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Abstract
Background: Hepatocellular carcinoma (HCC) ranks the fourth in terms of cancer-related mortality
globally. Herein, in this research, we attempted to develop a novel immune-related gene signature that
could predict survival and efficacy of immunotherapy for HCC patients.

Methods: The transcriptomic and clinical data of HCC samples were downloaded from The Cancer
Genome Atlas (TCGA) and GSE14520 datasets, followed by acquisition of immune-related genes from
the ImmPort database. Afterwards, an immune-related gene-based prognostic index (IRGPI) was
constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model.
Kaplan-Meier survival curves as well as time-dependent receiver operating characteristic (ROC) curve were
performed to evaluate its predictive capability. Besides, both univariate and multivariate analysis on
overall survival for the IRGPI and multiple clinicopathologic factors were carried out, followed by the
construction of nomogram. Finally, we explored the possible correlation of IRGPI with immune cell
infiltration or immunotherapy efficacy.

Results: Analysis of 365 HCC samples identified 11 differentially expressed genes, which were selected to
establish the IRGPI. Notably, it can predict survival of HCC patients more accurately than published
biomarkers. Furthermore, IRGPI can predict the infiltration of immune cells in the tumor microenvironment
of HCC, as well as the response of immunotherapy.

Conclusion: Collectively, the currently established IRGPI can accurately predict survival, reflect the
immune microenvironment, and predict the efficacy of immunotherapy among HCC patients.

Background
According to the Global Cancer Report of 2018, hepatocellular carcinoma (HCC) is among the most
prevalent malignancies and ranks the fourth in terms of cancer-related mortality globally [1]. HCC
accounts for nearly 90% of all primary liver cancer, which is considered as the most common type [2]. At
present, the 5-year survival rate of this disease is as low as 14.1% in China [3]. Even for patients at the
earliest stages, surgical resection, accepted as the optimal option, is also accompanied by a high
recurrence rate [4, 5], making the overall prognosis of HCC patients far from satisfaction. Consequently, it
is urgently demanded to predict survival and to improve the clinical outcome of HCC patients.

In recent years, rapid progress has been made in the treatment of liver cancer. Among the advent of
wealth of cutting-edge treatments, immunotherapy has gradually become a hot spot for liver cancer [6–
8]. Immunotherapy is characterized by stimulating specific immune responses, inhibiting and killing
tumor cells, thereby attenuating the rate of tumor recurrence and metastasis. International guidelines
have clearly proposed that immunotherapy could be selected as an effective treatment for patients with
advanced liver cancer [9]. However, only a small percentage of the population could benefit from
immunotherapy. As an indispensable component of immunotherapy, the tumor immune
microenvironment (TIME) has gradually acquired accumulative attention, and the analysis of TIME will
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contribute to the improvement of immunotherapy responsiveness. Some researchers revealed that the
immune microenvironment could be taken as a main prognostic indicator, which could also enhance the
potential of precision treatments [10, 11]. Therefore, it is suitable and feasible to construct an immune-
related gene signature that is closely related to TIME, aiming at predicting immunotherapy efficacy.

Although a number of HCC signatures have been established based on immune-related genes [12–14], a
more comprehensive and reliable index is urgently demanded, which can simultaneously predict survival
and the efficacy of immunotherapy for HCC patients. To this end, herein, based on the cancer genomics
and bioinformatics, we established an immune-related gene-based prognostic index (IRGPI), followed by
the validation of its reliability through several data sets. Further, we explored the prognostic value of
IRGPI, and the potential predictive role in immunotherapy efficacy.

Methods

Collection of sample information
Clinical information and transcriptomic data of HCC samples were downloaded from The Cancer
Genome Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/) as well as Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/gds/), which were named as entire TCGA cohort (n = 365) and
GSE14520 cohort (n = 221), respectively [15, 16]. The entire TCGA cohort was randomly and equally
categorized into a training cohort and a validation cohort. In addition, the entire TCGA cohort and
GSE14520 cohort were used as the internal testing set and external testing set, respectively. Patient
demographics and clinical characteristics of the included datasets were summarized in Tab. S1.
Furthermore, 1,811 unique immune-related genes (IRGs) were obtained from Immunology Database and
Analysis Portal (ImmPort) database (https://www.immport.org/home) [17].

Differentially expressed immune-related genes (DEIRGs)
R package “limma” was utilized to identify differentially expressed genes (DEGs) between 365 HCC
specimens and 50 normal specimens according to the criteria of |log2(Fold Change)| >1 and false
discovery rate (FDR) < 0.05 [18], followed by extraction of DEIRGs from DEGs. The volcano plot of DEIRGs
was plotted using R package “ggplot2” [19]. Additionally, a Venn diagram was drawn by an online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/) for visualization of the intersections between DEGs
and IRGs.

Afterwards, functional enrichment analysis was performed to examine the biological functions of these
DEIRGs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) via the
Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 [20]. GO terms included
biological process (BP), molecular function (MF) as well as cellular component (CC) [21, 22]. The
enrichment of GO terms and KEGG signaling pathways were based on the criteria of FDR < 0.05, followed
by visualization of the top 10 most significant GO terms as well as KEGG signaling pathways via R
package “ggplot2” [19].
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Signature development and reliability evaluation
The prognosis-related IRGs were identified and an IRGPI was established based on the training set,
followed by validation of its predictive performance in other datasets. To be specific, during the
exploration of prognosis-related IRGs, univariate Cox proportional hazard regression analysis was
conducted to evaluate the correlation of DEIRGs with overall survival (OS) in the training set. With the
cutoff value of P < 0.05, the prognosis-related IRGs were identified. The optimal model based on
prognosis-related IRGs was subsequently identified by the Least Absolute Shrinkage and Selection
Operator (LASSO) penalized Cox proportional hazards regression via R package “glmnet” [23]. The IRGs
that incorporated into the model were referred to as hub IRGs, and the differential expression of these
genes was validated using the Oncomine database [24]. Moreover, this model was used to construct the
IRGPI to predict prognosis of HCC patients. The risk score of each HCC patient was calculated by the
following formula: risk score = [Expression level of Gene 1 * coefficient] + [Expression level of Gene 2 *
coefficient] + … + [Expression level of Gene n * coefficient]. Patients were further categorized into low- and
high-risk groups based on the median value of risk score.

For further validation of the predictive performance of IRGPI, the Kaplan-Meier (K-M) survival curves were
applied for survival comparison between low- and high-risk groups via R package “survival” [25].
Additionally, the time-dependent receiver operating characteristic (ROC) curve analysis (including 1-, 3-,
and 5-year survival) was established to reflect the sensitivity and specificity of IRGPI using R package
“survivalROC” [26]. Meanwhile, the ROC curve was also used to compare the performance of our IRGPI
with other published immune-related signatures and widely used biomarkers of cancer immunotherapy.
Thereinto, a TP53-associated immune prognostic model established on two genes was named as “Long
signature” [12], while a 10 gene-based signature that was associated with tumor microenvironments was
named as “Pan signature” [13]. And a risk score prognostic model based on eight genes was named as
“Zhang signature” [14].

Association between IRGPI and clinicopathologic factors
Univariate and multivariate analysis on OS for IRGPI and clinicopathologic factors were carried out in the
entire TCGA cohort and GSE14250 cohort using R package “survival” [25]. Moreover, independent t-tests
were applied to evaluate the association of IRGPI with different clinicopathological factors.

Construction of prognostic nomogram
For providing a quantitative analysis tool to predict the survival risk of HCC patients, the nomogram was
further constructed on the basis of IRGPI as well as clinical parameters. Meanwhile, calibration curves
were drawn for comparison of the predictive and actual survival to evaluate the predictive performance of
nomograms. The nomogram and calibration curves were plotted via R package “rms” [27].

Assessment of immune cell infiltration
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Immune cell infiltration was estimated from RNA-sequencing data using CIBERSORT, which is an
excellent tool for analyzing the expression matrix of immune cell subtypes based on the principle of
linear support vector regression [28].

Analysis of immunotherapy efficacy
Immunophenoscore (IPS) can well predict the response of immune checkpoint inhibitors (ICIs), whose
scores are based on the expression of important components of tumor immunity, including MHC
molecules, immunoregulatory factors, effector cells, and suppressor cells. In addition, the calculation of
IPS score is based on representative cell type gene expression z-scores with a scale ranging from 0 to 10.
The IPS of each HCC patient was derived from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home)
[29], followed by analysis of expression on several prominent checkpoints. Moreover, tumor mutation
burden (TMB) can reflect the total number of mutations in tumor cells, which could be utilized for
assessing the therapeutic effect of immunotherapy [30]. To explore the correlation between the IRGPI and
TMB, we analyzed the available somatic mutation data in the entire TCGA cohort. The mutation data of
HCC patients were downloaded and stored as MAF format in the TCGA data portal [31]. And TMB
analysis was conducted by R package “maftools” [32].

Statistical analysis
Univariate and multivariate Cox regression analysis was conducted via R package “survival” [25], along
with hazard ratios (HRs) and 95% confidence intervals (CIs). Moreover, the difference of various clinical
factors was compared by the independent t-test. A P < 0.05 indicated statistical significance.

Results

Construction of IRGPI
The analysis of 365 HCC samples and 50 normal samples gave rise to 7,667 DEGs, including 7,273 up-
regulated as well as 394 down-regulated genes. In addition, 329 DEIRGs were extracted from DEGs,
including 267 up-regulated and 62 down-regulated genes (Fig. 1A, 1B). Functional enrichment analysis
revealed that the most relevant signaling pathways to the DEIRGs was “cytokine-cytokine receptor
interaction” (Fig. 1C). Meanwhile, the most enriched term in the aspect of biological process (BP),
molecular function (MF), and cellular component (CC) was “immune response”, “extracellular space”, and
“growth factor activity”, respectively (Fig. 1D).

In the training set, 81 DEIRGs were significantly relevant to the OS of HCC patients (P < 0.05). After
minimizing overfitting by LASSO regression model, 11 genes were selected as hub IRGs: NDRG1, FABP6,
MAPT, HSP90AA1, CD320, CACYBP, BRD8, OSGIN1, NRAS, ISG20L2, and PSMD14 (Fig. 1E). The
expression levels of these 11 IRGs were significantly increased in a wide variety of tumor tissue than
normal tissue (Fig. S1). IRGPI was therefore established by means of expression data of hub IRGs
multiplied by the Cox regression coefficient as follows: risk score= [Expression level of NDRG1 *
0.007898] + [Expression level of FABP6 * 0.032016] + [Expression level of MAPT * 0.04243] + [Expression
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level of HSP90AA1 * 0.000435 ] + [Expression level of CD320 * 0.014474] + [Expression level of CACYBP *
0.014227] + [Expression level of BRD8 * 0.003685] + [Expression level of OSGIN1 * 0.001297] +
[Expression level of NRAS * 0.003575] + [Expression level of ISG20L2 * 0.018457] + [Expression level of
PSMD14 * 0.02678].

IRGPI predicts survival of HCC patients
HCC patients were categorized into low- and high-risk groups based on the median value of risk score of
IRGPI (shown in Fig. 2A). Significantly worse OS was observed in high-risk patients than low-risk patients
(Fig. 2B, P < 0.05). Afterwards, the reliability of IRGPI was determined by time-dependent ROC curves
(Fig. 2C). As a result, the area under curve (AUC) was 0.809, 0.717 and 0.622 in 1-year, 3-year and 5-year
survival, respectively, in TCGA training set, which indicated the good potential of the constructed IRGPI in
monitoring survival. These curves were also applied in TCGA validation set, and the AUC was 0.767,
0.663 and 0.721 for 1-year, 3-year and 5-year survival, respectively. Meanwhile, we found that IRGPI had a
high predictive accuracy of survival in the entire TCGA cohort and GSE14520 cohort. Moreover, ROC
curves were used to compare the prediction performance of IRGPI with other signatures. As a result, IRGPI
achieved consistently superior performance, whether in comparison with other published immune-related
signatures or widely used biomarkers of cancer immunotherapy (Fig. 2D-F). These results indicated that
IRGPI was a highly reliable index and superior to other signatures.

IRGPI is an independent prognostic indicator
To prove the independence of IRGPI, Cox proportional hazards regression analysis was conducted in the
entire TCGA cohort and GSE14520 cohort. As shown in Table 1, univariate and multivariate analysis
revealed significant correlation between IRGPI and OS (P < 0.05). Therefore, IRGPI was considered as an
independent prognostic indicator in entire TCGA cohort (HR (95% CI) = 2.973 (1.966–4.496), P < 0.001).
After elimination of cases with unknown M stage (MX, n = 99, > 27%) and unknown N stage (NX, n = 113,
> 31%), the sample size of entire TCGA cohort was small, thus M stage and N stage were not included in
the analysis. In addition, this index was also capable of independently predicting OS in the GSE14520
cohort (HR (95% CI) = 2.090 (1.034–4.225), P = 0.040). Taken together, the above outcomes strongly
indicated that IRGPI was an independent prognostic factor.
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Table 1
Univariate and multivariate Cox regression analysis of IRGPI and other clinicopathologic factors for OS in

the entire TCGA cohort and GSE14520 cohort.
Overall survival Univariate analysis Multivariate analysis

  HR 95% CI P value HR 95% CI P value

Entire TCGA cohort            

Age 1.012 0.996–
1.029

0.139 1.003 0.987–
1.020

0.714

Gender (male vs. female) 0.779 0.516–
1.174

0.232 0.801 0.515–
1.246

0.325

Tumor status

(with tumor vs. tumor free)

1.600 1.074–
2.383

0.021* 1.669 1.093–
2.549

0.018*

Tumor grade 1.085 0.831–
1.416

0.551 0.961 0.709–
1.302

0.796

Pathological stage 1.693 1.362–
2.104

< 
0.001***

0.828 0.349–
1.962

0.667

T stage 1.680 1.369–
2.063

< 
0.001***

1.741 0.781–
3.881

0.175

IRGPI (high risk vs. low
risk)

3.253 2.280–
4.641

< 
0.001***

2.973 1.966–
4.496

< 
0.001***

GSE14520 cohort            

Age 0.990 0.971–
1.010

0.321 0.995 0.972–
1.019

0.690

Gender (male vs. female) 1.658 0.800-3.436 0.174 1.125 0.527–
2.403

0.761

ALT(>/<=50U/L) 1.085 0.704–
1.671

0.713 0.824 0.510–
1.329

0.426

Main Tumor Size
(>/<=5 cm)

2.087 1.354–
3.215

< 
0.001***

0.769 0.427–
1.387

0.383

Multinodular (Yes/No) 1.553 0.961–
2.510

0.073 0.304 0.160–
0.576

< 
0.001***

Cirrhosis (Yes/No) 4.757 1.170-
19.351

0.029* 3.722 0.889–
15.589

0.072

TNM staging 2.238 1.685–
2.971

< 
0.001***

1.635 1.107–
2.415

0.013*

BCLC staging 2.144 1.693–
2.714

< 
0.001***

1.439 0.991–
2.090

0.056
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Overall survival Univariate analysis Multivariate analysis

CLIP staging 1.892 1.531–
2.337

< 
0.001***

2.080 1.396–
3.099

< 
0.001***

AFP (>/<=300 ng/ml) 1.655 1.078–
2.542

0.021* 0.534 0.264–
1.081

0.081

IRGPI (high risk vs. low
risk)

2.724 1.405–
5.281

0.003** 2.090 1.034–
4.225

0.040*

IRGPI significantly correlates with disease progression
To explore the possible relationships between IRGPI and multiple clinicopathologic factors, correlation
analysis was conducted via independent t-tests. In the entire TCGA cohort, the risk score was significantly
higher in patients with advanced tumor grade, advanced pathological stage, and advanced T stage (P < 
0.05, Fig. 3A). In the GSE14520 cohort, higher risk score was more commonly detected in male patients,
and those with larger tumor size, advanced TNM staging, and increased alpha-fetoprotein (AFP) (P < 0.05,
Fig. 3B). These findings demonstrated that IRGPI was statistically correlated with multiple
clinicopathological factors, and a higher risk score generally indicated poorer clinical pathological status.

Additionally, based on IRGPI and some clinicopathological factors, we constructed a prognostic
nomogram, aiming at providing a quantitative analysis tool that can predict the survival risk of individual
patients (Fig. 3C). More importantly, the calibration curves of the prognostic nomogram showed the good
consistency between predictive and actual 1-, 3-, and 5-year survival in the entire TCGA cohort (Fig. 3D).

IRGPI predicts the infiltration of immune cells into HCC
microenvironment
For further exploration of the indicative roles of IPGRI on TIME, it is necessary to investigate the types of
infiltrating immune cells in HCC patients. As an excellent tool to estimate immune cell infiltration,
CIBERSORT was adopted for evaluation of the relative proportion of 22 types of immune cells in all HCC
specimens. Among the 22 types of immune cells, the relative proportion of naive B cells, resting memory
CD4 T cells, and monocytes had a significant negative correlation with risk score, while the relative
proportion of activated memory CD4 T cells and M0 macrophages had a significant positive correlation
with risk score (P < 0.05, Fig. 4A). In addition, survival analysis was conducted in 22 types of immune
cells, showing that the relative proportion of M0 macrophages (Fig. 4B), M2 macrophages (Fig. 4C),
activated memory CD4 T cells (Fig. 4D) as well as CD8 T cells (Fig. 4E) were significantly related to OS (P 
< 0.05). A higher proportion of M0 macrophages was associated with poorer OS, while a higher proportion
of activated memory CD4 T cells was related to better OS. Collectively, IRGPI was statistically correlated
with the infiltration level of most immune cells, implying that our IRGPI could potentially reflect the state
of TIME.

IRGPI predicts responses of immunotherapy
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To further explore the association of IRGPI with immunity, the correlation analysis was conducted
between IRGPI and immune functions. As shown in Fig. 5A, IRGPI was positively correlated with releasing
of cancer cell antigens, Treg cell recruiting, and MDSC recruiting, but negatively with CD4 T cell recruiting,
infiltration of immune cells into tumors, and killing of cancer cells. As a well-known biomarker of
immunotherapy, we also analyzed the relationship between tumor mutation burden (TMB) and IRGPI,
revealing the positive correlation of IRGPI with TMB (Fig. S2). Moreover, to predict the response of
immune checkpoint inhibitors (ICIs), the correlation between IRGPI and immunophenoscore (IPS) in HCC
patients was explored. IPS has been proved excellent in predicting the response of ICIs in several studies
[29, 33]. The major immune checkpoints include cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed
cell death protein 1 (PD-1), programmed death ligand-1 (PD-L1) as well as programmed death ligand-2
(PD-L2). Thus, the scores of IPS, IPS-CTLA4 blocker, IPS-PD1/PD-L1/PD-L2 blocker, and IPS-CTLA4 + 
PD1/PD-L1/PD-L2 blocker were used for evaluating the potential application of ICIs. As shown in Fig. 5B,
the IPS and IPS-CTLA4 scores were significantly elevated in the low-risk group which was categorized by
the IRGPI, implying more immunogenicity on ICIs in the low-risk group. Besides, the expression of some
critical immune checkpoints was investigated, showing that the expression of CTLA-4, LAG-3, PD-1, TIGIT,
and TIM-3 was significantly higher in high-risk group than low-risk group (Fig. 5C). These results
suggested that low-risk group was more likely to have an immune response and respond to
immunotherapy.

Discussion
An increasing body of evidence has suggested the close correlation of immune microenvironment with
tumorigenesis and cancer progression [34–36]. By analyzing the immune landscape of HCC
microenvironment, some researchers pointed out that the immune contexture could be a major prognostic
indicator, and should not be disregarded to enhance the potential of precision treatments [37]. At present,
immunotherapy has been widely recognized to treat a variety of cancers including HCC [38–40]. However,
not all patients can benefit from it. Therefore, it is necessary to establish an IRG signature for survival
prediction of HCC patients and enriching the effective population of cancer immunotherapy.

During the past years, genomics and bioinformatics have enabled the identification of molecular
signatures. For example, several signatures have been identified for prognostic prediction based on
lncRNA, miRNA, and mRNA [41, 42]. In this study, IRGPI was constructed by integrating the clinical
information and transcriptomic data of HCC samples in TCGA cohort and GSE14520 cohort. A total of
329 DEIRGs were identified, of which the most relevant biological process and signaling pathway was
“immune response” and “cytokine-cytokine receptor interaction”, respectively. This result was closely
associated with immune, which was consistent with some existing literature reports [43]. Subsequently,
Cox regression analysis and LASSO regression model identified 11 out of 81 prognosis-related IRGs,
which were used to construct IRGPI, including NDRG1, FABP6, MAPT, HSP90AA1, CD320, CACYBP, BRD8,
OSGIN1, NRAS, ISG20L2, and PSMD14. Among them, NDRG1 has been reported to be an essential
molecule in controlling the metastasis and recurrence of HCC [44]. In addition, the deletion of CACYBP
has also been reported to increase apoptosis of HCC cells [45], while the variants of OSGIN1 could reduce
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apoptosis and are associated with shorter survival [46]. Besides, knockdown and overexpression assays
have demonstrated that PSMD14 could promote migration and invasion of HCC cells in vitro, and
facilitate tumor growth and metastasis in vivo [47]. Although the direct association between the other
seven genes and HCC has not been discovered, we think that the underlying correlations deserve further
experimental validation.

In consideration of the importance of immune cell infiltration in tumors, CIBERSORT was further adopted
for evaluating the relative proportion of 22 types of immune cells in every HCC specimen. Some evidence
has indicated that the interplay between tumor and microenvironment plays a critical role in HCC
progression and the probability of response to immunotherapies. Our study suggested that IRGPI was
significantly and positively associated with the relative proportion of activated memory CD4 T cells and
M0 macrophages, which are the only two types of immune cells significantly associated with OS. Some
studies have shown that the selective loss or apoptosis of intrahepatic CD4+ T lymphocytes would
promote hepatocarcinogenesis [48, 49].

The advent of immunotherapy has shed novel light on HCC treatment, of which ICIs have become a
potentially effective treatment [6]. Targeting immune checkpoint molecules such as PD-1 and CTLA-4
could reinvigorate anti-tumor immunity [50]. Recently, nivolumab and pembrolizumab, two therapeutics
against PD-L1/PD1, have been recently approved for subsequent-line therapy [51]. In order to predict the
reactivity of ICIs, the relationship between IRGPI and IPS was explored in HCC patients. The analysis
indicated that the low-risk group had higher IPS and IPS-CTLA4 scores, revealing that IRGPI has the
potential to determine the specific HCC patients who are immunogenic and more responsive to ICIs. The
predictive value of IRGPI on the response to ICIs provides a theoretical basis for the therapeutic selection
of ICIs in clinical practice. Hopefully, this predictive model could assist to accelerate the pace of
individualized cancer immunotherapy.

To further enhance the accuracy of prognostic prediction, we constructed and validated a nomogram by
integrating IRGPI, age, gender, tumor status, tumor grade, pathological stage and T stage. Similarly, Ying
et al. [52] combined inflammatory biomarkers with risk factors to form a nomogram, which could improve
the accuracy for predicting clinical outcomes in CRC patients undergoing surgical resection. More
importantly, these new prognostic tools could not only improve the accuracy of prognostic prediction, but
also help to predict the specific survival risk of individual patients, which is of great significance in
clinical practice [53].

There are several strengths in this study. Firstly, this signature was sufficiently validated and evaluated in
multiple datasets, indicating the robustness and reliability of the signature. Secondly, comprehensive and
in-depth researches were carried out in various aspects, including discussions on the correlation of IRGPI
with the immune cells, IPS and TMB. Thirdly, a nomogram was further established for the quantitative
calculation, which is conducive to clinical promotion and application. Nevertheless, several limitations
still exist in our study. Thus, more HCC patients and validations are warranted to further test this
signature by prospective studies in the future.
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Conclusion
In this study, we have constructed an IRG-based index that is closely related to the immune
microenvironment, which can better predict survival and reflect the efficacy of immunotherapy for HCC
patients. In the era of precision medicine, the IRG-based index could hopefully provide an effective tool to
meet the clinical requirements of HCC treatment to a certain extent.

Abbreviations
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HCC hepatocellular carcinoma

TIME tumor immune microenvironment

TCGA The Cancer Genome Atlas

IRG immune-related gene

LASSO Least Absolute Shrinkage and Selection Operator

IRGPI immune-related gene-based prognostic index

K-M Kaplan-Meier

ROC receiver operating characteristic

OS overall survival

TMB tumor mutation burden

IPS immunophenoscore

GEO Gene Expression Omnibus

ImmPort Immunology Database and Analysis Portal

DEG differentially expressed gene

FDR false discovery rate

DEIRG differentially expressed immune-related gene

KEGG Kyoto Encyclopedia of Genes and Genomes

GO Gene Ontology

BP biological process

MF molecular function

CC cellular component

DAVID Database for Annotation, Visualization, and Integrated Discovery

MAF Mutation Annotation Format

ICI immune checkpoint inhibitor

TCIA The Cancer Immunome Atlas

HRs hazard ratios

CIs confidence intervals

AUC area under curve

TX unknown T stage
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MX unknown M stage

NX unknown N stage

ALT alanine transferase

TNM Tumor Node Metastasis

AFP alpha-fetoprotein

CTLA4 cytotoxic T lymphocyte antigen 4

PD1 programmed cell death 1

PD-L1 programmed cell death-ligand 1

PD-L2 programmed cell death-ligand 2
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