visualized with different colors (illustrated in Figure S1). Molecules
overlapping in supercluster of Biological Processes, Cell Components and Molecular Functions
categories grouped by REVIGO. N: number of molecules present in each supercluster.

Protein-Protein Interaction Network
Two sets of Top 15 protein hubs in the Protein-protein Interaction Network, that were ranked according to
values of their betweenness and degree nodes in the network, are seen in Table 4. Provided elimination of
repetitions, the resulting set of twenty-four Network relevant proteins is shown in the legend of Table 4.
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Table 4
Hubs of Protein interaction network

Ranking Betweenness Degree

Molecule value Molecule value

1 APP 6.434 APP 28

2 NCAM1 2.147 PLG 21

3 C3 2.078 C3 20

4 APOA1 1.936 APOA1 18

5 FGFR2 1.641 FGA 18

6 CNTN2 1632 C1QA 17

7 PLG 1.586 C5 17

8 A2M 1.359 F2 16

9 MMP2 1.161 A2M 15

10 AGRN 1.049 ACTG1 15

11 COL1A2 980 FGB 15

12 NTM 838 FGG 15

13 ACTC1 775 C4A 14

14 LRP1 760 COL1A2 14

15 MSN 721 APOE 13

Protein Interaction Network analysis based upon 220 deregulated proteins identi�ed in cerebrospinal
�uid (CSF) of amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem cell intrathecal
infusion compared to CSF before cells indicated two sets of Top 15 hubs, which were ranked
according to values of their betweenness (physical interactions) and degree (signalling pathways) in
the Network. Provided elimination of repetitions, the resulting set of twenty-four Network relevant
proteins were: A2M, ACTC1, ACTG1, AGRN, APOA1, APOE, APP, C1QA, C3, C4A, C5, CNTN2, COL1A2,
F2, FGA, FGB, FGFR2, FGG, LRP1, MMP2, MSN, NCAM1, NTM, PLG. These proteins, which were called
as “High Representative Molecules in Network” were employed in further analyses in order to obtain
the Highlighted molecules among proteomics deregulated proteins (see below).

Molecular Representation of “Extracellular Matrix” and “Cell
Adhesion Molecules” MESHs
Two KEGG pathways (K5, K7) and eight Gene Ontology categories (PB1, PB7, PB18, CC1, CC2, CC3, CC6,
MF6) that are related to “Extracellular Matrix” or “Cell Adhesion Molecules” MeSHs were described in
Table 5. Vast majority of proteomics-indicated deregulated proteins were encountered in above described
“Extracellular Cellular Matrix” and “Cell Adhesion Molecules” -related pathways/categories (201
molecules, representing 92% of total). Speci�cally, 186 (84% of total) and 49 (22% of total) molecules
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corresponded to pathways/categories that are related to “Extracellular Cellular Matrix” and “Cell Adhesion
Molecules” MESHs, respectively (Table 5).

Table 5
DAVID representation of “Extracellular Matrix” and “Cell Adhesion Molecules” MeSH

MeSH Pathways/Categories Molecules: n (%)

Extracellular Matrix K7, PB7, PB18, CC1, CC2, CC3, CC6 186 (84)

Cell Adhesion Molecules K5, PB1, MF6 49 (22)

Extracellular Matrix + Cell Adhesion Molecules 201 (92)

DAVID Pathways/Categories, as well as the number (n) of their corresponded molecules, related to
speci�c Medical Subject Headings (MesH) “Extracellular Matrix” and “Cell Adhesion Molecules” are
shown. The number and ID of speci�c DAVID Pathways/Categories were described in Table 2.
Furthermore, percentages (%) of molecules grouped in the MeSH-related Pathways/Categories in
relation to 220 proteomics deregulated proteins are also shown. Additionally, Molecules of MeSH-
related Pathways/Categories were pointed out (# and *, “Extracellular Matrix” and “Cell Adhesion
Molecules”, respectively) in set of 220 deregulated proteins (Table 1) in cerebrospinal �uid of
amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem cell intrathecal infusion.
Abbreviation: KEGG pathways (K), Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF).

Highlighted Molecules Related to MSC Infusion
Highlighted Molecules with a high presence (100% or 75%, according to de�ned criteria described in
method) were seen in Table 6. See details also in Table 6 legend. APOA1, APOE, APP, and PLG reached
100% of representation. C4A, C5, FGA, FGB, FGG) reached 75% of representation (Table 6). Speci�cally,
APOA1, C4A, C5, FGA, FGB, FGG and PLG are upregulated and APOE and APP are downregulated, as
indicated by proteomics in CSF of ALS subjects 30 days after MSC intrathecal infusion compared to CSF
collected before cells (Table 1). All Highlighted Molecules were veri�ed to belong to pathways/categories
related to MESH “Extracellular Matrix” and “Cell Adhesion Molecules” (Table 6).

Table 6
Highlighted Molecules

% MOLECULES

100% APOA1* APOE* APP*# PLG*  

75% C4A* C5* FGA*# FGB*# FGG*#

Highlighted Molecules were evidenced according to their high presence in REVIGO Superclusters (see
Table 3) based upon KEGG pathways and DAVID categories, provided their obligatory presence in the
set of Network Relevant Proteins (see Table 4). Highlighted Molecules of 100% (belonging to Network
plus 4 pathways/categories) or 75% (belonging to Network plus 3 pathways/categories)
representation are seen. Speci�cally, APOA1, C4A, C5, FGA, FGB, FGG and PLG are upregulated and
APOE and APP are downregulated, as indicated by proteomics in the cerebrospinal �uid (CSF) of
amyotrophic lateral sclerosis subjects 30 days after mesenchymal stem cell intrathecal infusion
compared to CSF collected before cells (Table 1). Remarkably, all Highlighted Molecules were veri�ed
to belong to pathways/categories related to Medical Subject Headings (MESH) “Extracellular Matrix”
(#) and “Cell Adhesion Molecules” (*).
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Discussion
MSC have emerged as a promise in the treatment of human ALS (10). Indeed, rather recent clinical trials
have pointed out potential positive effects of MSC for neurodegenerative diseases (38, 39), including ALS
(7, 8, 40, 41), it is still lacking information on putative cellular/molecular mechanisms underlying MSC-
induced neuroprotection (12, 14, 42) as well as to counteract motor neuron death in ALS (3, 43).
Remarkably, the descriptions of molecules possible involved in MSC effects on neurons have increased
experimentally (11, 14) but not as far clinically (42, 44). Considering a well described failure to translate
therapeutical targets for ALS from bench to bed side (45, 46), researches that explore in details cellular
mechanisms and corresponded molecules related to MSC treatment in ALS disorder are desirable.

This manuscript innovated by combining large omics, speci�cally Proteomics and Protein Interaction
Network, as well as de�ned criteria for molecular modeling in order to highlight cellular mechanisms and
their related molecules in the CSF of ALS subjects 30 days after intrathecal infusion of autologous bone
marrow-derived MSC. Nevertheless, our study is in agreement to previous reports that investigated
molecular responses in CSF after local deliver of MSC in ALS patients by applying different
methodologies (2, 47–49). Moreover, despites investigations have searched molecular responses to MSC
in blood serum in clinical ALS (50, 51) as well as striatal muscles in experimental ALS (52, 53), CSF has
been considered an important body compartment for molecular investigation due to CSF anatomical
proximity to suffering neurons as well as for carrying bio molecular signatures of aberrant biochemical
processes related to central nervous system pathophysiology (54, 55). In this context, it seems likely that
CSF administration of autologous MSC performed in this trial may be relevant to facilitate cell signals to
reach neurodegeneration zones in ALS, as discussed elsewhere (3, 11, 48), contrasting previous clinical
design that analyzed molecular responses to MSC after muscular deliver (24, 56).

Furthermore, to our concern, this study is the �rst one to employ Proteomics by means of mass
spectrometry for molecular investigation in CSF of intrathecal autologous MSC-treated ALS subjects,
regardless the methodology has been recently employed on biomarker discovery program in CSF of ALS
patients (57–59). Moreover, despite a lack of omics investigation on that matter, molecular regulation in
CSF of MSC-treated ALS patients has been performed using classical non omics methodology (2, 49). In
line to present study, majority of ALS clinical trials on MSC-delivered CSF have employed autologous
bone marrow-derived MSC (2, 6, 47, 60, 61), rather than stem cells derived from adipose tissue (48),
umbilical cord or other sources that are mainly employed in experimental investigations. The advantage
of bone marrow-derived MSC to clinical application, specially in neurodegenerative disorders, has been
well described, that is specially related to their ability to interact in an autocrine/paracrine matter to
injured tissue (11–14, 62). Indeed, the molecular crosstalk among MSC and nervous tissue might
interfere with in�ammatory events at wound with the potential to modify the progression of
neurodegeneration which is substantially important for progressive neurodegenerative disorders like ALS
(63, 64).
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Remarkably, proteomic analysis has pointed out 220 deregulated proteins in CSF of ALS subjects thirty
days after autologous bone marrow-derived MSC intrathecal delivery. This result represents an important
set of molecular responses to MSC presence in ALS indeed a number far way larger than the set of
deregulated molecules described by similar clinical trials on ALS that have not applied omics technology
(2, 47) in the screening of molecular biomarkers. Among those deregulated proteins, upregulated and
downregulated molecules might be able to address mechanisms related to MSC in ALS or even may
contribute as biomarkers of MSC effects in ALS in future investigations.

In fact, the present study has worthy contributed to original description of cellular mechanisms and
related molecular targets facing intrathecal MSC in ALS by employing enrichment analysis of deregulated
molecules (36, 37). The clusterization of deregulated proteins by means of REVIGO has pointed out a set
of clusters and superclusters of cellular/molecular mechanisms possibly related to MSC actions thirty
days after intrathecal delivery in ALS patients. Remarkably, extracellular matrix and cell adhesion terms
were highlighted among superclusters thus representing an important contribution of herein employed
methodology. In fact, despites REVIGO clusterization has been largely applied (37), it is an original
contribution in the search for mechanism related to MSC in ALS. In fact, the literature analysis of
“Extracellular matrix” and “Cell adhesion molecules” MeSHs indicated a huge involvement of such
matters in the context of ALS as well as MSC. Our study remarkably highlighted speci�c
Pathways/Categories related to “Extracellular matrix” and “Cell adhesion molecules” MeSHs. The
observation that 92% of proteomics deregulated molecules belonged to Pathways/Categories related to
“Extracellular matrix” and “Cell adhesion molecules” MeSHs strongly emphasized the possible
involvement of Extracellular matrix and Cell adhesion molecules in the putative mechanisms of MSC
delivered in CSF of ALS subjects thus representing an important contribution of this study.

It has to be mentioned that we are still not able to address whether Extracellular Matrix/Cell Adhesion
Molecules highlighted in this study are related to putative MSC actions after intrathecal delivery in ALS
patients, to ongoing ALS motor neuron degeneration or a possible interaction of both, a matter that must
be the subject of further investigations. Anyhow, extracellular matrix and cell adhesion have been largely
described in the context of ALS motor neuron degeneration (65–68) as well as MSC mechanisms of
action (10, 43, 69). Actually, Extracellular Matrix and Cell Adhesion Molecules largely interact in the
mechanisms of cell signaling driving autocrine (70) and paracrine (71) cellular mechanisms that indeed
have been largely correlated to MSC actions (42) and motor neuron degeneration/protection (39, 72).
Those observations remarkably open up the possibility for an integrated mechanism related to
Extracellular Matrix and Cell Adhesion Molecules that might be involved in the effects of MSC in the
injury sites of ALS thus possibly interfering with motor neuron degeneration in the disorder. All in all, this
paper has highlighted for the �rst time the importance of Extracellular Matrix and Cell Adhesion
Molecules in the interactive mechanisms of MSC and motor neuron death in ALS.

The demonstration of highlighted molecules APOA1, APOE, APP, PLG, C4A, C5, FGA, FGB and FGG as
possible important proteins related to the presence of MSC in CSF of ALS subjects is an additional
contribution of this study. Moreover, it should be emphasized the contribution of Protein Interaction
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Network evaluation (73, 74) in the criteria herein applied to point out those highlighted molecules.
Importantly, it is the �rst time APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG have been mentioned
in the context of biomarkers of MSC presence in \ CSF of ALS subjects 30 days after intrathecal cell
delivery.

Indeed, all nine highlight molecules belong or signalize to elements of Extracellular Matrix and Cell
Adhesion Molecules as well as they have been described to interact to stem cells in general or to MSC in
particular (75–78). C4A, FGB, FGG and PLG have been described in the context of neuronal
degeneration/survival or neurodegenerative disorders (79–83) and APOA1, APOE, APP, C5 and FGA have
been investigated in the context of ALS (84–90).

All in all, the highlighted molecules described above have a potential possibility to be involved in the
mechanisms of MSC in motor neuron degeneration in human ALS, a matter to be explored in future
investigation.

Conclusion
Deregulated proteins that were indicated by means of proteomic analysis in CSF of ALS subjects 30 days
after intrathecal autologous MSC infusion pointed out the importance of Extracellular matrix and Cell
adhesion in the possible mechanisms of cell therapy. APOA1, APOE, APP, PLG, C4A, C5, FGA, FGB and
FGG were highlighted as important molecules possibly participating in this process.
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