Association between ZFHX3 and PRR X1 polymorphisms and atrial fibrillation susceptibility

DOI: https://doi.org/10.21203/rs.3.rs-370715/v1

Abstract

Background Atrial fibrillation (AF) is a common, sustained cardiac arrhythmia. Recent studies have reported an association between ZFHX3/PRRX1 polymorphisms and AF. In this study, a meta-analysis was conducted to confirm these associations.

Methods The PubMed, Embase, and Wanfang databases were searched, covering all publications before July 20, 2020.

Results Overall, seven articles including 3,674 cases and 8,990 healthy controls for ZFHX3 rs2106261 and 1045 cases and 1407 controls for PRRX1 rs3903239 were included. The odds ratio (OR) [95% confidence interval (CI)] was used to assess the associations. Publication bias was calculated using Egger’s and Begg’s tests. We found that the ZFHX3 rs2106261 polymorphism increased AF risk in Asians (for example, allelic contrast: OR [95% CI]: 1.39 [1.31–1.47], P < 0.001). Similarly, strong associations were detected through stratified analysis using source of control and genotype methods (for example, allelic contrast: OR [95% CI]: 1.51 [1.38–1.64], P < 0.001 for HB; OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for PB; OR [95% CI]: 1.55 [1.33–1.80], P < 0.001 for TaqMan; OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for high-resolution melt). In contrast, an inverse relationship was observed between the PRRX1 rs3903239 polymorphism and AF risk (C-allele vs. T-allele: OR [95% CI]: 0.83 [0.77–0.99], P = 0.036; CT vs. TT: OR [95% CI]: 0.79 [0.67–0.94], P = 0.006). No obvious evidence of publication bias was observed.

Conclusion In summary, our study suggests that the ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms are associated with AF risk, and larger case-controls must be carried out to confirm the above conclusions.

Background

Atrial fibrillation (AF) is a common form of arrhythmia, with an incidence of approximately 1% among adults worldwide[1, 2]. Previous studies have demonstrated that AF significantly increases the social and economic burden in both developed and developing countries[3]. Additionally, AF is the main cause of heart failure and stroke[4, 5]. A variety of structural heart diseases and systemic diseases are related to AF, including congestive heart failure, cardiomyopathy, pulmonary heart disease, essential hypertension, and hyperthyroidism[6, 7], while age, obesity, smoking, excessive drinking, and drug use also contribute to the development of AF[6, 8]. Thus far, the exact pathogenesis of AF remains unclear. However, many studies have suggested that genetic factors play an important role in AF occurrence and development[9]. In fact, common genetic variants (a multitude of single-nucleotide polymorphisms [SNPs]) associated with AF have been detected in genome-wide association studies (GWASs)[10-12], such as endothelial nitric oxide synthase 786T/C, CYP11B2 rs1799998, KCNE1 G38S, and caveolin-1 rs3807989[9, 13-15].

Two independent GWASs identified significant associations between rs2106261 and rs7193343 polymorphisms in the zinc finger homeobox 3 (ZFHX3) gene and AF susceptibility in various populations of European ancestry[16, 17]. ZFHX3 is located on chromosome 16q22. Benjamin et al.[16] indicated that the rs2106261 SNP in ZFHX3 was associated with AF (OR = 1.19; P = 2.76 × 10-7). At the same time, Gudbjartsson et al.[17] assessed another SNP (rs7193343) in ZFHX3, which was confirmed to be related to AF in Icelandic individuals (OR = 1.21, P = 1.4 × 10-10).

Paired homeobox 1 (PRRX1) encodes a homeodomain transcription factor that is highly expressed in the developing heart[18]. Fetal lung vascular development was impaired in a PRRX1 knockout mouse model[19]. The expression pattern of PRRX1 in mouse atria was evaluated; both genes were overexpressed in the left atrium when compared to the right atrium[20]. These results suggest that PRRX1 may play a vital role in heart diseases, including AF. In a subsequent meta-GWAS, the PRRX1 rs3903239 variant was associated with AF risk (P = 8.4 × 10-14)[21].

Taking into consideration the more precise assessment of the ZFHX3 rs2106261 and PRRX1 rs3903239 variants in AF risk, we must first perform a meta-analysis of all eligible case-control studies to confirm the associations[18, 22-27].

Materials And Methods

Identification and eligibility of relevant studies

The PubMed, Embase, and Wanfang databases were selected. The last search was conducted on July 20, 2020, with the search terms including the keywords “ZFHX3” or “zinc finger homeobox 3,” “PRRX1” or “paired related homeobox 1,” “polymorphism” or “variant”, and “atrial fibrillation.” After the above search, a total of 96 publications were identified, of which 7 met the inclusion criteria.

 

Criteria for inclusion and exclusion

The studies included in the analysis met all of the following conditions: (a) the study assessed the correlation between AF and the ZFHX3 rs2106261 polymorphism and/or PRRX1 rs3903239 polymorphism; (b) unpaired case-control studies; (c) sufficient genotypes in cases and controls. In addition, the following exclusion criteria were applied: (a) no control group; (b) no genotype frequency was available; and (c) previous publications were repeated.

 

Data extraction

Two of the authors extracted all data independently and complied with the selection criteria. The following items were collected: author’s name, ethnicity, year of publication, total of each genotype case/control number, country, source of control, genotyping methods, and Hardy-Weinberg equilibrium (HWE) of controls.

 

Quality score assessment (NOS)

NOS was used to assess the quality of each study and evaluate all aspects of the methodology, including case selection, comparability between groups, and exposure determination. The NOS has a total score of 0–9 stars. Research with a score greater than 7 is considered a high-quality study[28].

 

Statistical analysis

Based on the genotype frequencies of the cases and controls, the probability odds ratio (OR) with 95% confidence interval (CI) was used to measure the strength of association between the polymorphisms and AF. First, we conducted a subgroup analysis stratified by race. The source of the control subgroup analysis was carried out in two categories: population-based (PB) and hospital-based (HB).

The statistical significance of the OR was determined using the Z-test. The fixed and random effect models were used to calculate the combined OR. The Q-test (P ≥ 0.10) indicated heterogeneity between the included studies. If significant heterogeneity was detected, the random effects model (DerSimonian-Laird method) was used, but otherwise, the fixed effects model (Mantel-Haenszel method) was selected[29, 30]. For ZFHX3 rs2106261, we investigated the relationship between genetic variants and AF risk in allelic contrast (A-allele vs. G-allele), homozygote comparison (AA vs. GG), dominant genetic model (AA+AG vs. GG), heterozygote comparison (AG vs. GG), and recessive genetic models (AA vs. AG+GG). For PRRX1 rs3903239, C-allele vs. T-allele, CT vs. TT, CC vs. TT, CC+CT vs. TT, and CC vs. CT+TT models were applied. Funnel plot asymmetry was assessed using Begg’s test, and publication bias was assessed using Egger’s test[31]. The departure of frequencies from expectation under HWE was assessed using the χ2 test in the controls through the Pearson chi-square test (P <0.05 was considered significant)[32]. All statistical tests for this meta-analysis were performed using Stata software (version 11.0; StataCorp LP, College Station, TX, USA).

 

ZFHX3 and PRRX1 interaction networks

To fully understand the role and potential functional partners of ZFHX3 and PRRX1 in AF, the String online server (http://string-db.org/) was used to create a gene–gene interaction network of ZFHX3 and PRRX1(Figure 10)[33].

Results

Eligible studies

In total, 96 articles were collected from the PubMed, Embase, and Wanfang databases. Of these, 89 articles were excluded (25 unrelated articles, 4 systematic/meta-analysis studies, 1 with only a case group, 23 supplements, 30 duplications, and 6 with no original numbers for case/control groups) (Figure 1). Finally, seven articles were identified in the current analysis, including 3,674 cases and 8,990 healthy controls related to the ZFHX3 rs2106261 polymorphism and 1045 cases and 1407 controls for the PRRX1 rs3903239 polymorphism. The characteristics of each study are presented in Table 1. In addition, the minor allele frequency (MAF) reported from the five main worldwide populations in the 1000 Genomes Browser were checked (https://www.ncbi.nlm.nih.gov/snp/): African, European, East Asian, American, and South Asian populations (Figure 2); the MAF was similar to the average level in our current case and control groups.

 

ZFHX3 rs2106261 and AF risk

In the overall analysis, increased associations were observed in five genetic models in Asians: allelic contrast (OR [95% CI] = 1.39 [1.31–1.47], Pheterogeneity = 0.117, P < 0.001, Figure 3A), heterozygote comparison (OR [95% CI] = 1.37 [1.18–1.59], Pheterogeneity = 0.007, P < 0.001, Figure 3B), AA vs. CC (OR [95% CI] = 1.96 [1.73–2.21], Pheterogeneity = 0.317, P < 0.001, Figure 3C), the dominant model (OR [95% CI] = 1.49 [1.30–1.70], Pheterogeneity = 0.011, P < 0.001, Figure 3D), and AA vs. AC +CC (OR [95% CI] = 1.70 [1.52–1.90], Pheterogeneity = 0.643, P < 0.001, Figure 3E) (Table 2).

In the subgroup analysis by source of control, the ZFHX3 rs2106261 A allele or AA genotype acted as a risk factor in both HB and PB subgroups: HB (such as: A-allele vs. C-allele: OR [95% CI] = 1.51 [1.38–1.64], P(heterogeneity) = 0.302, P < 0.001; AC vs. CC: OR [95% CI] = 1.57 [1.38–1.79], P(heterogeneity) = 0.156, P < 0.001), and PB (such as: A-allele vs. C-allele: OR [95% CI] = 1.31 [1.21–1.41], P(heterogeneity) = 0.321, P < 0.001; AC vs. CC: OR [95% CI] = 1.17 [1.04–1.30], P(heterogeneity) = 0.584, P = 0.007) (Figure 3A,B, Table 2).

To detect whether an association exists between genotype methods and the ZFHX3 rs2106261 polymorphism, we performed the next step. Several positive results were found in TaqMan [in the allelic contrast (OR = 1.55, 95% CI = 1.33–1.80, P = 0.740 for heterogeneity, P < 0.001 for significance), the heterozygote comparison (OR =1.82, 95% CI = 1.46–2.27, P = 0.668 for heterogeneity, P < 0.001), AA vs. CC (OR = 2.06, 95% CI = 1.48–2.86, Pheterogeneity = 0.884, P < 0.001 for significance), the dominant model (OR [95% CI] = 1.87 [1.52–2.30], Pheterogeneity = 0.674, P < 0.001), and AA vs. AC +CC (OR [95% CI] = 1.51 [1.11–2.06], Pheterogeneity = 1.000, P < 0.001), high-resolution melt [in the allelic contrast (OR = 1.31, 95% CI = 1.21–1.41, Pheterogeneity = 0.647, P < 0.001), the heterozygote comparison (OR =1.17, 95% CI = 1.04–1.30, P = 0.584 for heterogeneity, P = 0.007 for significance), AA vs. CC (OR = 1.81, 95% CI = 1.54–2.12, Pheterogeneity = 0.417, P < 0.001), the dominant model (OR = 1.29, 95% CI = 1.16–1.43, P = 0.655 for heterogeneity, P < 0.001), and AA vs. AC +CC (OR = 1.68, 95% CI = 1.45–1.94, Pheterogeneity = 0.384, P < 0.001 for significance) and others (data not shown)] (Figure 4, Table 2).

 

PRRX1 rs3903239 and AF risk

Decreased associations were found in the heterozygote comparison (OR [95% CI] = 0.83 [0.77–0.99], Pheterogeneity = 0.522, P = 0.036, Figure 5A, Table 2) and dominant model (OR [95% CI] = 0.79 [0.67–0.94], P = 0.137 for heterogeneity, P = 0.006, Figure 5B, Table 2).

 

Sensitivity analysis and publication bias

A Begg’s funnel chart and Egger’s test were performed to assess publication bias. The results did not show any evidence of publication bias (for example, A-allele vs. G-allele, t = 1.46, P = 0.205 [Egger’s test]; z = 1.2, P = 0.23 [Begg’s test] for ZFHX3 rs2106261, Figure 6; C-allele vs. T-allele, t = 0.11, P = 0.933 [Egger’s test]; z = 0.0, P = 1.00 [Begg’s test] for PRRX1 rs3903239, Figure 7, Table 3). Sensitivity analysis was performed to assess the impact of each individual study on the combined OR by removing individual studies sequentially. The results suggested that no separate study significantly affected the overall OR for ZFHX3 rs2106261 (Figure 8).

 

ZFHX3 and PRRX1 interaction networks

A network of potential gene-gene interactions for ZFHX3 and PRRX1 genes was analyzed using the String online webpage (http://string-db.org/)[33] (Figure 9). Each gene showed ten significantly related genes.

Discussion

AF is considered to be the most common supraventricular arrhythmia, affecting up to 1% of the natural population[34, 35]. With increasing age, the prevalence rate increases year by year, and the incidence of elderly cases (≥80 years) can reach 8%[36]. Many types of heart and medical diseases that increase the risk of AF include arterial hypertension, cardiomyopathies, obstructive sleep apnea, and valve dysfunction[37, 38]. In addition, based on a recent meta-analysis of GWAS for AF[11], more than 100 AF risk genetic mutations and polymorphisms have been reported, indicating that gene polymorphisms are involved in the mechanisms of AF. An increasing number of studies have shown that genetic variation may promote the pathophysiology of AF by altering protein expression and function related to various cellular activities[39].

To date, several meta-analyses of gene polymorphisms and AF susceptibility have been published and have identified associations, including chromosome 4q25 variants, CYP11B2 -344T>C, and mink S38G[40-43]. A growing number of studies have identified polymorphisms in both ZFHX3 and PRRX1, although they have not been reported through meta-analysis studies that could clarify their associations with AF susceptibility.

The current analysis is the first to evaluate the associations between ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms and AF risk, involving 4719 cases and 10397 controls. We found a relationship between ZFHX3 rs2106261 and AF risk; in contrast, the PRRX1 rs3903239 polymorphism functioned as a protective factor in AF development. In other words, individuals carrying the A-allele of the ZFHX3 rs2106261 polymorphism may have a high risk of AF. Individuals with the CC or CT genotype of PRRX1 might have a decreased risk for AF. These findings can help reduce the incidence of AF through early detection and possible prevention measures. Different genes or polymorphisms in the same genes may play multiple functions in the progression of AF, and this may explain the above conclusions.

In addition, the online analysis system String was applied to predict the potential functional partners of the genes, which may help to expand the range of vision of related genes. Ten genes were identified. The three highest scores of associations were for cyclin-dependent kinase inhibitor 1A (CDKN1A) (score = 0.921), runt-related transcription factor 3 (RUNX3) (score = 0.918) and transforming growth factor-beta 1 (TGFβ1) (score = 0.900). Several studies have focused on CDKN1A and TGFβ1, but not RUNX3, in the development of AF. Further studies should focus on the above three potentially related genes and their common polymorphisms in AF. On the contrary, the scores of related genes for PRRX1 are generally low; however, this should be verified and indicated in future research.

Although positive results were found, limitations of the current study should also be discussed. First, the literature included is relatively new, and the number of published studies is not sufficiently large. Second, the gene–gene/gene–environment interactions (other covariates including family history, age, sex, disease stage, and lifestyle) and even variant polymorphisms in the same genes may regulate AF risk and must be included in further studies. Third, there are several types of AF, such as persistent, permanent, pathologic, idiopathic, and paroxysmal. If enough data exist for the different types of AF in the future, we could classify the analysis into subgroups prior to analyzing the association of the ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms with AF, which could offer more precise findings for faster translation to the clinic.

Conclusions

Our analysis illustrated that the ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms are associated with conspicuous AF risk in Asians. Therefore, well-designed and larger studies, including information about gene–gene/gene–environment interactions, are recommended to confirm the above conclusions.

Abbreviations

AF, atrial fibrillation; ZFHX3, zinc finger homeobox 3; PRRX1, paired related homeobox 1, confidence intervals; HWE, Hardy–Weinberg equilibrium; OR, odds ratio.

Declarations

Acknowledgements

Not applicable

 

Author Contribution

L.W. conceived the study. M.C. searched the databases and extracted the data. W.Z. analyzed the data. L.W. wrote the draft of the paper. W.Z. reviewed the manuscript.

Funding

None

 

Availability of data and materials

All data generated or analyzed in this study are included in this published article and its supplementary information files.

 

Ethics approval and consent to participate

Not applicable

 

Consent for publication

Not applicable

 

Competing interests

The authors proclaim that they have no competing interests.

References

1              Luo, X., Li, B., Zhang, D., Zhu, J., Qi, L. and Tang, Y. (2019) Efficacy and safety of the convergent atrial fibrillation procedure: a meta-analysis of observational studies. Interactive cardiovascular and thoracic surgery. 28, 169-176

2              Rahman, F., Kwan, G. F. and Benjamin, E. J. (2014) Global epidemiology of atrial fibrillation. Nature reviews. Cardiology. 11, 639-654

3              Wang, X. J., Ding, P., Wang, F. Z. and Liu, Q. (2019) Correlations of SCN5A gene polymorphisms with onset of atrial fibrillation. European review for medical and pharmacological sciences. 23, 7089-7097

4              Hu, D. and Sun, Y. (2008) Epidemiology, risk factors for stroke, and management of atrial fibrillation in China. Journal of the American College of Cardiology. 52, 865-868

5              Roberts, J. D. and Gollob, M. H. (2010) Impact of genetic discoveries on the classification of lone atrial fibrillation. Journal of the American College of Cardiology. 55, 705-712

6              Armaganijan, L., Lopes, R. D., Healey, J. S., Piccini, J. P., Nair, G. M. and Morillo, C. A. (2011) Do omega-3 fatty acids prevent atrial fibrillation after open heart surgery? A meta-analysis of randomized controlled trials. Clinics (Sao Paulo, Brazil). 66, 1923-1928

7              Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., Halperin, J. L., Kay, G. N., Le Huezey, J. Y., Lowe, J. E., Olsson, S. B., Prystowsky, E. N., Tamargo, J. L. and Wann, L. S. (2011) 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Journal of the American College of Cardiology. 57, e101-198

8              Saritas, A., Kandis, H., Baltaci, D. and Erdem, I. (2011) Paroxysmal atrial fibrillation and intermittent left bundle branch block: an unusual electrocardiographic presentation of mad honey poisoning. Clinics (Sao Paulo, Brazil). 66, 1651-1653

9              Wang, X., Li, Y. and Li, Q. (2019) A comprehensive meta-analysis on relationship between CYP11B2 rs1799998 polymorphism and atrial fibrillation. Journal of electrocardiology. 52, 101-105

10           Nielsen, J. B., Thorolfsdottir, R. B., Fritsche, L. G., Zhou, W., Skov, M. W., Graham, S. E., Herron, T. J., McCarthy, S., Schmidt, E. M., Sveinbjornsson, G., Surakka, I., Mathis, M. R., Yamazaki, M., Crawford, R. D., Gabrielsen, M. E., Skogholt, A. H., Holmen, O. L., Lin, M., Wolford, B. N., Dey, R., Dalen, H., Sulem, P., Chung, J. H., Backman, J. D., Arnar, D. O., Thorsteinsdottir, U., Baras, A., O'Dushlaine, C., Holst, A. G., Wen, X., Hornsby, W., Dewey, F. E., Boehnke, M., Kheterpal, S., Mukherjee, B., Lee, S., Kang, H. M., Holm, H., Kitzman, J., Shavit, J. A., Jalife, J., Brummett, C. M., Teslovich, T. M., Carey, D. J., Gudbjartsson, D. F., Stefansson, K., Abecasis, G. R., Hveem, K. and Willer, C. J. (2018) Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nature genetics. 50, 1234-1239

11           Roselli, C., Chaffin, M. D., Weng, L. C., Aeschbacher, S., Ahlberg, G., Albert, C. M., Almgren, P., Alonso, A., Anderson, C. D., Aragam, K. G., Arking, D. E., Barnard, J., Bartz, T. M., Benjamin, E. J., Bihlmeyer, N. A., Bis, J. C., Bloom, H. L., Boerwinkle, E., Bottinger, E. B., Brody, J. A., Calkins, H., Campbell, A., Cappola, T. P., Carlquist, J., Chasman, D. I., Chen, L. Y., Chen, Y. I., Choi, E. K., Choi, S. H., Christophersen, I. E., Chung, M. K., Cole, J. W., Conen, D., Cook, J., Crijns, H. J., Cutler, M. J., Damrauer, S. M., Daniels, B. R., Darbar, D., Delgado, G., Denny, J. C., Dichgans, M., Dörr, M., Dudink, E. A., Dudley, S. C., Esa, N., Esko, T., Eskola, M., Fatkin, D., Felix, S. B., Ford, I., Franco, O. H., Geelhoed, B., Grewal, R. P., Gudnason, V., Guo, X., Gupta, N., Gustafsson, S., Gutmann, R., Hamsten, A., Harris, T. B., Hayward, C., Heckbert, S. R., Hernesniemi, J., Hocking, L. J., Hofman, A., Horimoto, A., Huang, J., Huang, P. L., Huffman, J., Ingelsson, E., Ipek, E. G., Ito, K., Jimenez-Conde, J., Johnson, R., Jukema, J. W., Kääb, S., Kähönen, M., Kamatani, Y., Kane, J. P., Kastrati, A., Kathiresan, S., Katschnig-Winter, P., Kavousi, M., Kessler, T., Kietselaer, B. L., Kirchhof, P., Kleber, M. E., Knight, S., Krieger, J. E., Kubo, M., Launer, L. J., Laurikka, J., Lehtimäki, T., Leineweber, K., Lemaitre, R. N., Li, M., Lim, H. E., Lin, H. J., Lin, H., Lind, L., Lindgren, C. M., Lokki, M. L., London, B., Loos, R. J. F., Low, S. K., Lu, Y., Lyytikäinen, L. P., Macfarlane, P. W., Magnusson, P. K., Mahajan, A., Malik, R., Mansur, A. J., Marcus, G. M., Margolin, L., Margulies, K. B., März, W., McManus, D. D., Melander, O., Mohanty, S., Montgomery, J. A., Morley, M. P., Morris, A. P., Müller-Nurasyid, M., Natale, A., Nazarian, S., Neumann, B., Newton-Cheh, C., Niemeijer, M. N., Nikus, K., Nilsson, P., Noordam, R., Oellers, H., Olesen, M. S., Orho-Melander, M., Padmanabhan, S., Pak, H. N., Paré, G., Pedersen, N. L., Pera, J., Pereira, A., Porteous, D., Psaty, B. M., Pulit, S. L., Pullinger, C. R., Rader, D. J., Refsgaard, L., Ribasés, M., Ridker, P. M., Rienstra, M., Risch, L., Roden, D. M., Rosand, J., Rosenberg, M. A., Rost, N., Rotter, J. I., Saba, S., Sandhu, R. K., Schnabel, R. B., Schramm, K., Schunkert, H., Schurman, C., Scott, S. A., Seppälä, I., Shaffer, C., Shah, S., Shalaby, A. A., Shim, J., Shoemaker, M. B., Siland, J. E., Sinisalo, J., Sinner, M. F., Slowik, A., Smith, A. V., Smith, B. H., Smith, J. G., Smith, J. D., Smith, N. L., Soliman, E. Z., Sotoodehnia, N., Stricker, B. H., Sun, A., Sun, H., Svendsen, J. H., Tanaka, T., Tanriverdi, K., Taylor, K. D., Teder-Laving, M., Teumer, A., Thériault, S., Trompet, S., Tucker, N. R., Tveit, A., Uitterlinden, A. G., Van Der Harst, P., Van Gelder, I. C., Van Wagoner, D. R., Verweij, N., Vlachopoulou, E., Völker, U., Wang, B., Weeke, P. E., Weijs, B., Weiss, R., Weiss, S., Wells, Q. S., Wiggins, K. L., Wong, J. A., Woo, D., Worrall, B. B., Yang, P. S., Yao, J., Yoneda, Z. T., Zeller, T., Zeng, L., Lubitz, S. A., Lunetta, K. L. and Ellinor, P. T. (2018) Multi-ethnic genome-wide association study for atrial fibrillation. Nature genetics. 50, 1225-1233

12           Wang, B., Lunetta, K. L., Dupuis, J., Lubitz, S. A., Trinquart, L., Yao, L., Ellinor, P. T., Benjamin, E. J. and Lin, H. (2020) Integrative Omics Approach to Identifying Genes Associated With Atrial Fibrillation. Circulation research. 126, 350-360

13           Jia, W., Qi, X. and Li, Q. (2016) Association Between Rs3807989 Polymorphism in Caveolin-1 (CAV1) Gene and Atrial Fibrillation: A Meta-Analysis. Medical science monitor : international medical journal of experimental and clinical research. 22, 3961-3966

14           Jiang, Y. F., Chen, M., Zhang, N. N., Yang, H. J., Xu, L. B., Rui, Q., Sun, S. J., Yao, J. L. and Zhou, Y. F. (2017) Association between KCNE1 G38S gene polymorphism and risk of atrial fibrillation: A PRISMA-compliant meta-analysis. Medicine. 96, e7253

15           Zhang, Y. Q., Jiang, Y. F., Hong, L., Yang, H. J., Zhang, J. Y. and Zhou, Y. F. (2019) Role of Endothelial Nitric Oxide Synthase Polymorphisms in Atrial Fibrillation: A PRISMA-Compliant Meta-Analysis. Medical science monitor : international medical journal of experimental and clinical research. 25, 2687-2694

16           Benjamin, E. J., Rice, K. M., Arking, D. E., Pfeufer, A., van Noord, C., Smith, A. V., Schnabel, R. B., Bis, J. C., Boerwinkle, E., Sinner, M. F., Dehghan, A., Lubitz, S. A., D'Agostino, R. B., Sr., Lumley, T., Ehret, G. B., Heeringa, J., Aspelund, T., Newton-Cheh, C., Larson, M. G., Marciante, K. D., Soliman, E. Z., Rivadeneira, F., Wang, T. J., Eiríksdottir, G., Levy, D., Psaty, B. M., Li, M., Chamberlain, A. M., Hofman, A., Vasan, R. S., Harris, T. B., Rotter, J. I., Kao, W. H., Agarwal, S. K., Stricker, B. H., Wang, K., Launer, L. J., Smith, N. L., Chakravarti, A., Uitterlinden, A. G., Wolf, P. A., Sotoodehnia, N., Köttgen, A., van Duijn, C. M., Meitinger, T., Mueller, M., Perz, S., Steinbeck, G., Wichmann, H. E., Lunetta, K. L., Heckbert, S. R., Gudnason, V., Alonso, A., Kääb, S., Ellinor, P. T. and Witteman, J. C. (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nature genetics. 41, 879-881

17           Gudbjartsson, D. F., Holm, H., Gretarsdottir, S., Thorleifsson, G., Walters, G. B., Thorgeirsson, G., Gulcher, J., Mathiesen, E. B., Njølstad, I., Nyrnes, A., Wilsgaard, T., Hald, E. M., Hveem, K., Stoltenberg, C., Kucera, G., Stubblefield, T., Carter, S., Roden, D., Ng, M. C., Baum, L., So, W. Y., Wong, K. S., Chan, J. C., Gieger, C., Wichmann, H. E., Gschwendtner, A., Dichgans, M., Kuhlenbäumer, G., Berger, K., Ringelstein, E. B., Bevan, S., Markus, H. S., Kostulas, K., Hillert, J., Sveinbjörnsdóttir, S., Valdimarsson, E. M., Løchen, M. L., Ma, R. C., Darbar, D., Kong, A., Arnar, D. O., Thorsteinsdottir, U. and Stefansson, K. (2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nature genetics. 41, 876-878

18           Kalinderi, K., Fragakis, N., Sotiriadou, M., Oriol, D. I., Katritsis, D., Letsas, K., Korantzopoulos, P., Karamanolis, A., Pagourelias, E., Antoniadis, A. P., Dalampyras, P., Mavroudi, M., Kyriakou, P., Papadopoulos, C., Skeberis, V., Vassilikos, V. and Fidani, L. (2018) PRRX1 Rs3903239 polymorphism and atrial fibrillation in a Greek population. Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese. 59, 298-299

19           Ihida-Stansbury, K., McKean, D. M., Gebb, S. A., Martin, J. F., Stevens, T., Nemenoff, R., Akeson, A., Vaughn, J. and Jones, P. L. (2004) Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circulation research. 94, 1507-1514

20           Dolmatova, E., Cooper, R. R. and Ellinor, P. T. (2012) Prrx1 Interacts with and Inhibits Pitx2 Function. Circulation. 126, A19452

21           Ellinor, P. T., Lunetta, K. L., Albert, C. M., Glazer, N. L., Ritchie, M. D., Smith, A. V., Arking, D. E., Müller-Nurasyid, M., Krijthe, B. P., Lubitz, S. A., Bis, J. C., Chung, M. K., Dörr, M., Ozaki, K., Roberts, J. D., Smith, J. G., Pfeufer, A., Sinner, M. F., Lohman, K., Ding, J., Smith, N. L., Smith, J. D., Rienstra, M., Rice, K. M., Van Wagoner, D. R., Magnani, J. W., Wakili, R., Clauss, S., Rotter, J. I., Steinbeck, G., Launer, L. J., Davies, R. W., Borkovich, M., Harris, T. B., Lin, H., Völker, U., Völzke, H., Milan, D. J., Hofman, A., Boerwinkle, E., Chen, L. Y., Soliman, E. Z., Voight, B. F., Li, G., Chakravarti, A., Kubo, M., Tedrow, U. B., Rose, L. M., Ridker, P. M., Conen, D., Tsunoda, T., Furukawa, T., Sotoodehnia, N., Xu, S., Kamatani, N., Levy, D., Nakamura, Y., Parvez, B., Mahida, S., Furie, K. L., Rosand, J., Muhammad, R., Psaty, B. M., Meitinger, T., Perz, S., Wichmann, H. E., Witteman, J. C., Kao, W. H., Kathiresan, S., Roden, D. M., Uitterlinden, A. G., Rivadeneira, F., McKnight, B., Sjögren, M., Newman, A. B., Liu, Y., Gollob, M. H., Melander, O., Tanaka, T., Stricker, B. H., Felix, S. B., Alonso, A., Darbar, D., Barnard, J., Chasman, D. I., Heckbert, S. R., Benjamin, E. J., Gudnason, V. and Kääb, S. (2012) Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nature genetics. 44, 670-675

22           Huang, Y., Wang, C., Yao, Y., Zuo, X., Chen, S., Xu, C., Zhang, H., Lu, Q., Chang, L., Wang, F., Wang, P., Zhang, R., Hu, Z., Song, Q., Yang, X., Li, C., Li, S., Zhao, Y., Yang, Q., Yin, D., Wang, X., Si, W., Li, X., Xiong, X., Wang, D., Huang, Y., Luo, C., Li, J., Wang, J., Chen, J., Wang, L., Wang, L., Han, M., Ye, J., Chen, F., Liu, J., Liu, Y., Wu, G., Yang, B., Cheng, X., Liao, Y., Wu, Y., Ke, T., Chen, Q., Tu, X., Elston, R., Rao, S., Yang, Y., Xia, Y. and Wang, Q. K. (2015) Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation. PLoS genetics. 11, e1005393

23           Liu, Y., Ni, B., Lin, Y., Chen, X. G., Chen, M., Hu, Z. and Zhang, F. (2015) The rs3807989 G/A polymorphism in CAV1 is associated with the risk of atrial fibrillation in Chinese Han populations. Pacing and clinical electrophysiology : PACE. 38, 164-170

24           Liu, Y., Ni, B., Lin, Y., Chen, X. G., Fang, Z., Zhao, L., Hu, Z. and Zhang, F. (2014) Genetic polymorphisms in ZFHX3 are associated with atrial fibrillation in a Chinese Han population. PloS one. 9, e101318

25           Okubo, Y., Nakano, Y., Ochi, H., Onohara, Y., Tokuyama, T., Motoda, C., Amioka, M., Hironobe, N., Okamura, S., Ikeuchi, Y., Miyauchi, S., Chayama, K. and Kihara, Y. (2020) Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Heart rhythm. 17, 699-705

26           Tomomori, S., Nakano, Y., Ochi, H., Onohara, Y., Sairaku, A., Tokuyama, T., Motoda, C., Matsumura, H., Amioka, M., Hironobe, N., Ookubo, Y., Okamura, S., Kawazoe, H., Chayama, K. and Kihara, Y. (2018) Maintenance of low inflammation level by the ZFHX3 SNP rs2106261 minor allele contributes to reduced atrial fibrillation recurrence after pulmonary vein isolation. PloS one. 13, e0203281

27           Zaw, K. T. T., Sato, N., Ikeda, S., Thu, K. S., Mieno, M. N., Arai, T., Mori, S., Furukawa, T., Sasano, T., Sawabe, M., Tanaka, M. and Muramatsu, M. (2017) Association of ZFHX3 gene variation with atrial fibrillation, cerebral infarction, and lung thromboembolism: An autopsy study. Journal of cardiology. 70, 180-184

28           Wells, G., Shea, B., O'Connell, D., Robertson, J., Peterson, J., Welch, V., Losos, M. and Tugwell, P. (21 Oct, 2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In Ottawa Health Research Institute. ed.)^eds.)

29           DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Controlled clinical trials. 7, 177-188

30           Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute. 22, 719-748

31           Hayashino, Y., Noguchi, Y. and Fukui, T. (2005) Systematic evaluation and comparison of statistical tests for publication bias. Journal of epidemiology. 15, 235-243

32           Napolioni, V. (2014) The relevance of checking population allele frequencies and Hardy-Weinberg Equilibrium in genetic association studies: the case of SLC6A4 5-HTTLPR polymorphism in a Chinese Han Irritable Bowel Syndrome association study. Immunology letters. 162, 276-278

33           Shao, H. B., Ren, K., Gao, S. L., Zou, J. G., Mi, Y. Y., Zhang, L. F., Zuo, L., Okada, A. and Yasui, T. (2018) Human methionine synthase A2756G polymorphism increases susceptibility to prostate cancer. Aging. 10, 1776-1788

34           Anderson, J. L., Halperin, J. L., Albert, N. M., Bozkurt, B., Brindis, R. G., Curtis, L. H., DeMets, D., Guyton, R. A., Hochman, J. S., Kovacs, R. J., Ohman, E. M., Pressler, S. J., Sellke, F. W., Shen, W. K., Wann, L. S., Curtis, A. B., Ellenbogen, K. A., Estes, N. A., 3rd, Ezekowitz, M. D., Jackman, W. M., January, C. T., Lowe, J. E., Page, R. L., Slotwiner, D. J., Stevenson, W. G., Tracy, C. M., Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., Le Heuzey, J. Y., Kay, G. N., Olsson, S. B., Prystowsky, E. N., Tamargo, J. L. and Wann, S. (2013) Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 61, 1935-1944

35           Piccini, J. P., Hammill, B. G., Sinner, M. F., Jensen, P. N., Hernandez, A. F., Heckbert, S. R., Benjamin, E. J. and Curtis, L. H. (2012) Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. Circulation. Cardiovascular quality and outcomes. 5, 85-93

36           Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V. and Singer, D. E. (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. Jama. 285, 2370-2375

37           Benjamin, E. J., Levy, D., Vaziri, S. M., D'Agostino, R. B., Belanger, A. J. and Wolf, P. A. (1994) Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. Jama. 271, 840-844

38           Gami, A. S., Pressman, G., Caples, S. M., Kanagala, R., Gard, J. J., Davison, D. E., Malouf, J. F., Ammash, N. M., Friedman, P. A. and Somers, V. K. (2004) Association of atrial fibrillation and obstructive sleep apnea. Circulation. 110, 364-367

39           Creemers, E. E., Wilde, A. A. and Pinto, Y. M. (2011) Heart failure: advances through genomics. Nature reviews. Genetics. 12, 357-362

40           Fu, X., Ma, X., Zhong, L. and Song, Z. (2015) Relationship between CYP11B2-344T>C polymorphsim and atrial fibrillation: A meta-analysis. Journal of the renin-angiotensin-aldosterone system : JRAAS. 16, 185-188

41           He, J., Zhu, W., Yu, Y., Hu, J. and Hong, K. (2018) Variant rs2200733 and rs10033464 on chromosome 4q25 are associated with increased risk of atrial fibrillation after catheter ablation: Evidence from a meta-analysis. Cardiology journal. 25, 628-638

42           Li, Y. Y., Wang, L. S. and Lu, X. Z. (2014) Mink S38G gene polymorphism and atrial fibrillation in the Chinese population: a meta-analysis of 1871 participants. TheScientificWorldJournal. 2014, 768681

43           Rattanawong, P., Chenbhanich, J., Vutthikraivit, W. and Chongsathidkiet, P. (2018) A Chromosome 4q25 Variant is Associated with Atrial Fibrillation Recurrence After Catheter Ablation: A Systematic Review and Meta-Analysis. Journal of atrial fibrillation. 10, 1666

Tables

Table 1 Characteristics of studies of ZFHX3 and PRRX1 genes’ two common polymorphisms and atrial fibrillation risk included in our meta-analysis

Author

Year

Country

Ethnicity

Case

Control

Case




Control



SOC

HWE

Genotype

NOS

AF

ZFHX3 rs2106261





AA

AG

GG


AA

AG

GG





type

Okubo

2020

Japan

Asian

289

287

46

143

99


32

109

146

HB

0.096

TaqMan

8

NA

Zaw

2017

Japan

Asian

411

1765

54

182

175


151

725

889

HB

0.853

Illumina

8

NA

Huang

2015

China

Asian

569

1996

99

237

233


216

869

911

PB

0.683

HRM

9

A

Huang

2015

China

Asian

641

1692

103

279

259


197

707

788

PB

0.048

HRM

9

A

Huang

2015

China

Asian

810

1627

128

369

313


149

726

752

PB

0.163

HRM

9

A

Liu

2014

China

Asian

593

996

110

299

184


99

446

451

HB

0.460

MassARRAY

8

paroxysmal AF

Tomomori

2018

Japan

Asian

362

627

50

181

131


60

250

317

HB

0.298

TaqMan

8

paroxysmal AF

PRRX1 rs3903239





CC

CT

TT


CC

CT

TT





 

Kalinderi

2018

Greece

European

167

124

15

62

90


8

49

67

PB

0.809

RCR-RFLP

7

NA

Okubo

2020

Japan

Asian

287

287

29

139

119


59

143

85

HB

0.935

TaqMan

8

NA

Liu

2015

China

Asian

591

996

79

263

249


155

463

378

HB

0.503

MassARRAY

8

Mixed

HB: hospital-based; PB: population-based; SOC; source of control; PCR-RFLP: polymerase chain reaction followed by restriction fragment length polymorphism; HRM: High-Resolution Melt; HWE: Hardy-Weinberg equilibrium of control group; NA: not available.

 

Table 2 Stratified analyses of ZFHX3 and PRRX1 genes’ two common polymorphisms on atrial fibrillation risk

 Ph: value of Q-test for heterogeneity test; P: Z-test for the statistical significance of the OR

 

Variables

N

Case/

M-allele vs. W-allele


MW vs. WW


MM+MW vs. WW


MM vs. WW


MM vs. MW+WW

ZFHX3 rs2106261

Control

OR(95%CI)     Ph   P     I2


OR(95%CI)       Ph   P   I2


OR(95%CI)       Ph   P   I2


OR(95%CI)       Ph   P   I2


OR(95%CI)       Ph   P   I2

Total

7

3674/8990

1.39(1.31-1.47)0.117 0.000 41.1%


1.37(1.18-1.59)0.007 0.000 66.5%


1.49(1.30-1.70)0.011 0.000 63.6%


1.96(1.73-2.21)0.317 0.000 14.8%


1.70(1.52-1.90)0.643 0.000 0.0%

SOC












HB

4

1654/3675

1.51(1.38-1.64)0.302 0.000 17.7%


1.57(1.38-1.79)0.156 0.000 42.5%


1.68(1.49-1.90)0.151 0.000 43.4%


2.20(1.82-2.66)0.388 0.000 0.7%


1.73(1.45-2.07)0.520 0.000 0.0%

PB

3

2020/5315

1.31(1.21-1.41)0.321 0.000 0.0%


1.17(1.04-1.30)0.584 0.007 0.0%


1.29(1.16-1.43)0.655 0.000 0.0%


1.81(1.54-2.12)0.417 0.000 0.0%


1.68(1.45-1.94)0.384 0.000 0.0%

Genotype












TaqMan

2

650/914

1.55(1.33-1.80) 0.740 0.000 0.0%


1.82(1.46-2.27) 0.668 0.000 0.0%


1.87(1.52-2.30) 0.674 0.000 0.0%


2.06(1.48-2.86) 0.884 0.000 0.0%


1.51(1.11-2.06) 1.000 0.000 0.0%

Other

2

1004/2761

1.47(1.21-1.80)0.068 0.000 70.1%


1.45(1.24-1.70)0.123 0.000 58.1%


1.59(1.19-2.12)0.057 0.002 72.4%


1.47(1.21-1.80)0.095 0.000 64.1%


1.86(1.50-2.32)0.279 0.000 14.5%

HRM

3

2020/5315

1.31(1.21-1.41)0.647 0.000 0.0%


1.17(1.04-1.30)0.584 0.007 0.0%


1.29(1.16-1.43)0.655 0.000 0.0%


1.81(1.54-2.12)0.417 0.000 0.0%


1.68(1.45-1.94)0.384 0.000 0.4%

PRRX1 rs3903239










Total

3

1045/1407

0.82(0.63-1.07)0.023 0.147 73.5%


0.83(0.77-0.99)0.522 0.036 0.0%


0.79(0.67-0.94)0.137 0.006 49.7%


0.68(0.35-1.32)0.011 0.253 78.0%


0.75(0.42-1.31)0.023 0.310 73.5%

 

 

Table 3 Publication bias tests (Begg’s funnel plot and Egger’s test for publication bias test) 

for ZFHX3 and PRRX1 genes’ two common polymorphisms (rs2106261 and rs3903239)

Egger's test







Begg's test


Genetic type

Coefficient

Standard error

t

P value

95%CI of intercept


z

P value

ZFHX3 rs2106261









A-allele vs. G-allele

3.372

2.313

1.46

0.205

(-2.573- 9.317)


1.2

0.23

AG vs. GG

2.523

1.507

1.67

0.155

(-1.351- 6.398)


1.2

0.23

AA+AG vs. GG

2.744

1.543

1.78

0.133

(-1.223- 6.712)


1.2

0.23

AA vs. GG

1.671

0.977

1.71

0.148

(-0.840- 4.182)


1.2

0.23

AA vs. AG+GG

1.690

1.083

1.56

0.179

(-1.094- 4.475)


1.2

0.23

PRRX1 rs3903239









C-allele vs. T-allele

1.034

9.771

0.11

0.933

(-123.117-125.186)

0.0

1.00

CT vs. TT

0.496

7.243

0.07

0.956

(-91.538-92.531)


0.0

1.00

CC+CT vs. TT

0.471

7.530

0.06

0.960

(-95.213-96.154)


0.0

1.00

CC vs. TT

0.251

3.834

0.07

0.958

(-48.468-48.971)


0.0

1.00

CC vs. CT+TT

0.290

4.031

0.07

0.954

(-50.938-51.519)


0.0

1.00