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Abstract

The aim of camouflaged object detection (COD) is to identify objects that are
hidden or camouflaged in the visual scene. Since camouflaged objects have fuzzy
boundaries and are very similar to their surroundings, the task of COD, espe-
cially multi-scale COD, is still challenging. Based on ERRNet, we proposed a
multi-scale feature enhanced network (MSFENet). Specifically, we have developed
a multi-scale feature enhancement module (MFEM), which adopts a coarse-to-
fine manner to improve the ability of a single layer to represent multi-scale
information. This module can extract more complete large-scale target feature
information and retain much more small-scale target feature information and less
regional background information. The experimental results on publicly available
datasets show that our proposed MSFENet outperforms 10 mainstream methods.
The ablation studies show that the proposed module is effective in improving
the detection performance of multi-scale camouflaging objects and improving the
overall performance. Compared with ERRNet, the average Sα,Eφ and F

w
β scores

of the MSFENet are 1.2%, 0.6% and 2.5% higher for the multi-scale COD task.
In addition, the proposed MSFENet can be directly used for real-time detection
due to its fast inference capability (i.e. 75.3 frames per second).

Keywords: Camouflaged object detection, Multi-scale feature enhancement,
Convolutional neural network, Fast detection
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1 Introduction

The aim of camouflaged object detection (COD) is to identify and segment objects
that are concealed within visual scenes. Compared with other tasks (ordinary object
detection [16, 23] and salient object detection (SOD) [21, 30]), camouflaged object
detection is more challenging because the camouflaged object is highly similar to the
background in shape, texture, color, etc. Moreover, the visual recognition between its
edge and the surrounding environment is extremely low [25], as shown in the Fig.
1. Camouflaged object detection technology has many potential applications, such
as covid-19 lung infection segmentation [7], polyp segmentation [6], military multiple
camouflaged pattern design [9], locust detection [34], entertainment art [2], etc.

Fig. 1 Examples of camouflaged object, Gc is true mask map.

Traditional camouflaged object detection methods mainly describe the camouflage
target by making manual features (such as shape texture [24], edge [33], 3D [20] con-
vexity, etc.). However, when encountering complex scenes, these traditional methods
usually have the problems of long feature extraction time, poor mobility and low
detection performance. In recent years, with the emergence of large-scale camouflaged
object data sets [5] and the development of deep learning, researchers have proposed
many deep learning based camouflaged object detection models [5, 12, 26], whose per-
formance far exceeds traditional methods. However, the existing camouflaged object
detection models rarely consider the heuristics of biological vision research [19], ignore
the role of weak boundary cues and global feature cues, and do not model well the
cross-comparison stage between potential camouflaged objects and the surrounding
environment. To solve the above problems, researchers proposed ERRNet [12], which
enables the camouflaged object to be detected more accurately. However, ERRNet
performs poorly in detecting multi-scale camouflaged objects (see Table 4). The dif-
ficulty in detecting multi-scale camouflaged objects is that multi-scale camouflaged
objects have very large scale changes [21]. The current solution is to extract multi-scale
features so that the model can cope with scale changes and improve performance.

At present, the common multi-scale feature extraction modules (PPM [35], FAM
[17], ASPP [1], RFB [31], etc.) adopt parallel structures and expand receptive fields
through pooled layers of different sizes or convolutional layers with different dilation
rates to extract multi-scale features. However, microstructural information and small
target feature information may be lost in the pooling layer with large step length
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and size, and the convolutional layers utilizing a high dilation rate may cause the
extracted small target feature to contain too many features of the surrounding region,
which has a negative impact on the overall performance. The detection of multi-scale
camouflaged objects is still a challenge.

Based on ERRNet, we proposed a multi-scale feature enhanced network
(MSFENet), where a multi-scale feature enhanced module (MFEM) has been designed
to handle with the input features serially and characterize multi-scale features from
coarse to fine. Specifically, the MFEM module consists of a serial structure with mul-
tiple branches and a channel attention mechanism. Different branches include distinct
quantities of sub-sampling layers (i.e. max-pooling layer) and a receptive field exten-
sion module (RFEM). The number of sub-sampling layers is reduced by branch, so
that more microstructural information and small target feature information can be
retained. The RFEM module uses asymmetric convolution and dilatational convolu-
tion with lower dilation rate, which can enlarge the receptive field and reduce the
extraction of regional background features around small target features. The channel
attention mechanism can highlight channels that are highly responsive to camouflaged
objects.

On three publicly available COD datasets, we validated MSFENet’s performance
from multiple perspectives and compared it with 10 mainstream models. Experimental
results showed that the overall performance of MSFENet is better than those of the
popular methods. Compared with the baseline method of ERRNet, our method has
higher mean Sα, Eφ and FW

β scores on the whole Test data (ALL-Test). Specifically,
they have relative improvements of 1.7%, 1.3%, 2.8%, and absolute improvements of
1.3%, 1.1%, 1.9%, respectively. Furthermore, our method also has higher mean Sα,
Eφ and FW

β scores on the multi-scale target test subset (MT-Test). Specifically, they
have relative improvements of 1.6%, 0.7%, 3.9%, and absolute improvements of 1.2%,
0.7%, 2.5%, respectively. These results showed that our method has a better perfor-
mance of multi-scale camouflaged object detection. Further, the ablation experiments
showed that the modules of MFEM and RFEM are effective in improving the overall
performance. Our major contributions can be summed up as follows:

1. In order to solve the problem of poor multi-scale camouflaged object detection,
we proposed a multi-scale feature enhanced network (MSFENet). Experimental
results showed that the overall performance of MSFENet is better than that of
ten mainstream methods. What’s more, the MSFENet has outstanding detection
performance for multi-scale camouflage objects and can be directly used for real-
time detection due to its high inference speed (i.e. 75.3 frames per second).

2. We designed a multi-scale feature enhancement module (MFEM), which improves
the ability of a single layer to refine multi-scale information in a multi-granularity
way. MFEM can extract more complete large-scale target feature information
and retain more small target feature information with less regional background
information.
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2 Related works

2.1 Camouflaged object detection

Traditional camouflaged object detection methods mainly detect the camouflaged
object through various features made by hand (such as edge shape texture [24], edge
[33], 3D [20] convexity, etc.). Wei et al. [32] used the 45° search algorithm to calcu-
late the co-occurrence matrix of the camouflaged surface (target), and developed a
texture similarity metric to evaluate the effectiveness of the camouflage. Yan et al.
[11] proposed a method based on normalized gray aggregate histogram to evaluate the
camouflage effect of the edge between the hidden target and the background by using
the gray spatial distribution of the edge. Pan et al. [20] proposed a method based on
3D concavity to identify camouflaged objects in images. However, the handcrafted fea-
tures have limited expressive ability. When COD encounters challenging tasks (e.g.,
the foreground is highly similar to the background), the detection performance of
traditional methods is severely degraded.

Recently, many deep learning-based COD methods have been developed. Fan et
al. (SINet) [5] constructed a novel dataset (COD10K) for training and proposed the
first COD model inspired by animal hunting that can achieve accurate identifica-
tion. Sun et al. (C2FNet) [26] proposed a new COD model based on deep learning to
mine abundant contextual information and effectively integrate information between
layers to achieve good performance. Zhu et al. (TINet) [38] designed a new texture
perception refinement model to amplify the subtle texture differences between the
camouflaged area and the surrounding environment. Fan et al. (PraNet] [6] obtained a
good recognition effect by establishing the relationship between the camouflaged area
and the boundary cues. Zhuge et al. [39] proposed CubeNet, where an X-shaped con-
nection is constructed to perform feature fusion through a multi-input multi-output
structure to refine features and improve performance. Existing models of camou-
flaged object detection rarely consider the heuristics of biological vision research [19],
ignore the role of weak boundary cues and global feature cues, and do not well model
the cross-comparison stage between potential camouflaged objects and the surround-
ing environment. Recently, Ji et al. [12] tried to simulate the process by which the
human visual system cross-compares objects and proposed an edge-based reversible
recalibration network (ERRNet) to improve the accuracy of recognition. However,
ERRNet performs poorly when detecting multi-scale camouflaged objects. Multi-scale
camouflaged object detection remains a challenge.

2.2 Multi-scale feature extraction

In recent years, people have realized the importance of multi-scale feature extraction.
A standard convolutional layer can solely capture information at a single scale, but
the target often contains multiple scales, so extracting multi-scale features is con-
ducive to improving the performance of the network. Lin et al. [15] proposed the
feature pyramid network (FPN), which constructs multiple layers of features of dif-
ferent scales to detect targets of different scales. Wang et al. (SRM) [27] used the

4



Fig. 2 The overall pipeline of the proposed MSFENet.

pyramid pool module (PPM) [35] to produce multi-layer information, and then inte-
grated these multi-scale information to obtain global contextual feature information.
Influenced by the idea of PPM module, Liu et al. (PoolNet) [17] designed the fea-
ture aggregation module (FAM). Firstly, FAM transforms input features into multiple
information space by average pooling layers of different sizes. These multi-scale infor-
mation are then integrated through element-wise addition to capture rich contextual
information. The model then attempts to use multiple dilated convolutions to extract
multi-scale features. Li et al. (MGA) [14] used the atrous spatial pyramid pooling
module (ASPP) [1] to capture extensive connections in feature maps, acquiring multi-
scale context information. Fan et al. (SINetV2) [8] introduced the receptive field block
module (RFB) [31] to simulate the receptive field structure of the system of human
visual perception, thereby improving the performance.

However, the PPM module and the FAM module both acquire multi-scale fea-
ture information through down-sampling layers of different sizes, which may lead to
the loss of tiny structure information and small target feature information, and these
information can not be recovered. ASPP and RFB use dilated convolutions with dif-
ferent dilation rates to expand the receptive field through different branches. However,
large dilation rates may cause small target features to be mixed with many regional
background features, making small target localisation inaccurate.
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3 Methodology

3.1 Overview

Based on ERRNet [12], this paper proposed a multi-scale feature enhanced network
(MSFENet), for camouflaged object detection, which mainly includes: The backbone
networks ResNet-50 [10], Selective Edge Aggregation module (SEA) [12], our designed
Multi-scale Feature Enhancement Module (MFEM), Atrous Spatial Pyramid Pooling
module (ASPP) [1], and Reversible Re-calibration Unit (RRU)[12]. Fig. 2 shows the
overall pipeline of MSFENet. The backbone network ResNet-50 extracts five feature
hierarchy En-i, i ∈ {1, 2, 3, 4, 5} from the input image from low to high. The SEA
module extracts the rich edge feature information (Fe) contained in the low-level
features (En-1, En-2 ). The MFEM module mines the multi-scale feature information
in the high-level features (En-3, En-4, En-5 ) from coarse to fine. The extracted multi-
scale information contains more microstructural information and small target feature
information with less regional background information. The ASPP module extracts
the global feature information (Fg) contained in the highest level feature (En-5 ). The
RRU module is able to perform a coarse-to-fine reverse recalivity of the prediction
against the potential camouflaged region and its complementary region. Given an input
image I ∈ RH×W×3, the whole process of feature flow can be expressed as follows.

fi,i∈{1,2,3,4,5} = ResNetf50(I ∈ RH×W×3) (1)

Fe = SEA(f1, f2) (2)

f ′
3, f

′
4, f

′
5 = MFEM(f3, f4, f5) (3)

Fg = ASPP (f5) (4)

R5 = RRU(Fe, Fg, f
′
5) (5)

Ri,i∈{3,4} = RRU(Fe, Fg, f
′
5, Ri+1) (6)

Pi,i∈{3,4,5} = Conv(Ri) (7)

Pe = Conv(Fe), Pg = Conv(Fg) (8)

fi,i∈{1,2,3,4,5} represents the five layers of features extracted by ResNet-50 from the
input image I ∈ RH×W×3, and Fe represents the edge feature information extracted
by the SEA module. f ′

3, f
′
4, f

′
5 represent the multi-scale features of f3, f4 and f5

enhanced by MFEM module, Fg represents the global feature information extracted
by ASPP module, Ri,i∈{3,4,5} represents the feature information calibrated by RRU
module, Conv represents the 1×1 convolutional layer. Pi,i∈{3,4,5}, Pe, Pg represent the
generated prediction map information.

Finally, we use the true edge map Ge with the predicted edge map Pe to calculate
the edge loss Le, and the true mask map Gc with the predicted mask maps Pi,i∈{3,4,5}

and Pg to calculate the loss Li,i∈{3,4,5}, Lg, respectively.
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Fig. 3 The architecture of our MFEM module, where f is input and F is output.

3.2 Multi-scale feature enhancement module

The structure of the proposed MFEM is shown in Fig. 3. MFEM employs several
branches to sequentially process an input feature f , extracting and enhancing multi-
scale features progressively from coarse to fine. Specifically, MFEM includes four
branches. MFEM is comprised of four branches, each housing a 1×1 convolutional layer
tasked with channel size compression, thus reducing the amount of computation and
improving the computational efficiency. The compressed features can be represented
as {f i : i = 1, 2, 3, 4}, where i denotes the index of branch.

Following the acquisition of f1, we successively use three groups of 3×3 convolu-
tional layers and 2×2 maximum pooling layers to expand the receptive field. Then, the
output features are fed into the receptive field expansion module (RFEM) to further
expand the receptive field and obtain richer multi-scale context information, while
avoiding the extracted small target feature information is mixed with too much back-
ground information (the details of the RFEM module will be introduced in Section.
3.3). The procedure can be expressed as follows. C3 represents a 3×3 convolutional
layer, Pm represents a 2×2 Max pooling layer, and R represents the RFEM module.

f1
P = Pm(C3(Pm(C3(Pm(C3(f

1)))))) (9)

f1
R = R(f1

P ) (10)
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Although multiple Max pooling layers and RFEM modules expand the receptive
field, they lose detailed microstructural information, making the feature information
of large targets incomplete. In addition, multiple downsampling also leads to the loss
of feature information of small targets. To solve these problems, we combine f1

R and f2

through channel connections to recover the lost microstructural information of large
targets and the feature information of small targets, while maintaining the abundant
context information. Subsequently, a 3×3 convolutional layer is used to adjust the
output of the channels number of the fused features to 64. We then reduce the number
of downsampling layers and successively use two 3×3 convolutional layers plus 2×2
maximum pooling layers to model larger contexts and to characterize features at
different scales. The RFEM module is applied in a similar way in the second branch
and the process can be formulated follows, where up(f1

R, f
2) represents the bilinear

interpolation procedure that upsamples f1
R to the same size as f2 and Cat denotes

feature fusion. It is worth noting that because the second branch uses fewer down-
sampling layers, f2

R has richer semantic feature information than f1
R, i.e. f

2
R retains

finer microstructural information and more small target feature information.

f2
C = Cat(up(f1

R, f
2), f2) (11)

f2
P = Pm(C3(Pm(C3(C3(f

2
C))))) (12)

f2
R = R(f2

P ) (13)

Likewise, within the third and fourth branches, we progressively decrease the count
of subsampling layers and continuously aggregate high-resolution input features. Upon
acquiring the result from the fourth branch, we apply the channel attention mecha-
nism to highlight those channels that are highly sensitive to the camouflaged object.
The final output of MFEM F is formulated as follows, where f4

R denotes the output
result from the fourth branch, Pa is the global average pooling layer, C1 is the 1×1 con-
volutional layer, σ is the sigmoid function, and

⊗
is the element-wise multiplication

operation.

F = σ(C1(C1(Pa(f
4
R))))

⊗
f4
R (14)

3.3 Receptive field expansion module

In order to further enrich the context information obtained by each branch of MFEM
and make up for the reduction of receptive field caused by the reduced sub-sampling
layers of the second, third and fourth branches, we design the Receptive Field Expan-
sion Module (RFEM). RFEM utilizes the characteristics of the human visual system
(that is, a set of different sizes of receptive fields [31] plays a key role in object detec-
tion), and jointly uses dilated convolution with small dilation rate and asymmetric
convolution to expand the receptive field at the same time, so as to obtain richer
multi-scale context information and extract small object feature information with less
regional background information. The structure of the RFEM is shown in Fig. 4, and
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Fig. 4 The architecture of our RFEM module, where f is input and fR is output.

the whole process can be expressed as follows.

fR = C3(Cat(Cdil(f), Casy(f))) (15)

Where fR represents output feature of the RFEM, C3 represents 3×3 convolutional
layer, Cat represents connection operation, Cdil and Casy are dilated convolution and
asymmetric convolution, respectively. We set the dilation rate of the dilated convo-
lution to 2, because a smaller dilation rate can extract small object features with
less surrounding background information. Asymmetric convolutions include a stan-
dard 3×3 convolution, a vertical 3×1 convolution and a horizontal 1×3 convolution,
which share the same sliding window. The process of asymmetric convolution can be
formulated as follows:

Casy(x) = (C3×3

⊙
x)

⊕
(C3×1

⊙
x)

⊕
(C1×3

⊙
x) (16)

Where x represents the input feature,
⊙

represents the two-dimensional con-
volution operator, bigoplus represents element-wise summation, C3×3, C3×1, C1×3

represent the standard 3×3 convolution, the vertical 3×1 convolution and the
horizontal 1×3 convolution, respectively.

3.4 Loss function

For training multiple branches of the network, the joint supervision strategy of the
ERRnet [12] is utilized in this paper to acquire knowledge from the source domain
of multiple modalities (i.e. real mask map Gc and real edge map Ge). The total loss
function Lall is composed of two parts: the loss Le of the edge supervision of the
camouflaged object from the microscopic perspective and the loss Li,i∈{3,4,5,g} of the
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mask supervision of the camouflaged object.

Lall = Le +
∑

i∈{3,4,5,g}

Li (17)

As there is a large imbalance between positive and negative samples, which may
lead to a large deviation of the loss at the macro level in the learning process, only
weighted Binary Cross-Entropy (BCE) is used, i.e. Le = LW

BCE . Li,i∈{3,4,5,g} super-
vises the camouflaged object mask from micro and macro perspectives, consisting of
weighted Binary Cross-Entropy (BCE) and weighted Intersection-of-Union (IoU), i.e.
Li,i∈{3,4,5,g} = LW

iBCE
+ LW

iIoU
.

4 Experiments

4.1 Dataset

4.1.1 Total dataset

We evaluate the proposed MSFENet from multiple perspectives on three publicly
available datasets: COD10K [5], CAMO [13], and CHAMELEON [28]. The COD10K
dataset consists of 3040 training images and 2026 testing images. The CAMO dataset
consists of 1000 training images and 250 testing images. The CHAMOELEON dataset
consists of 76 testing images. The training set (Train) used in the experiments contains
the training images of COD10K and CAMO, and the test set (ALL-Test) contains the
testing images of COD10K, CAMO and CHAMOELEON.

4.1.2 Multiscale object test subset

In order to better evaluate the detection performance of the network for multi-scale
camouflaged objects, the ALL-Test is divided into a test subset of multi-scale target
(MT-Test) (containing multi-scale target images) and a test subset of non-multi-scale
target image (NoMT-Test) (the remaining part of the ALL-Test after removing multi-
scale target images), depending on whether the test set contains multi-scale targets
(i.e. large targets, small targets, multiple targets). The summary of the two test subsets
is shown in TABLE 1.

Table 1 Summary of different test sets on three COD datasets.

COD10K [5] CAMO [13] CHAMELEON [28] Total

ALL-Test 2026 250 76 2352

MT-Test 636 106 48 770

NoMT-Test 1390 144 48 1582
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4.2 Implementation details and Evaluation metrics

4.2.1 Implementation details

The proposed MSFENet is implemented in the Pytorch framework by using the stan-
dard Adam algorithm with RTX 4090 GPU acceleration. Before training, the size of
the input image (the corresponding real mask map Gc and the real edge map Ge) is
uniformly adjusted to 352×352. For data augmentation, only multi-scale input images
are used. The parameters of the backbone Resnet-50 are initialized using the weights
of the ImageNet pre-trained model, and the parameters of other layers are randomly
initialized. In the training phase, the epoch is set to 100 with a batch size of 36, and
the learning rate starts at 1e-4, divided by 10 every 50 epochs. The inference process
is carried out on the total test set (ALL-Test) and the multi-scale target subset (MT-
Test). All images are resized to 352×352 and fed to the trained model to obtain the
final prediction results without any post-processing. The inference speed reaches up
to 75.3 FPS.

4.2.2 Evaluation metrics

We choose the P3 of MSFENet as the final result, and use four widely used criteria to
quantitatively evaluate the performance of the model.

Structure-measure [3]: Sα calculates the structural similarity between P3 and Gc by
considering both the region part and the target part, where S0 and Sr are the structural
similarity of target sense and region sense, respectively. The similarity between S0 and
Sr is balanced by α=0.5.

Sα = α · S0(P3, Gc) + (1− α) · Sr(P3, Gc) (18)

Mean Enhanced-measure [4]: Eφ captures image-level statistics and local pixel
matching information via an Enhanced alignment matrix φFM .

Eφ =
1

W ×H

W∑

i=1

H∑

j=1

φFM (i, j) (19)

Weighted F-measure [18]: FW
β use a weighting function for the precision and recall

errors, where PrecisionW and RecallW denote weighted precision and recall with
β=0.3.

FW
β =

(1 + β2)× PrecisionW ×RecallW

β2 × PrecisionW ×RecallW
(20)

Mean Absolute Error [22]: M calculates the mean absolute error between the pre-
dicted map P3 and the true map Gc for all image pixels, where W and H denote the
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width and height of the real map Gc.

M =
1

W ×H

W∑

i=1

H∑

j=1

|P3(i, j)−Gc(i, j)| (21)

Table 2 Average Sα, Eφ, F
W
β

and M scores of our model and mainstream models on the three
COD datasets in All-Test.

methods year Sα ↑ Eφ ↑ FW
β ↑ M ↓

FPN [15] 2017 .725 .717 .495 .094

UNet++ [37] 2019 .639 .696 .414 .110

CPD [31] 2019 .775 .788 .588 .075

EGNet [36] 2019 .772 .806 .598 .070

SINet [5] 2020 .797 .823 .632 .065

PraNet [6] 2020 .806 .857 .685 .061

UCNet [29] 2021 .798 .869 .697 .057

TINet [38] 2021 .816 .870 .702 .056

CubeNet [39] 2022 .815 .877 .704 .054

ERRNet [12] 2022 .806 .870 .698 .056

Ours - .819 .881 .717 .053

4.3 Overall performance comparison

The experimental results of our MSFENet are compared with 10 mainstream methods:
(1) FPN [15], (2) UNet++ [37], (3) CPD [31], (4) EGNet [36], (5) SINet [5], (6) UCNet
[29], (7) PraNet [6], (8) TINet [38], (9) CubaNet [39] and (10) ERRNet [12]. Table 2
shows the average prediction results. The detailed results of the different methods on
three datasets are shown in Table 3. The overall performance of MSFENet is better
than that of these existing methods. Compared with the method of ERRNet, our
method has larger Sα, Eφ, F

W
β scores and smaller M scores, which indicates that our

method can identify the camouflaged object more accurately. Specifically, the average
Sα, Eφ and FW

β scores of our method on the three COD datasets are relative improved
by 1.7%, 1.3%, 2.8%, absolutely improved by 1.3%, 1.1%, 1.9%, respectively (Table
2).

4.4 Results of the multi-scale target test subset

In order to thoroughly evaluate our method for multi-scale camouflaged object detec-
tion, we conduct a series of tests on the multi-scale target test subset and compare
our proposed MSFENet with the baseline method of ERRNet. Firstly, according to
the parameter weights given by literature [12], we reproduce the ERRNet method and
evaluate its performance on multi-scale target Test subset (MT-Test), non-multi-scale
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Table 3 Performance comparison of our method with mainstream models.

methods year
COD10K [5] CAMO [13] CHAMELEON [28]

Sα ↑ Eφ ↑ FW
β ↑ M ↓ Sα ↑ Eφ ↑ FW

β ↑ M ↓ Sα ↑ Eφ ↑ FW
β ↑ M ↓

FPN [15] 2017 .697 .691 .411 .075 .684 .677 .483 .131 .794 .783 .590 .075

UNet+ [37] 2019 .623 .672 .350 .086 .599 .653 .392 .149 .695 .762 .501 .094

CPD [31] 2019 .747 .770 .508 .059 .726 .729 .550 .115 .853 .866 .706 .052

EGNet [36] 2019 .737 .779 .509 .056 .732 .768 .583 .104 .848 .870 .702 .050

SINet [5] 2020 .771 .806 .551 .051 .751 .771 .606 .100 .869 .891 .740 .044

PraNet [6] 2020 .789 .839 .629 .045 .769 .833 .663 .094 .860 .898 .763 .044

UCNet [29] 2021 .776 .867 .633 .042 .739 .811 .640 .094 .880 .929 .817 .036

TINet [38] 2021 .793 .848 .645 .043 .781 .847 .678 .087 .874 .916 .783 .038

CubeNet [39] 2022 .795 .864 .644 .041 .778 .838 .682 .085 .873 .928 .787 .037

ERRNet [12] 2022 .780 .867 .629 .044 .761 .817 .660 .088 .877 .927 .805 .036

Ours - .795 .871 .649 .041 .784 .843 .695 .084 .878 .93 .806 .034

Table 4 Average Sα, Eφ, F
W
β

and M scores of the ERRNet on All-Test, MT-Test and NoMT-Test.

ERRNet [12] Sα ↑ Eφ ↑ FW
β ↑ M ↓

All-Test .806 .870 .698 .056

MT-test .784 .836 .667 .073

NoMT-test .826 .900 .715 .045

Table 5 Average Sα, Eφ, F
W
β

and M scores of our method and the ERRNet on MT-Test.

methods Sα ↑ Eφ ↑ FW
β ↑ M ↓

ERRNet [12] .784 .836 .667 .073

Ours .797 .842 .692 .068

target test subset (NoMT-Test) and total test set (ALL-Test). The average results are
shown in Table 4.

Compared with the results on the ALL-Test, the average Sα, Eφ and FW
β scores

of the ERRNet on the MT-Test are relatively reduced by 2.6%, 3.8%, 4.5%, abso-
lutely reduced by 2.2%, 3.4%, 3.1%, respectively. The average M value is relatively
improved by 33.7% and absolutely improved by 1.7%. Since the MT-Test only contains
images of multi-scale camouflaged objects, this result shows that the ERRNet per-
forms poorly in detecting multi-scale camouflaged objects. Compared with the results
on the ALL-Test, the average Sα, Eφ and FW

β scores of the ERRNet on the NoMT-
Test are relatively improved by 2.6%, 3.5%, 2.5%, and absolutely improved by 2.0%,
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3%, 1.7%, respectively. The average M value is relatively reduced by 17.8% and abso-
lutely reduced by 1.1%. As the NoMT-Test does not contain multi-scale targets, this
result shows from another perspective that the ERRNet performs poorly in detecting
multi-scale camouflaged objects.

Similarly, the average results of our method on the MT-Test are shown in Table
5. Compared with the ERRNet, the average Sα, Eφ and FW

β scores of our method on
the MT-Test are relatively improved by 1.6%, 0.7%, 3.9%, and absolutely improved
by 1.2%, 0.6%, 2.5%, respectively. The average M value is relatively reduced by 7.6%
and absolutely reduced by 0.5%. These results indicate that our method outperforms
the baseline of ERRNet for the detection of multi-scale camouflaged objects.

Fig. 5 presents the prediction images of our method and ERRNet on six input
images, which representing different detection tasks of multi-scale camouflaged object.
For large target (i.e. Pic 1 and Pic 2) and medium-sized target (i.e. Pic 3), our method
can achieve a more comprehensive detection of the primary elements, compared with
the baseline ERRNet. Our method can locate the position of small target more accu-
rately than the ERRNet (i.e. Pic 4 and 5). In addition, our method can detect multiple
targets more completely than the ERRNet (i.e. Pic 6).

Fig. 5 Visual comparison of the predicted maps of our method and the ERRNet, where (a) input

denotes the input images , (b) Gc denotes the true mask map, and (c) ours denotes our method.
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4.5 Ablation studies

4.5.1 The effectiveness of MFEM

Table 6 Quantitative results for the ablation studies on the effectiveness of MFEM.

methods
COD10K [5] CAMO [13] CHAMELEON [28]

Sα ↑ Eφ ↑ FW
β ↑ M ↓ Sα ↑ Eφ ↑ FW

β ↑ M ↓ Sα ↑ Eφ ↑ FW
β ↑ M ↓

model base .779 .852 .616 .045 .767 .817 .657 .092 .854 .913 .761 .041

model RFB .786 .864 .634 .043 .775 .831 .676 .086 .870 .917 .786 .036

model ASPP .783 .861 .632 .044 .776 .833 .674 .087 .868 .924 .781 .038

model PPM .785 .862 .632 .044 .772 .827 .668 .088 .863 .919 .773 .040

model FAM .789 .868 .639 .042 .781 .838 .681 .086 .871 .926 .787 .035

model MFEM .795 .871 .649 .041 .784 .843 .695 .084 .878 .93 .806 .034

To verify whether the MFEM module can improve the performance, the MFEM
is replaced by a 3×3 convolutional layer, called model base. In addition, the MFEM
is replaced by RFB [31], ASPP [1], PPM [35] and FAM [17], denote as model RFB,
model ASPP, model PPM and model FAM, respectively. The experiment are carried
out on the All-Test and the results are shown in Table 6. It is obvious that model base
is the worst, the other four comparison models (i.e. model RFB, model ASPP,
model PPM and model FAM) are in the middle and our model MFEM is the best.
These results show that the MFEM module can better extract the multi-scale feature
information from the high-level features En-3, En-4, En-5, thus improving the COD
performance.

4.5.2 The effectiveness of RFEM

Table 7 Quantitative results for the ablation studies on the effectiveness of RFEM.

methods
COD10K [5] CAMO [13] CHAMELEON [28]

Sα ↑ Eφ ↑ FW
β ↑ M ↓ Sα ↑ Eφ ↑ FW

β ↑ M ↓ Sα ↑ Eφ ↑ FW
β ↑ M ↓

model DC
model DCMT .785 .858 .628 .045 .775 .831 .681 .085 .867 .915 .787 .036

model DCS .791 .866 .64 .043 .779 .838 .689 .084 .872 .921 .794 .035

model RFEM .795 .871 .649 .041 .784 .843 .695 .084 .878 .93 .806 .034

To verify the effectiveness of the RFEM module, for each branch of the MFEM,
we replace the RFEM module by a single dilated convolution, called model DC.
Diluted convolution with a high dilation rate could cause the extracted small target
feature information to carry too much regional background information, resulting in
performance degradation. In order to explore this effect, we divide model DC into
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model DCS (i.e. the dilation rate of dilated convolution in each branch is set to 2)
and model DCMT (i.e. the dilation rates of dilated convolution in four branches are
set to 1, 3, 5 and 7, respectively). The experiment results on the ALL-Test show that
model DCMT is the worst, model DCS is in the middle, and our model RFEM is the
best (Table 7). These result reveal that the RFEMmodule can better expand the recep-
tive field and extract more contextual information than a single dilated convolution,
while avoiding the performance degradation caused by the large dilation rate.

4.6 Discussions

To address the problem of multi-scale camouflaged object detection, we proposed
the multi-scale feature enhanced network (MSFENet). On the ALL-Test, our method
outperforms 10 mainstream methods in overall performance (including the baseline
method of ERRNet). On the multi-scale target test subset (MT-test), the multi-scale
camouflaged object detection performance of our method is also better than the base-
line method of ERRNet. This is attributed to the multi-scale enhancement module
(MFEM) proposed in this paper. The multi-scale feature information extracted by
the MFEM from high-level features (En-3, En-4, En-5 ) contains more microstructural
information and more small target feature information with less regional background
information, so that the model can better deal with scale changes. In addition, the
inference speed of our method reaches up to 75.3 frames per second (FPS), which is
much larger than the real-time inference speed of 30 FPS [12].

Our method initially relies on the ASPP module to extract global feature cues
for preliminary predictions, identifying potential areas where the camouflaged object
might exist. Then our method refines the coarse prediction. However, when encoun-
tering more complex scenes (such as cluttered background, large area occlusion,
discontinuous camouflaged object shape), the camouflaged object area may be located
inaccurately, resulting in poor detection performance although the preliminary predic-
tion is optimized by the network. In the future, we will further optimize our method
to solve this problem.

5 Conclusion

In this paper, we proposed a novel deep learning-based method for camouflaged
object detection. Specifically, based on the ERRNet, we designed a multi-scale feature
extraction enhancement module to improve the ability of a single layer to refine multi-
scale information in a multi-granularity way. Moreover, the module can retain more
microstructural information and small target feature information, expand the recep-
tive field and avoid the extracted small target feature information to mix with too
much regional background information. Extensive experimental results demonstrate
the effectiveness of our method.
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