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Abstract
The epidemic of stripe rust, caused by the pathogen Puccinia Striiformis f. sp. tritici (Pst), would reduce
wheat (Triticum aestivum) yields seriously. Traditional experimental methods are di�cult to discover the
interaction between wheat and Pst. Multi-omics data analysis provides a new idea for e�ciently mining
the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for
differentially expressed genes (DEGs) between disease-resistant and disease-susceptible samples, and
carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-
expression network, identi�ed the core genes and interacted gene pairs from the conservative modules.
Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-
expression network and drew the wheat NLR gene co-expression network. In order to provide accessible
information for related researchers, we built a web-based visualization platform to display the data.
Based on the analysis, we found that various heat shock proteins (HSPs), protein kinases, and
glycosidases frequently appeared in the network. They were likely to be involved in the biological
processes of Pst infecting wheat. We also found that HSPs was signi�cantly co-expressed in wheat and
Pst, suggesting that there might be direct or indirect interactions between them. This study can assist
scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst
interaction patterns.

Introduction
Wheat (Triticum aestivum) is one of the three major food crops in the world. As a main food source in
Asia, Europe, and the Americas, it provides a large amount of carbohydrate for humans. In the face of
global climate change, maintaining stable wheat yields is key to reducing world food risk [1]. Wheat
stripe rust, also known as yellow rust (Yr), is an important, world-wide, disease dispersed by the wind.
Puccinia striiformis f. sp. tritici (Pst), as a pathogenic fungus causing wheat stripe rust, mainly infects
leaves, and even stalks, leaf sheaths and glumes in severe case. In China, wheat stripe rust is found
throughout the main wheat-producing areas like northwest, southwest, north China and the middle and
lower reaches of Yangtze River. It can generally cause yield losses of 5–10% in years of occurrence, and
up to 30% during epidemic years [2].Historically, several epidemic of Pst have caused severe yield losses
in wheat, and it is urgent to understand the mechanisms of wheat resistance to Pst.

Wheat stripe rust is fueled by low temperatures, heavy rain and exists mainly in spring, and autumn. The
fastest sporulation rate of the Pst occurs when the temperature is between 15 and 25°C and it survives
only for a short time when the temperature reaches 35°C or higher [3]. Air humidity and wind also affect
the germination and spread of Pst. When humidity is high, dew will form on the plant surface and
promote Pst to infest the plant; in windy environment, Pst can rely on wind for medium and long distance
spread. Annual cycles of stripe rust includes four stages: oversummering, infection of seedlings in
autumn, overwintering and spring epidemic. When the environment become disease-favorable, Pst keeps
expanding and spreading during the cycle, leading to a large-scale epidemic. Consensus among
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scientists on the control of wheat stripe rust is breeding disease-resistant wheat varieties, which is the
most economical, environmentally and effective method.

On November 25, 2020, Nature published a research paper entitled "Multiple wheat genomes reveal
global variation in modern breeding". The study selected 16 representative wheat varieties for whole
genome sequencing, providing a comprehensive wheat genome map, allowing scientists and breeders to
quickly identify genes related to wheat disease-resistance, thus providing great help in breeding disease-
resistant wheat varieties [4]. The completion of wheat genome sequencing and the development of
multi-omics technologies provide new ideas for wheat disease-resistance breeding. Furthermore, by
constructing a framework for plant immunity, scholars can e�ciently locate and clone wheat resistance
genes. Subsequently, they can use multi-omics technologies to analyze the complete triggering process
of plant immunity, integrate resistance genes, and build broad-spectrum resistance in wheat.

The basic framework of modelling plant immunity was described as early as 2006. The framework of the
plant immune system, consisting of one layer of non-speci�c and one layer of speci�c immune response
called PTI (PAMPs triggered immunity) and ETI (Effector triggered immunity), respectively, provides
resistance to various pathogens. Plants trigger a non-speci�c defense response PTI after infected by
pathogenic bacteria. Pathogen-associated molecular patterns (PAMPS) are recognized by pattern
recognition receptors (PRRs) on the cell membrane surface and thus plant immunity is activated. Plant
PRRS are generally receptor-like kinases, while pathogen PAMPs are mainly �agellin and titin shells, etc.
The immune responses of PTI are the accumulation of plant callose, and burst of reactive oxygen
species [5]. PTI is an important component of plant immune system, and such immune-initiated
resistance is generally broad-spectrum, but weak and cannot e�ciently suppress pathogen infestation.
During the long period competing of plant and pathogen, pathogens evolves a class of virulence effector
proteins inhibiting the plant PTI response effectively, and manage to infest the plant eventually. In turn,
plants evolves a receptor protein, NLR (Nucleotide-binding domain and Leucine-rich Repeat), which
speci�cally recognizes pathogenic effectors and triggers the ETI immune response. ETIs are generally
race-speci�c and can be more effective against pathogenic bacteria, making them ideal targets for
disease-resistance breeding in various crops [5]. In recent years, scholars found that PTI and ETI are not
independent of each other. ETI depends to some extent on the PTI pathway, and the triggering of ETI can
also enhance PTI, suggesting that plants can synergistically activate both immune responses to resist
the invasion by pathogenic bacteria.

It is essential to map and clone stripe rust resistance genes in wheat which are involved in PTI and ETI.
By transgenesis and gene editing, we can achieve signi�cant disease control at the genetic level.
Recently, scholars have cloned stripe rust resistance genes in wheat such as Yr5/YrSp, Yr7, Yr10, Yr15,
Yr27, Yr36, Yr18, Yr47, YrAS2388R, YrU1, and YrNAM [6–15]. However, limited by the slow rate of gene
cloning, some newly discovered resistance genes have long been used in breeding but cannot study their
important role in disease resistance. Traditional experimental methods are di�cult to tap the wheat-Pst
interactions and ine�cient for mining resistance genes among different varieties, and these problems
have been plaguing breeders.
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Transcriptome focuses on RNA modi�cations that affect gene expression at the transcriptional level.
Transcriptome sequencing technology can comprehensively provide transcript information of a species-
speci�c tissue or organ, which can be used for various gene expression level studies. In recent years,
using transcriptome for gene spatiotemporal expression analysis, scholars identi�ed and detected
several signi�cant functional genes in biosynthetic pathways, con�rming the feasibility of transcriptome
analysis for mining functional genes. Transcriptome analysis has been also successfully applied to plant
disease resistance, for examples: downy mildew, powdery mildew, gray mold of grapes; blight, bacterial
wilt, bacterial streak of rice; citrus yellow dragon disease; mango deformation and anthracnose [16–24],
which makes it become an effective tool for studying the expression patterns and molecular
mechanisms of plant disease-resistance genes.

With the development of transcriptome and sequencing technologies, gene co-expression network
analysis becomes a common research tool. Based on it, scholars can correlate unknown functional
genes with biological processes and to explore the core genes that play signi�cant functions. Such
network analysis was �rst successfully used in animal and medical �elds and gradually extended to
plant �elds. Several genes were identi�ed and reported by network analysis in various plants such as
tomato, Arabidopsis, lily, and rice [25–28]. Weighted gene co-expression network analysis (WGCNA) is a
common tool used by scholars to detect co-expressed genes. It can divide the network into modules and
associate them with target traits to screen the core genes associated with the target traits, which could
explain phenotypic variation at gene expression level [29]. Scholars can quickly call functions for
customized co-expression network construction due to its availability in R. This study used the WGCNA
tool to construct the network for subsequent analysis.

In this study, we constructed co-expression networks using published wheat-Pst transcriptome data. We
classi�ed gene modules and correlated them with infestation phenotypes, screened conserved modules
related to phenotypes and extracted core genes from them for annotation. Finally we predicted multiple
gene pairs with interaction relationships based on the connectivity of genes in the network.

Materials and methods

Acquisition of transcriptome raw data
The Rust expression browser is an open, expVIP-based constructed transcriptome database (www.rust-
expression.com). It contains 1024 RNA-Seq datasets of Pst and wheat, which were infested one-to-one.
All can be downloaded and used by scholars for subsequent analysis [30]. We downloaded this data and
selected 140 high-quality transcriptomic samples containing the infestation phenotype as raw data for
subsequent analysis. The data of 140 transcriptome samples containing infestation leaf phenotypes
were downloaded from the Rust expression browser database. A total of 140 samples were collected
from different wheat varieties. Each sample contained a wheat gene expression matrix and a Pst gene
expression matrix with one-to-one infestation relationships, sampled from 2015 to 2017. Among the 140

http://www.rust-expression.com/
http://www.rust-expression.com/
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samples, 43 were disease-susceptible and 97 were disease-resistant. Most of the samples were
originated from Europe (Fig. 1A).

Differential expression analysis
Differential expression analysis refers to grouping samples from different treatments or phenotypes and
statistically screening for genes with signi�cantly different expression. These genes are considered to be
most likely involved in biological processes regulating phenotype construction. In this study, samples
were divided into disease-resistant and disease-susceptible groups based on infestation percentage
data. We classi�ed samples as susceptible if their infestation percentage was higher than 50%, and as
resistant if it was lower. After grouping, differential expression analysis was performed using the R
package Deseq2 to screen for genes that were differentially expressed in disease-resistant and disease-
susceptible samples. The thresholds were set as p-value < 0.05 and |log2Foldchange|>0.5.

Gene Ontology enrichment analysis
Gene Ontology (GO) is an internationally standardized gene function classi�cation system that provides
a set of dynamically updated standard vocabularies to comprehensively describe the properties of genes
in an organism. There are a total of three ontologies in GO, which describe molecular functions, cellular
components, and biological processes. Evolutionary genealogy of genes: Non-supervised Orthologous
Groups (eggNOG) is an online gene function annotation web tool (http://eggnog-mapper.embl.de/) that
provides a free and fast gene function annotation service [31]. We annotated the differentially expressed
genes using eggNOG-mapper with the default threshold settings. We used TBtools software [32] for GO
enrichment of the annotated differentially expressed genes with p-value < 0.05.

Co-expression network construction
Differentially expressed genes (DEGs) were used as the raw data for constructing the co-expression
network. The wheat-Pst co-expression network was constructed using the R package WGCNA 1.72 [33].
We checked the missing values in the �ltered gene expression matrix for sample clustering and removed
outlier samples. The soft threshold value was calculated using the "pickSoftThreshold" function, the
optimal weight value was estimated using the "powerEstimate" function. The soft threshold value was
selected according to the plotted change in the scale-free topology �tting index, and the mean
connectivity of genes in the network under different soft thresholds was counted. Finally, the soft
threshold value power beta = 7 was chosen, and other parameters are listed in Table 1. The network
partitioning module was constructed by the "blockwiseModules" function. The modules with a similarity
greater than 0.75 were merged.

Network module identi�cation
After the network was constructed, we randomly splited the gene expression data into two groups and
used the "modulePreservation" function to calculate their conservativeness: whether the two groups of
data could be equally divided into the same gene modules as before. Z values of these gene modules
were calculated, and we categorized them as follows: Z < 2 indicated no conservation, 2 < Z < 10
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indicated mild to moderate conservation, and Z > 10 indicated high conservation. Afterwards, we
performed a correlation analysis of these modules with the infection percentage data and calculated the
correlation coe�cients between each module eigenvalues and the phenotype. Those with higher
absolute values of correlation coe�cients were considered as modules that might contain host-
pathogen gene interactions.

Annotation
All genes in the network were annotated using seven metrics: Log2foldchange (L2FC), Module, Z-score,
Module-trait-relationship, GeneSigni�cant (GS), ModuleMembership (MM), and Protein anno. Among
them, L2FC refers to the differential expression ploidy of the gene; Module refers to the module to which
the gene belongs; Z-score refers to the conserved Z value of the module to which the gene belongs;
Module-trait-relationship refers to the correlation between the module to which the gene belongs and the
phenotype; GS refers to the correlation between the gene and the phenotype; MM refers to the
correlation between the gene and the module; and Protein anno refers to the protein annotation of the
gene.

Interacting gene pairs mining
The weight value of the gene pairs in the module was calculated, which can re�ect the correlation
between two genes: the closer to 1, the stronger the correlation. If the weight value was more than 0.1,
the wheat-Pst gene pairs was considered had interacting relationships in the highly conserved module
[34]. After screening the interacting gene pairs, we annotated their protein functions. The co-expression
network was mapped by Gephi 0.10.1 [35].

NLR gene co-expression network construction
ANNA: an Angiosperm NLR Atlas. ANNA is an open database that collects annotated protein sequences
of the largest class plant disease resistance gene family from angiosperm genomes. ANNA now
contains over 90,000 NLR genes from 304 angiosperm genomes, including 18,707 TNL (TIR-NBS-LRR)
genes, 70,737 CNL (CC-NBS-LRR) genes, and 1,847 RNL (RPW8-NBS-LRR) genes [36]. To verify the
usability of the wheat-Pst co-expression network, we observed the distribution of 2298 wheat NLR genes
identi�ed by the ANNO database in this network. We screened the co-expressed genes in the network
that were linked to these NLR genes, and setting the weight value > 0.1 to consider them to have an
interaction with NLR genes. Finally, co-expression network of NLR genes in wheat were built and mapped
by Gephi 0.10.1 [35].

Webpage building
Dynamic webpages were written to exhibit the results based on the shiny package, a web application
framework in R that allows users to package the data analysis results into web apps. Considering that
most of the algorithms in this study rely on R for programming and that Shiny has a complete data
interface with R, we chose Shiny to visualize the webpages.
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Results

Differential expression analysis of disease-resistant and
disease-susceptible samples
We screened 8322 DEGs between the disease-resistant and disease-susceptible samples, including
7959 wheat genes and 363 Pst genes. The expression of 4361 wheat genes was signi�cantly up-
regulated, and 3598 wheat genes were signi�cantly down-regulated in the disease-resistant samples,
while 144 Pst genes were signi�cantly up-regulated and 219 Pst genes were signi�cantly down-regulated
in the disease-resistant samples (Fig. 1B). Observing the distribution of wheat genes on chromosomes,
we found that they were somewhat enriched at the terminal regions of chromosomes, such as
chromosomes 3A and 3D (Fig. 1C). We speculated that the differential expression of these genes could
explain the differences in the infestation phenotypes between the two sample groups and could be
applied to the subsequent construction of co-expression networks. GO enrichment analysis showed that
there was none signi�cant GO term enriched in Pst due to the limited number of DEGs. So here just
described the GO enrichment results of DEGs in wheat. DEGs were enriched in 401 pathways, including
107 molecular functional pathways, 10 cellular component pathways, and 284 biological process
pathways. Sorting the number of genes enriched in these pathways revealed that more genes were
enriched in the pathways of biological process, such as response to stimulus, response to stress, and
even response to fungus and defense response to fungus, which were relevant to this study. In terms of
cellular components, genes were mainly enriched in plastid stroma, cell-cell junction, obsolete cell wall
part, etc. In terms of molecular functions, more genes were enriched in transcriptional regulatory activity,
DNA-binding transcription factor activity, and other transcription-related molecular functional pathways.
The above results showed that some of the DEGs might participate hormone metabolism, transcriptional
regulation, and signaling processes related to plant immunity. The result further validated their feasibility
for performing co-expression network construction. Some of the pathways related to plant immune
regulation were listed in Fig. 1D.

Wheat-Pst co-expression network construction and module
analysis
We clustered the samples and obtained 100 groups of available samples after eliminating the outliers.
The DEGs of wheat and Pst of these 100 groups of samples were used as input data to construct the
wheat-Pst co-expression network. The scale-free topology �tting index and the network mean
connectivity were calculated to determine the optimal soft threshold value of the network. It was found
that the scale-free topology �t index tended to stabilize after β = 7 and R2 > 0.80, while the network
connectivity started to be smooth at the same time. It can be considered that the network has good
connectivity and conforms to the scale-free network distribution (Fig. 2A). We set β = 7 as the soft
threshold to construct the network. The genes were clustered into modules based on gene co-expression
relationship. As shown in Fig. 2B, each color represented a module and the gray module consisted of
genes that couldn't be classi�ed into any module. After constructing the network, we obtained 28 gene
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co-expression modules. The number of genes in each module was counted, and it was found that the
turquoise module contained the largest number of genes with 3182, the white module contained the
least number of genes with 32. A number of 588 genes were classi�ed into the gray module, and the
number of module genes is shown in Fig. 2C. To determine whether these modules are conserved and
biologically signi�cant, we calculated the Z-values of each module and the correlation coe�cient
between modules and phenotypes. It was found that a total of 16 modules with Z-values > 10 showed
high conservation, 11 modules with Z-values > 2 and < 10 had moderate conservation and one module
with Z-value < 2 did not have conservation (Fig. 2D). The association analysis showed that the gene
expression in most modules was negatively correlated with the phenotype, and only 7 modules and the
grey module exhibited a positive correlation (Fig. 2E). These 7 modules had a higher percentage of Pst
genes compared with other modules, and the absolute values of the correlation coe�cient were higher,
which meant the modules might contain more wheat-Pst interactions. Further, it was shown that most of
these positively correlated modules had Z-values greater than 10, and all of them were greater than 2.
We believed that the genes within these modules have high con�dence of co-expression. Interestingly,
the correlation coe�cient between the grey module and the phonotypes came to a maximum value of
0.46. So we should pay attention to the individual genes in the grey module though they could not be
classi�ed into any module and had no co-expression.

 

Annotation of core genes
To statistically describe the core genes and interactions in 28 conserved modules, we annotated all
genes in the network with seven indicators: L2FG, module, Z-score, module-trait-relationship, GS, MM,
protein anno. The genes with MM > 0.8 and |GS| > 0.2 were selected as core genes, and 390 core genes
were obtained, including 351 wheat genes (mainly from the turquoise module) and 39 Pst genes (mainly
from the cyan module). In addition, some of the non-core genes in the module encoded protein domains
associated with plant immunity. It suggested that the selection of threshold values in the core gene
screening needs to be improved, and we should not only focus on core genes in the subsequent analysis.
Some of the core and non-core genes encoded plant immune-related structural domains were listed in
Table 2.

Exploration of wheat-Pst interaction relationships
A total of 919,606 pairs of interaction relationships were obtained from 28 conserved modules. These
included 3493 pairs of Pst-Pst interacting gene pairs, 902,034 pairs of wheat-wheat interacting gene
pairs, and 14,078 pairs of wheat-Pst interacting gene pairs. To explore the interactions between wheat
and Psts at the gene expression level, we screened 4429 wheat-Pst interactions with a weight value
greater than 0.2, and of which a total of 932 gene pairs could be fully annotated. Protein annotation of
these pairs showed that HSP17.A, HSP70, HSP82, CLPB1, IP5P11, and B120 proteins were more
frequent in wheat, and HSP16, HSP78, HSP104, CEX, GSK3, and HSS1 proteins more frequent in Pst
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(Fig. 3), and most of them play important functions in plant immunity. We brie�y introduced their
biological functions below:

 

1. Heat shock proteins, such as HSP, CLPB, and DNAJ proteins, appeared many times in the wheat-Pst
interactions. HSP proteins are protective proteins that are commonly found in various organisms. It
plays an important role in plant growth and the regulation of stress by binding to other heat shock
proteins to maintain proteostasis and repair degenerated proteins. HSP proteins are divided into �ve
families: HSP100, HSP90, HSP70, HSP60, and small molecule HSP, and each of them contains a
variety of proteins [37];

2. Protein kinases can receive a wide variety of ligands to help plants sense their cellular environment.
It regulates plant growth, development, response to adversity and trigger immunity [38]. They
repeatedly appeared in the wheat-Pst interaction gene pairs. In this study, B120, At2g42960, HK6,
MIK2, CRK6, CRK7, RGA3, XA21, and other protein kinases were annotated among the interaction
genes. Most of these proteins were veri�ed to be involved in responding to plant stress and have the
classical domains of plant immune receptor-like protein kinases. Among them, CRK6 protein
conferred broad-spectrum resistance to wheat leaf blight [39]; RGA3 conferred resistance to rice
blast [40]; and rice XA21 conferred resistance to bacterial infestation [41];

3. Various glycosidases, such as CEX, XGEA, XLNA, and other xyloglucanases, repeatedly appeared in
wheat-Pst interaction gene pairs. Such proteins are thought to be key enzymes in the catabolic
remodeling of plant cell wall. It plays a role in Pst infestation of wheat: inducing disease resistance
defenses in plants [42].

The frequency of HSP-HSP interaction gene pairs was high. It was found that the heat stress proteins
from wheat and Pst had a signi�cant co-expression relationship, with several interaction gene pairs
having a weight value of 0.5. Previously, it was found that virus infestation could up-regulate the
expression level of HSP protein in plant hosts [43]; While virus infestation also promoted the expression
of the virus's own HSP, with a clear co-expression phenomenon between them [43, 44]. Our study
indicated that HSPs co-expression also exists in fungal-plant interactions, suggesting that there may be
direct or indirect interactions between different HSPs from wheat and Pst. These pairs of interactions
also included effector and receptor protein kinases (who may trigger downstream immune regulation),
which had some value in validating protein interactions. Finally, we mapped the wheat-Pst interaction
network composed of these 4429 interacting gene pairs (Fig. 4A).

Interaction of NLR genes in the network
NLR genes represent one of the largest plant disease resistance gene families. NLR immune receptors
can rapidly recognize pathogens and trigger ETI responses to ensure normal plant growth. Here we
collected 2298 wheat NLR genes identi�ed from the ANNO database. We found that 107 of those NLR
genes were differentially expressed in wheat stripe rust resistant and susceptible samples, with most of
them (77/107) distributed in the turquoise module, and the remaining in other modules in small
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numbers. The threshold value of weight > 0.1 was set to screen NLR interaction gene pairs. A total of
42,227 interaction gene pairs were obtained, including 42,101 wheat-wheat pairs and 126 wheat-Pst
pairs. Oxidase-NLR gene pair and glycosidase-NLR gene pairs were repeatedly found in the interaction
gene pairs. Table 3 showed some of the NLR interaction gene pairs, and Fig. 4B showed the NLR gene
co-expression network.

A database of wheat- Pst gene co-expression network

To enhance the signi�cance of this study, we proposed to use the network as a database of interactions
between wheat and Pst. Using the web we can infer the potential interactions of various cloned or
putative resistance genes by observing the distribution of their connections in the network. We built a
visualization tool which could combine all annotated gene results and network interaction data from our
analysis. The link to the webpage is: http://8.130.121.203:3838/WRCA/. Here we brie�y described
several functions of the webpage:

(1) Searching for gene annotation information on the web

The webpage provides annotation information of the genes involved in the study, including genes Gene
id, L2FG, Module, Z-score, Module-trait-relationship, GS, MM, and Protein anno. Users can search for
relevant genes by entering a gene list or module, and the search results will be displayed in a table and
allow users to download and save.

(2) Searching for interactions in the network

The webpage provides all the co-expressed gene pairs in the network, users can search for the pairs by
entering the gene list or annotation information. The search results will be displayed in a table and allow
users to download and save.

(3) Selecting genes or gene pairs to generate network diagrams

After searching and selecting genes or gene pairs, the webpage allows the search results to be used as
raw input data to generate network diagrams. The generated network diagrams can be downloaded and
saved by users.

(4) Downloading the results of this study

The webpage provides a link to download the complete data involved in this study, which users can use
for their research.

Discussion

Feasibility and limitations of WGCNA analysis
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The massive transcriptome data samples provide the data base for various types of network analysis.
Gene co-expression networks, which can link genes of unknown function to biological processes of
interest, have become an inherent model for the study of gene interactions. WGCNA, as the �rst tool for
co-expression analysis, has effectively identi�ed the relationship between multiple phenotypes and gene
modules. For example, co-expression analysis of RNA-Seq data from lean and obese pigs identi�ed
obesity-associated modules and identi�ed CCR1, MSR1, and SPI1 as regulators of this process [45]; co-
expression analysis identi�ed gene modules at different developmental stages in humans and mice, etc.
[46]. WGCNA was well known by the great success in animal and medical research �elds, and it have
been extended to the plant �elds. Phenotype-associated gene modules have been identi�ed and reported
in tomato, arabidopsis, lily, and rice [25–28]. In this study, we innovatively considered wheat-Pst as an
interaction system and combined their RNA-Seq data as input data to construct a co-expression
network. Consequently, we identi�ed several gene co-expression modules related to the infestation
phenotype and screened several core genes and wheat-Pst interaction gene pairs, which could provide a
data base for analyzing the immunity mechanism of wheat against stripe rust. Although WGCNA has
shown superiority in co-expression analysis, it is worth noting that the behavior of attaching biological
signi�cance to modules sometimes leads to erroneous conclusions. When the modules as a whole has
correlation with the phenotype, it does not mean that every gene in the module is necessarily associated
with the phenotype. Actually, the proportion of genes associated with the phenotype in the module is
usually below 20%. This reminds us that even if we identify phenotype-associated modules with high
con�dence, we still need to perform deeper screening of genes within the modules based on functional
annotation, connectivity, and other indicators.

Exploration of wheat-Pst interactions
Researches on wheat-Pst interactions and the pathogenesis have been established. Tang et al. (2022)
identi�ed Pst_A23, an effector located in the host nucleus, which promote Pst pathogenesis by
regulating alternative splicing in wheat [47]; Wei et al. (2023) identi�ed Hasp98 as a Pst-speci�c effector,
which promoted Pst infection by interfering with the MAPK signaling pathway in wheat [48]. In this study,
we constructed a co-expression network using wheat-Pst RNA-Seq data and mined 4429 pairs of wheat-
Pst interaction gene pairs. We innovatively found that HSP respectively from wheat and Pst have
signi�cant co-expression relationships, and they may have direct or indirect interactions. This study can
assist scholars in conducting studies on the pathogenesis and help to advance the investigation of
wheat-Pst interaction patterns.

Conclusion
In this study, 140 RNA-Seq data of wheat infected by Pst near the Mediterranean Sea in northern Europe
were used for differential gene expression analysis. A total of 8322 DEGs were obtained to construct a
co-expression network. And we got 28 gene modules from the co-expression network, which included 16
high conserved modules and 11 moderate conserved modules. Importantly, seven modules were
associated with the infestation phenotype. We also identi�ed 919,606 pairs of interactions from the
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network. Among them, we found obvious co-expression in wheat-Pst interactions and drew a wheat-Pst
interactions network. Further, we revealed that there was a signi�cant co-expression of heat stress
proteins respectively from wheat and Pst, which is similar with the previous �ndings in plant-virus
interactions. Moreover, we identi�ed the distribution of NLR genes in the network, screened the
interaction gene pairs with co-expression relationships, and mapped the NLR gene co-expression
network. Finally, we built a webpage by pooling the data for the exhibition of our results.
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Figure 1

A Sample source, samples mainly originated from Europe. B Volcano map of differentially expressed
genes in wheat in the upper panel and differentially expressed genes in Pst in the lower panel. C
Distribution of differentially expressed genes in wheat on the chromosomes. D Some of the GO terms
related to plant immunity
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Figure 2

A Scale-free topology �t index and network connectivity. B gene module cluster dendrogram, which
included 28 gene co-expression modules with different color. C the number of genes contained in each
module. D Z-value of each module. E correlation of modules with infestation percentage



Page 20/23

Figure 3

The frequency of the wheat-striped rust interaction gene pair, the left panel is the strip rust genes, and
the right panel is the wheat genes (based on protein annotation)
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Figure 4

A Wheat-Pst interaction network diagram, clustered by module, with red nodes for Pstgenes and green
nodes for wheat genes in the panel below. B NLR gene co-expression network
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Figure 5
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