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Abstract

The time-lapse seismic (4D seismic) forward modeling provides crucial data for
calibrating reservoir models through the reservoir data assimilation method.
Unfortunately, conventional 4D seismic forward modeling methodology is time-
expensive and entails significant computational resource consumption. To address
these drawbacks, in this work, our goal is to develop a proxy model for the 4D seis-
mic forward modeling using a class of machine learning algorithm named U-Net
encoder-decoder. We applied the developed proxy model to a benchmark carbon-
ate reservoir using an ensemble of reservoir simulation models from UNISIM IV
(a synthetic benchmark based on real data of a Brazilian pre-salt field). Moreover,
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we aim to introduce seminal strategies for interpreting the proposed proxy model
operation, its outputs, and possible correlations between input and output vari-
ables. To achieve this, we trained and tested two versions of U-net-based models
and applied methods for explainable AI, such as Grad-CAM and Forward Feature
Selection. The experiments showed good results when applied to the test dataset.
The R-squared values were in the range of 0.7 to 0.9, showing the efficiency of
the proxy model to replace the 4D seismic forward modeling. Additionally, the
qualitative analysis helped us identify which input properties and regions of the
reservoir are more relevant for the model’s inference. These results are a valu-
able preliminary step toward a robust, explainable machine learning-based proxy
forward modeling.

Keywords: Time-Lapse Seismic Forward Modeling; U-Net Model; Explained AI.

1 Introduction

Machine Learning (ML) in geoscience can be reviewed at least for seven decades [1].
Nevertheless, there has been a noteworthy increase in geoscience research that apply
these techniques in recent years. Advantages in reducing computational cost and time
are feasible when applying ML methods, a positive achievement for time-consuming
methodologies related to time-lapse seismic (or 4D seismic) used for reservoir manage-
ment, monitoring, and development. Time-lapse seismic consists of data acquisition
in different periods along a field life while closely monitoring the corresponding pro-
duction activities [2]. Variations in seismic signals between acquisitions can provide
insights related to fluid saturation and pressure changes that might be a result of field
development activities, e.g., production and injection of fluids [3–5]. Thus, information
obtained from 4D seismic data can be used for qualitative and quantitative interpreta-
tions, the first to infer dynamic changes related to 4D seismic anomalies [6, 7] and the
later can be used alongside production data to calibrate reservoir models through data
assimilation (or history matching) processes [8, 9]. Although time-lapse seismic data
is sparsely sampled in time compared to production data, it presents a densely spatial
sampling in the field scale [10]. Thus, uncertainties in the reservoir model related to
spatial and temporal distributions can be assessed and reduced through 4D seismic
data assimilation [11].

In this context, a crucial step in conducting 4D seismic data assimilation is to align
the synthetic seismic response of the reservoir model with the observed 4D seismic
data, for an ensemble of reservoir models. The synthetic 4D seismic response can be
obtained through 4D seismic forward modeling within two steps [12]. The first is the
petro-elastic model (PEM) that connects reservoir parameters such as porosity, water
saturation, pressure, rock matrix, and reservoir fluid properties to the elastic responses.
The second depicts seismic wave propagations using different modeling approaches
such as 1D convolutional and finite difference methods [13].

Traditional forward modeling, and consequentially 4D seismic data assimilation,
can be an expensive process that demands computational time and effort, especially
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when considering the use of an ensemble of models [8, 14–17]. Therefore, alternatives
using proxy models were proposed to circumvent this problem and optimize this pro-
cess. [18] reviewed some of the main applications of proxy models which are mostly
used in the inverse problems to estimate saturation-pressure changes from 4D seis-
mic data. However, the application of proxy models in 4D seismic history matching to
replace the traditional 4D seismic forward modeling is limited to some studies. [19] pro-
posed a proxy for the replacement of the traditional approach linking 4D seismic signal
and pressure and saturation changes through a second-order Taylor series expansion.
[16] [17] used a simplified version of [19] proxy formulation to create the PEM-Proxy
and DAI-Proxy for 4D seismic data assimilation using ensemble of models.

Lastly, [18] proposed a new methodology for map-based all-in-one proxy (S4D-
Proxy) to fully replace the traditional seismic forward modeling using ML algorithms
(Extreme Gradient Booster - XGBoost and Deep Neural Network - DNN). The S4D-
Proxy model consists of a ML map-based proxy that can predict the root-mean-square
amplitude (dRMS) difference using reservoir properties as input features (porosity,
net-to-gross ratio - NTG, and saturation and pressure variations). Furthermore, this
proxy was applied to an ensemble of models (200 models) from a deepwater post-salt
Brazilian offshore field located in the Campos Basin. The S4D-Proxy provided results
with high fidelity in comparison to the ground truth (synthetic seismic data generated
from the traditional forward modeling), which were evaluated using the coefficient of
determination R2-score. In [18], the optimal outcomes were achieved by employing the
DNN architecture. This architecture will therefore serve as the reference baseline for
our proposed approaches.

In [18], the authors emphasized that although the S4D-Proxy can provide success-
ful results in a sandstone reservoir case, in more complex contexts such as carbonate
reservoirs, e.g., UNISIM-IV benchmark [20], the proxy may not provide good predic-
tions and might require changes related to the ML algorithm structure and training
set increase. Carbonate reservoir complexity can be appreciated in the PEM formula-
tion for these rocks, as observed in [21]. In addition, [12] highlighted that applying 4D
seismic data assimilation in carbonate reservoirs is limited, even though significant oil
reservoirs are in carbonates. They observed that this limitation could partially result
from the rock matrix’s stiffness, making signals related to saturation changes harder
to detect compared to the 4D seismic signals of sandstone reservoirs. Thus, dealing
with carbonate reservoirs is challenging for 4D seismic studies and, consequently, for
the S4D-Proxy application.

Another challenge in the ML proxy use and application is the interpretability/ex-
plainability of the results. Although the results can be satisfactory (high fidelity with
the traditional approach), understanding input parameters’ effectiveness, contribution,
and weight in the prediction still needs to be assessed. This could provide meaningful
information to improve the ML proxy models that replace traditional seismic forward
modeling.

Considering the UNISIM-IV database, this work proposes a deep learning proxy
forward model capable of achieving superior performance compared to previously
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proposed techniques. Interestingly, we aim to comprehend how the trained models gen-
erate predictions and utilize various ML model interpretation techniques to examine
the relationships between input and output data.

To achieve this goal and address the listed challenges, deep learning encoder-
decoder methods were employed to simultaneously analyze the eight input maps and
identify potential features that could serve as good descriptors for reconstructing the
dRMS of each simulation model. Furthermore, by utilizing the Pearson Correlation
Coefficient (PCC), Forward Feature Selection (FFS) [22], and Gradient-weighted Class
Activation Mapping (Grad-CAM) [23], it was possible to establish efficient strate-
gies for a better understanding of the proposed proxy model’s operation. The main
contribution of this article could be summarized as follows:

• Introduce an adapted version of the encoder-decoder U-Net model aimed at
surpassing prior strategies for proxy forward modeling development.

• Propose a fast and efficient proxy forward method for a carbonate reservoir.
• Employ methods to discern the most pertinent variables during the training of each
proxy model.

• Propose an adaptation to the Grad-CAM method for encoder-decoder architectures,
thereby facilitating the identification of more influential reservoir regions to dRMS
prediction.

The primary advantage of our approach compared to previous ones is that the U-
Net can process all input data at once and identify any feature/correlation within this
data that may contribute to determining dRMS. Furthermore, our proposed model
can generate outputs at any resolution, which is highly relevant to our case, given that
the resolution of maps generated by 4D seismic data is higher than those generated
through reservoir models. Finally, in contrast to prior proposals, we suggest using
model interpretation strategies that provide relevance for each property and reservoir
region in dRMS determination, thereby enhancing the reservoir and simulation model’s
understanding.

The article is organized as follows: in Section 2, we present the methodological
strategy proposed in this work. A detailed workflow description illustrated in Figure 1
is provided; Section 3 describes the procedure for applying the proposed methodology
considering the UNISIM IV benchmark. Specifically, a description of the UNISIM-IV
database is provided, covering its main characteristics, data structuring process, and
data preprocessing protocol; moreover, the U-Net encoder-decoder architecture and
model training/testing procedures is described in detail; in Section 4, we present the
quantitative results regarding the performance of the proposed models. Additionally,
we detail qualitative interpretations of the models and their results by analyzing the
Pearson Correlation Coefficient and applying the Forward Feature Selection and the
Grad-Cam method; technique, in Section 5; we conclude and engage in discussions
regarding the obtained results.
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2 Methodology

The research methodology employed in this article can be delineated into three primary
phases, as depicted in the workflow of Figure 1.

The initial phase is primarily focused on data preparation (Section 2.1), comprising
two crucial steps: the creation of the database and the execution of the data pre-
processing protocol. Upon completing this phase, the data is formatted suitably for
utilization in the ML model’s development.

The second phase encompasses the development of the encoder-decoder ML model
based on a supervised learning process (Section 2.2). Within this stage, data is parti-
tioned for use in the model’s training, validation, and testing procedures. This phase
also entails the expert’s determination of the selected model’s architectural configura-
tion, hyperparameters, and the parameters governing the training process. Concluding
this phase, we obtain a trained ML Proxy model capable of making predictions and
being utilized for data interpretation.

In the third phase, we interpret both results and the model’s functionality, employ-
ing four distinct and independent interpretation tools (Section 2.3). During this stage,
we investigate the ML model’s development, assessing its predictive capabilities and
capacity to offer qualitative insights into the interplay between the input and output
variables of the model.

Fig. 1: The workflow of the methodology adopted for the development and interpre-
tation of the Proxy Forward Modeling.
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2.1 Data Preparation

The first stage of the methodology involves organizing the data that will be used to
train and evaluate the ML model. For this, averaging maps related to the reservoir
properties of each model in the ensemble are generated. The number of averaging
maps for each property is defined to appraise the dimensions and heterogeneity of the
reservoir. Furthermore, considering the supervised learning process used in the subse-
quent phase, we must associate a 4D seismic attribute with each generated synthetic
model. 4D seismic signals are related to temporal variations of dynamic properties in
the reservoir and its usage can enhance the identification of these variations. These
4D seismic attributes can be obtained through real or synthetic data.

In the latter case, it is essential to conduct standard forward seismic modeling using
a PEM plus seismic model to generate the dataset associated with the ground truth
4D seismic attribute. Initially, a calibrated PEM is employed to estimate impedance
data from simulation models. Subsequently, reflectivities are calculated and convolved
with a field-extracted wavelet to generate seismic amplitude volumes. Finally, maps of
4D seismic attributes, such as dRMS maps, are extracted. To streamline the process
and avoid the time-consuming preparation of the training and testing dataset, it is
recommended to utilize automatic and prompt procedures for computing reservoir
properties and synthetic 4D seismic attributes of the simulation models [24].

Typically, the data obtained in generating the database exhibit some inconsis-
tencies (especially in the reservoir edge region) due to the computational/numerical
methods involved. Hence, it is imperative to undertake data preprocessing to elimi-
nate any disparities and ensure the consistent and accurate training of the machine
learning model. Finally, it is necessary to transform, organize, and store the data in
files whose format is compatible with the training framework of the ML model.

2.2 Encoder-Decoder Machine Learning Model

The second stage of the methodology involves training, validation, and testing an
Encoder-Decoder (ED) ML model. The EDs are deep learning architectures structured
from two main parts, as shown in Figure 2: the encoder, responsible for transforming
the original input into a latent representation (feature vector), and the decoder, which
uses this representation to reconstruct or generate the desired output.

Within the framework of proxy forward modeling, the input comprises a compiled
set of property maps originating from simulation models. These maps undergo process-
ing and encoding through the encoder to yield a latent feature vector. Subsequently,
utilizing the latent feature vector, the decoder reconstructs the 4D seismic attribute
corresponding to the initially processed inputs.
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Fig. 2: Encoder-Decoder diagram.

One of the advantages of using ED architectures is that the dimensions of the input
variable do not need to be the same as the dimensions of the output variables. In the
context of forward modeling, this is highly relevant as the resolution of input property
maps is generally different (lower) than the resolution of 4D seismic attribute maps.
Therefore, in the model development stage, we consider working with two versions of
the ED architecture. In the first version, denoted simply by “ED”, the output seismic
attribute maps’ resolution will equal the input maps’ resolution. In this case, resizing
the 4D seismic attribute maps is usually necessary during the data preprocessing stage.
This version is necessary to enable the performance comparison with other machine
learning methods that require equality of resolution between input and output. In the
second version, the 4D seismic attribute maps will be reconstructed by the decoder at
their original resolution. This version of the architecture is denoted as “ED-HighRes”.

The first step in the model development process is to randomly divide the prepro-
cessed dataset into three disjoint subsets: training, validation, and test sets. Despite
the randomness of the data split, it is performed only once, ensuring comparability
across subsequent experiments

The ML model’s structure and hyperparameters are defined through experiments
conducted using the training and validation sets. Once the optimal setup has been
defined, the ML model is trained based on the training and validation set. Finally, the
model is evaluated on the test set to determine the performance of the trained model
on data not used in the training process. The model’s performance is quantitatively
defined using metrics such as R2 score and SMAPE, as shown in the next section.

2.2.1 Performance Metrics

To assess the performance of the models, two metrics are used, the well-known R2

score and the Symmetric Mean Absolute Percentage Error - SMAPE. The R2 score
and SMAPE are given by Equation 1

R2 = 1−

∑

(yi − ŷi)
2

∑

(yi − y)2
SMAPE =

1

n

n
∑

i=1

|ŷi − yi|

(|ŷi|+ |yi|)/2
(1)

where yi is a observed data, ŷi is a predicted data, and y is the observed mean value.
Considering the scatter plot between observed and predicted data, R2 measures how
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closely the points on the graph align with the bisector of the first quadrant. This
metric provides an absolute approximation between the observed and predicted data.

The sum argument in the SMAPE equation represents the absolute error percent-
age relative to the mean between the predicted and observed values. SMAPE is a
measure of relative error, where the closer the observed value is to zero, the more sen-
sitive the absolute error becomes in this measure. The lower the SMAPE value, the
better the model’s performance evaluation.

2.3 Model/Results Interpretation

The most natural interpretation of the model results is achieved through the visual
inspection of the outputs generated by the model and its respective ground truth.
This step provides the spatial distribution of the model’s performance, highlighting
the aspects of the 4D seismic attribute in which the model faces more difficulty/ease
in making predictions.

In recent years, machine learning models have been used for inference and inter-
preting the relationship between variables [25]. Furthermore, with the new Explainable
AI tools [26], it is possible to enhance the understanding of how the model operates
and elucidate how it relates to input and output.

This article explores the relationship between the input and output variables in
two ways. In the first approach, we seek to quantify the importance of each input
properties in predicting 4D seismic attribute. To do this, the Pearson Correlation
Coefficient (PCC) [27] and the Forward Feature Selection (FFS) [22] technique are
used. In the second approach, we apply a method called Gradient-weighted Class
Activation Mapping (Grad-CAM) [23] to identify which reservoir regions were most
heavily relied upon in the model’s inference process.

2.3.1 Pearson Correlation Coefficient

The most common way to measure the degree of correlation between input and output
variables is by calculating the Pearson Correlation Coefficient (PCC) (ρ) between them
[27]. The ρ formula is given by Equation 2, as follows

ρ =

n
∑

k∈I

xkyk −

(

∑

k∈I

xk

)(

∑

k∈I

yk

)

√

√

√

√

√



n
∑

k∈I

x2
k
−

(

∑

k∈I

xk

)2






n
∑

k∈I

y2
k
−

(

∑

k∈I

yk

)2




, (2)

where I is the set of grid cell map coordinates, n is the number of grid cells, xk

and yk are the values of the properties and 4d seismic attribute at coordinate k ∈ I,
respectively.

It is important to highlight that, in our context, a high correlation value (|ρ| ≈ 1)
indicates a local dependence between input and output, meaning that a variation in
a specific coordinate in the input map implies a proportional variation in the same
coordinate in the output map. This interpretation is thoroughly discussed in Section
4.2.1.
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2.3.2 Forward Feature Selection

U-Net-based models are capable of identifying complex dependencies between input
and output. A widely used technique for identifying the most important variables of
a model is Forward Feature Selection (FFS) [22]. This technique involves training the
model using one feature at a time and identifying the one that leads the experiment
to better performance.

Through this technique, we can identify which property inherently holds more
relevant information for predicting the 4D seismic attribute map using the encoder-
decoder-based models. Considering the encoder-decoder’s operational nature, these
pieces of information stem from the spatial distribution of property values throughout
the reservoir.

2.3.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

Deep learning models are commonly characterized as black box systems due to their
inherent lack of interpretability in elucidating the transformation of input data into
output inferences. In contrast to models grounded in physical principles, the parame-
ters within deep learning architectures lack discernible qualitative significance, thereby
confining their utility primarily to inference tasks.

In recent years, there has been a notable surge in endeavors aimed at augmenting
the interpretive capacity of models and elucidating their mechanisms for processing
input data. For instance, when considering models that take images as input, a relevant
qualitative aspect is to identify which region of the image is most crucial for deter-
mining the model’s response. In this regard, various methods such as Local Binary
Pattern (LBP) [28], Shapley Additive Explanations (SHAP) [29], Saliency Maps [30],
and Gradient-weighted Class Activation Mapping (Grad-CAM) [23] were proposed.
Based on the U-Net architecture, the Grad-CAM method was chosen for our model
interpretation.

Typically, Grad-CAM is employed in the context of neural architectures designed
for image input and output probabilities or scalar values. The architectural repre-
sentation corresponding to this category is succinctly depicted in the left diagram of
Figure 3.

The Grad-CAM heatmap is derived as a weighted summation of feature maps
generated by the final convolutional layer within the feature extraction process. Deter-
mining these weights involves computing gradients for each feature map about a
specific target output neuron, yielding a set of gradient maps that correspond to the
final layer’s feature maps. The computation of weight factors for the aggregation pro-
cess employs the Global Average Pooling (GAP) technique applied to each gradient
map. The resulting weighted average generates a singular two-dimensional map that
should be resized to match the input resolution.
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Fig. 3: In the conventional approach (left diagram), Grad-CAM is typically employed
on the final Feature Maps (FM) of the feature extractor, commonly used for regression
or classification tasks. In our study, we customized Grad-CAM to operate within an
encoder-decoder framework (right diagram), where it is applied to the ultimate FM
of the encoder.

The Grad-CAM method was adapted in this work to be applied to Encoder-
decoder-based models. The weighted average of the feature maps was not performed
in the final layer of the architecture but rather in the last layer of the encoder (see
Figure 3). Another adaptation is that our problem is a multitask regression case, so
the Grad-CAM representing all the outputs was calculated through the average of
the Grad-CAMs computed for each grid cell. To use Grad-CAM in a multitask prob-
lem like ours, the average of the Grad-CAMs obtained for each output grid cell was
calculated.

To the best of our knowledge, this type of adaptation of Grad-CAM to explain an
encoder-decoder is unprecedented and stands as one of the contributions of this work.

3 Application on UNISIM IV database

In this section, we elucidate the procedural application of the previously introduced
methodology considering UNISIM-IV database.

3.1 UNISIM-IV and Data Preparation

This section includes a detailed description of the UNISIM-IV development process,
highlighting its key features and the preprocessing protocol implemented to train ML
models.

3.1.1 UNISIM-IV Description

UNISIM-IV is an open-source benchmark case based on a light-oil carbonate Brazilian
pre-salt field with a high oil-gas ratio and CO2 content [20]. The benchmark com-
prises a reference model representing the true earth model and an ensemble of models.
Mimicking what happens in a real field, the reference model is used only to extract
field-measured data, such as production history, well logs, and 4D seismic data. The
”measured” data are used to build the ensemble of uncertain models.

The reference model has cell dimensions of 200 x 200 x 5 m and 47 x 39 x 291
blocks (i, j, and k directions). The model has 533403 blocks in total, whereas 77004 are
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active. In the first phase of the production strategy, the model considered six vertical
producers and seven vertical WAG-CO2 injectors (Figure 4b). The base seismic data
was generated at 608 days of production and the monitor seismic data at 1583 days
of production. The history period starts at 10/2018 [20].

The ensemble of models consists of 100 uncertain dynamic models. As also high-
lighted by [18], it is noteworthy that the ensemble of models used here were not
submitted to any data assimilation process. To prepare the data used to train the
proxy model, three average maps of each property (porosity, NTG, and saturation/-
pressure changes) were generated to more accurately appraise the dimension of the
reservoir. Each map presented a resolution of 46x46 cells. The averaging was also per-
formed between four horizons that considered geological heterogeneities of the reservoir
(Figure 4a). Horizon-1 to Horizon-70 (Map1) is considered a first set of microbialites
at the top of the reservoir. Horizon-70 to Horizon-200 (Map2) is considered a second
set of microbialites. Horizon-200 to Horizon-291 (Map3) is considered a set of coquinas
at the base of the reservoir.

Porosity Map1 dRMS

Horizon-1

Horizon-70

Horizon-291

Horizon-200

(a) (b)

Fig. 4: (a) Porosity of an inline section in the reservoir. The four horizons used to
build the average maps are displayed. (b) Map1 dRMS for Model 96 of the ensemble.
dRMS prior to preprocessing of data preparation. Well locations for the first phase of
production are displayed on the map.

Property Nº of models per map Number of Maps Resolution
dRMS (output) 100 3 94 x 78

Variation of Pressure (∆P) 100 3 46 x46
Variation of gas saturation (∆Sg) 100 3 46 x46

Variation of water saturation (∆Sw) 100 3 46x 46
Net-to-Gross (NTG) 100 3 46 x46

Porosity (POR) 100 3 46 x46
Pressure base (Pr Base) 100 3 46 x46

Gas saturation base (Sg Base) 100 3 46 x46
Water saturation base (Sw Base) 100 3 46 x46

Table 1: Summary of the UNISIM-IV database.
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Once the reservoir property maps were generated, generating the synthetic dRMS
of the models was also necessary using the traditional forward modeling process.
The dRMS is necessary to train the models and adjust the parameters and hyper-
parameters during the generation of the proxy model. The proxy evaluation is also
done using the dRMS from the evaluation set of models (ground truth) generated by
the traditional process.

3.1.2 Data preprocessing

The input data is rearranged for each simulated model in a tensor (Input Block) with
an 8x46x46 shape, where the first dimension is related to each input property. More-
over, the latter two regard the resolution of each input map. The dRMS resolution is
94x78, which differs from the resolution of the input maps (46x46). For the applica-
tion of certain ML methods, including the DNN proposed by [18], resizing the dRMS
to a resolution of 46x46 is necessary. As a consequence, for Map1, Map2, and Map3,
the number of points in each dRMS map reduced from 3858 to 881 (22.83%), 3624
to 804 (22,18%), and 2671 to 676 (25,31%) respectively. In a qualitative sense, this
process involves the loss of some significant information. These issues are discussed in
detail in Section 4.1.

With this in mind, encoder-decoder-based models can produce output in any
desired dimension. Consequently, as established in the methodological process (Section
2.2), we work with two encoder-decoder model versions, ED and ED-HighRes, that
produce output dRMS maps of 46x46 and 94x76 resolution, respectively. Therefore,
the first preprocessing step is to resize the dRMS maps to be used in the training
process of the ED model.

The second step is to exclude data inconsistencies according to the following
conditions. For each Map described in Section 3.1 and for a specific grid cell coordinate:

• If one of the models is missing data, we disregard the data from that coordinate
from all model properties, including dRMS for the resized case.

• NTG, water saturation, and gas saturation must be between 0 and 1. Otherwise, we
disregard the data from that coordinate from all model properties including dRMS
for the resized case.

After executing the preprocessing steps, the data is ready for the ML model training
process. Figure 5 provides an example of a graphical representation, via heatmap, of
property maps derived from simulation models and their respective dRMS in both
their original and resized dimensions.
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Fig. 5: Heatmap of preprocessed input properties and output signals from simulation
model 79 of Map1.

3.2 U-Net model

In the literature, there are numerous variations of architectures defined as encoder-
decoder. For our application context, the architecture used as the encoder-decoder is
the U-Net. It is a U-shaped encoder-decoder neural network architecture proposed in
[31]. This architecture is widely used for tasks such as semantic segmentation, image
resolution enhancement, synthetic image generation, among others [32]. Typically, the
U-Net is trained to model functions that take images as input and generate another
image as output; however, for this study, we adapted the architecture to take the Input
Blocks (Section 3.1.2) as input and generate the dRMS maps as output. Therefore,
our architecture addresses the problem through a multitask regression approach.

3.2.1 The architecture description

We denote as “U-Net46” the architecture that plays the role of the ED and provides
output in resized dimension (46x46). Along the same line, we denote as “U-Net94”
the architecture that acts as the ED-HighRes and generates output in the original
resolution (94x78), as outlined in the methodological process. The architectures of
U-Net46 and U-Net94 are summarized in Figures 6 and 7, respectively.
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Fig. 6: U-Net46 architecture: On the last feature map volume, a convolutional oper-
ation with stride 1 is applied, and the resulting map is cropped at the center in 46x46
shape.

Fig. 7: U-Net94 Architecture: On the last feature map volume, a convolutional oper-
ation with stride 1 is applied and the resulting map is cropped at the center in 94x78
shape.

14



The encoder part is the same for both architectures and is responsible for extract-
ing features from the input maps and summarizing them into a reduced-dimension
vector, called Latent Vector. Between the feature maps volumes, convolutional and
max pooling operations are applied.

The decoder part is responsible for reconstructing the desired output map from
the Latent Vector generated by the encoder. The Latent Vector is upsampled through
transposed convolution operation. Each decoder feature map is concatenated for both
architectures with the same dimensional feature map from the encoder. The objective
is to leverage features from all complexity levels of the encoder to reconstruct the
decoder output.

3.2.2 U-Net Training

The U-Net-based models were trained and tested individually for each of the three
maps. For each map, out of the 100 available simulation models, 70% were allocated
for training, 10% for validation, and 20% for testing. The Adam’s optimizer was used
with 10−3 of learning rate. As a minimization criterion, we employed the Huberloss
function.

The models were trained for 500 epochs in all training sessions, achieving the lowest
validation loss used for testing. In the case of U-Net46, the lowest validation loss was
observed at epochs 131, 40, and 102 for each map, respectively. For U-Net94, the
lowest validation loss occurred at epochs 189, 201, and 220 for each map. All training
sessions were conducted on a GPU and lasted approximately one hour each.

4 Experiments and Results

In this section, we present the quantitative and qualitative outcomes pertaining to
the proposed models’ training, validation, and testing processes. We also showcase the
analyses resulting from deploying machine learning model interpretation tools. Given
that the Deep Neural Network (DNN) achieved the most favorable performance in
[18], we employ it as the benchmark and compare it with our novel propositions.

4.1 Quantitative and Visual Analyses

The U-Net46, U-Net94 and DNN models were trained and tested for each map. Figure
8 presents the boxplots of the evaluated models.
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Fig. 8: Boxplots of performance metrics (R2-score on the left and SMAPE on the
right) for the test set’s U-Net46, U-Net94 and DNN models.

To complement the information provided in the boxplots of Figure 8, the Wilcoxson
hypothesis test [33] was applied. This is a non-parametric statistical hypothesis test
to evaluate whether two groups have different medians. In our context, the Wilcoxon
test is used to assess evidence to conclude the superiority of the methods based on
U-net and the performance indifference between U-Net46 and U-net94. Table 2 shows
the p-values of the conducted tests.

Models
MAP 1 MAP 2 MAP 3

R2 SMAPE R2 SMAPE R2 SMAPE
DNN × U-Net46 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

DNN × U-Net94 < 10−4 < 10−4 < 10−4 0.475 < 10−4 < 10−4

U-Net46 × U-Net94 0.294 0.00271 0.083 < 10−4 0.522 < 10−4

Table 2: The p-values of the Wilcoxon test. The three evaluated models
were compared pairwise regarding R2 and SMAPE. The p-value indicates
the probability of an error when rejecting the null hypothesis.

Considering the R2-score, the boxplots in the left graph on Figure 8 and the p-
values of the Wilcoxson test on Table 2 indicate that, for the three maps, U-net-based
methods outperform the DNN method. Furthermore, no statistical evidence indicates
a difference between the performance of the U-Net46 and U-Net94 methods. In all
cases, 0.01 significance level is considered. In other words, concerning absolute error
(refer to Section 2.2.1), U-Net-based networks outperformed the baseline in all the
examined scenarios.

Considering the SMAPE metric, the boxplots in the right graph in Figure 8 and
the p-values of the Wilcoxson test in Table 2 indicate that U-Net46 outperformed
DNN in all three maps. Moreover, U-Net94 outperformed DNN in Map1 and Map3
but, in Map2, despite the slight difference between the medians and variability, no
evidence was found at the adopted significance level to confirm the superiority of
U-Net94 compared to the DNN. Finally, in all the maps, considering the level of
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significance of the adopted test, statistical evidence demonstrated the superiority of
U-Net46 compared to U-Net94 in terms of SMAPE metric.

It is important to remark that the SMAPE metric is sensitive to values close to
zero; therefore, since the output of U-net94 has more values close to zero than the
output of U-net46 and DNN, it was expected that U-net94 would have more difficulty
in performance considering the SMAPE metric.

A visual comparison between the predicted and observed maps is provided in
Figure 9 for a more robust and qualitative evaluation of the model performance.
The 4D signals displayed in the dRMS maps of Figure 9 are related to hard-
ening effects in blue and softening effects in red. The dRMS considered here is
dRMS = RMS(base)–RMS(monitor), to appraise a soft reservoir in comparison to
their surroundings [3].
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46x46 Ground Truth U-Net46 prediction 94x76 Ground Truth U-Net94 prediction

Fig. 9: Plots of the observed and predicted dRMS. The dRMS for Map1 and Map2 are
related to the Test Model 79, and the dRMS for Map3 are related to the Test Model 3.
4D seismic signal hardening effects are displayed in blue and softening effects in red.

Considering the ground truth maps on Figure 9 (columns 1 and 3), it is visually
apparent that certain information/data is lost during the resizing and preprocessing
procedures outlined in Section 3.1.2. When comparing the observed dRMS maps with
the predicted ones, it becomes evident that, on the whole, the models achieved a com-
mendable level of prediction accuracy. Notably, the greatest challenges are encountered
in the dRMS values for Map2, which is consistent with the quantitative analysis (see
Figure 8) of model performance.
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4.2 Model Interpretation

In this section, we conduct a qualitative analysis of the results and the correlation
between input and output variables. This analysis aims to deepen our understanding
of the proposed models by pinpointing the most pertinent input properties and fre-
quently accessed reservoir areas during the inference process. This represents the first
application of such analysis in Proxy Forward Modeling. Leveraging explanatory tools,
our goal is to demonstrate that, in addition to their operational efficiency and speed,
U-Net-based proxy models can enrich our understanding of spatial relationships and
inter-property dynamics within each reservoir.

4.2.1 PCC Analysis

To assess the significance of each input property in predicting dRMS, for all test
models, we computed the PCC (see Section 2.3.1) between each input property and
its corresponding dRMS. The distribution of these values is depicted in the boxplots
in Figure 10.
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Fig. 10: Boxplot of PCC values calculated for each input property and dRMS.

By the graph of Figure 10, the ∆P is the property most correlated with dRMS in
Map1 and Map2. The 4D signals observed in the ground truth maps (Map1 and Map2)
of Figure 9 predominantly consist of softening effects (indicated by red signals) in the
location of injectors. These signals are likely attributed to increased pore pressure from
injection, gas saturation increase, or a combination of both factors. The hardening
signals in these maps (depicted by blue) are mainly caused by pore pressure decrease
around producers. According to our interpretation, pressure variations - whether a
drop or an increase - are important for shaping the 4D signals in Map1 and Map2. This
evidence might support our finding in Figure 10 in which ∆P was the most influential
attribute in predicting dRMS.
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Conversely, in Map3 of Figure 10, the property most correlated is ∆Sg. For our
context, the Pearson coefficient measures a local correlation between input properties
and dRMS. To illustrate this, we can observe the graphs in Figure 11.
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Fig. 11: On the top row, we have the ∆P and dRMS maps for Model 8 and their
scatter plot. On the bottom row, we have the NTG and dRMS maps for Model 54 and
their scatter plot.

The top row of Figure 11 shows the graphs of ∆P and dRMS of Map1 are shown.
The scatter plot in the same row represents the values of ∆P and dRMS for each
reservoir coordinate. For this case, the PCC is 0.79, indicating a strong correlation
between the variables. Notably, there is a visual correspondence between the ∆P and
dRMS graphs. Furthermore, the scatter plot reveals a positive linear correspondence
between the quantities.

On the other hand, the bottom row shows the graphs of Net-to-Gross and dRMS of
Map1, along with the scatter plot of these two variables. In this case, ρ = 0.001, indi-
cates the absence of correlation between NTG and dRMS. The scatter plot reinforces
this conclusion.

The Pearson coefficient is limited to measuring local correspondences between
corresponding regions of variables; however, models like the U-net can extract more
complex correspondences between inputs and outputs that cannot be perceived visu-
ally or measured by the Pearson coefficient. For this context, we apply the method of
the next subsection.
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4.2.2 Forward Feature Selection

The Forward Feature Selection (FFS) (see Section 2.3.2) method involves training the
model with each input variable individually and determining the one with the best
performance as the most important for prediction. Figure 12 shows the distribution
of the resulting R2 - score from applying the technique.
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Fig. 12: Boxplot of R2 - scores from FFS. For each map, nine models were trained,
one called ”Full” with all eight input properties and eight others with only one of the
available input properties.

For Map1 and Map2, the model trained with all properties outperformed all models
trained with a single property input. The property with the best performance was ∆P,
but its inferior performance compared to the ’Full’ model indicates that combining
the other seven properties enhances the model’s performance.

For Map1 and Map2, the property ∆P proved the most relevant in the PCC-based
analysis and FFS. This demonstrates that ∆P exhibits local and global correlation
with dRMS in these maps. However, in Map3, the property ∆P emerged as the most
significant predictor of dRMS through U-net, while ∆Sg displayed the highest PCC.
We can observe from Figure 13 that there is a visual (local) correlation between ∆Sg
and dRMS, which is not the case between ∆P and dRMS. This means that, despite
∆Sg having a higher local correlation with dRMS, the U-Net can extract more complex
correlations from ∆P that result in better dRMS prediction. Furthermore, it can be
observed from Figure 13 that ∆Sg exhibits a strong local correlation with dRMS at
specific locations within the reservoir, albeit not predominantly.

20



(a) ∆Sg (b) ∆P dRMS

Fig. 13: Maps of ∆Sg, ∆P and dRMS of Model 3.

The boxplots in Figure 12 related to Map3 suggest that the model has an easier
time predicting the dRMS in this map regardless of the input. Additionally, by ana-
lyzing the standard deviation maps of Figure 14, we observe that the dRMS of Map3
varies less among the test samples when compared to Map1 and Map2. Therefore, the
dRMS of Map3 is easier to predict compared to the other maps, which justifies the
superior performance of the U-net model on this map, considering the quantitative
results from the boxplots of Figure 8 (Section 4.1).
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Fig. 14: Standard deviation of dRMS maps.

4.2.3 Grad-CAM Analysis

To enhance our comprehension of the U-net’s functionality within our specific frame-
work, it is imperative to discern the areas of the reservoir that played a pivotal role
in the inference of the dRMS for the test dataset. This inquiry employs the modified
Grad-CAM methodology (see Section 2.3.3), and the outcomes of its application are
depicted in Figure 15.
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Fig. 15: Grad-CAM visualizations for Models 87, 54, and 23. The regions with the
highest intensity on the visualizations correspond to the activated reservoir areas with
the most significant contributions to dRMS prediction.

In Figure 15, it is evident that the most activated regions in Map1 exhibit a more
localized pattern, while in Map2 and Map3 the activations are more diffuse, indicating
that these maps involve larger combinations of information for inference. It is also
worth noting that, in all three maps, the southern region of the reservoir remains
inactive during the inference process.

It is also noteworthy that, for each test model, the activated regions in Grad-CAM
maps are different, which indicates that the U-net has learned to delineate the most
relevant regions according to the specific features of each input information.

It is important to emphasize that the Grad-CAM is an attention heatmap applied
to combining the eight input properties. Consequently, specific conclusions about indi-
vidual properties cannot be drawn from the calculated Grad-CAM. Rather, it provides
an overview of regions with heightened activity in the inference of dRMS for each
tested model.

In forthcoming studies, we anticipate that Grad-CAM can be examined from var-
ious perspectives. For instance, in our upcoming research endeavors, we intend to
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explore potential correlations between Grad-CAM maps and the geological charac-
teristics specific to each reservoir region. This investigation promises to enhance our
comprehension of the impact of geological factors on determining the dRMS map.
We will also investigate techniques for predicting the dRMS based solely on the most
highly activated regions within Grad-CAM. In essence, we will evaluate the viability
of predicting the complete dRMS map using only a subregion of the input maps, thus
reducing computational overhead.

5 Conclusion

In this work, an ML proxy model was developed to replace 4D seismic forward mod-
eling. U-Net architecture was trained and tested on the UNISIM-IV database in our
approach. The quantitative results indicate that our proposal outperformed the base-
line approach. This paper also introduced innovative strategies for interpreting the
results and the proxy’s operation.

Analyzing the models’ performance on the test dataset, the non-parametric
Wilcoxon test (Table 2) indicated that, in general, both U-Net46 and U-Net94 out-
performed the baseline. The performance of both networks also exhibited similarities
in almost all tests. It must be highlighted that this proposed innovative process, the
U-Net94, can be a very good solution for real-case applications where maps extracted
from 4D seismic data usually have higher spatial resolution than the maps built from
reservoir models. This means a great contribution in that we could match reservoir
models and 4D seismic data at the resolution of seismic provided maps.

The results based on SMAPE highlight that U-Net46 achieved better results than
U-Net94. This is likely due to the sensitivity of the SMAPE metric to values close to
zero; the dRMS maps with original resolution contain significantly more zero values
than the rescaled ones.

Considering the PCC analysis, we identified the most locally correlated property
with dRMS in Map1 and Map2 as ∆P, and in Map3, as ∆Sg. Based on the results
of PCC and FFS methods, it becomes evident that the performance of the U-Net
model is not solely reliant on the local correlations. U-Net models leverage spatial
and inter-property information for their predictions, surpassing the baseline model’s
performance.

It is also worth noting that, in Map1 and Map2, combining all eight properties
yields better results than individual property usage. However, in Map3, the model
achieved similar outcomes when utilizing the eight input properties and just ∆P.
According to standard deviation analysis, Map3 exhibits minimal output variability,
which indicates that this map is less challenging than the other two and justifies that
the ML models achieve favorable results by using all properties individually.

By applying Grad-CAM, we identified the key reservoir regions that are crucial for
predicting each model. As anticipated, individual samples triggered distinct reservoir
activations, yet our observations revealed a concentration of these activations within
the central and upper regions of the reservoir. Thus, Grad-CAM analysis suggests
that the input property values south of the reservoir do not significantly influence the
overall reservoir dRMS.
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Based on the promising results of this article, we believe that we can further
enhance the performance of the proxy model by leveraging other encoder-decoder
architectures already published in the literature.

The interpretability of deep learning models remains a pervasive issue across all
applications. In this article, we believe we have taken a significant seminal step towards
a better understanding of the operation and outcomes of the 4D seismic forward
modeling proxy model. Nevertheless, numerous challenges in terms of interpretability
still need to be explored.

Finally, all the analyses conducted herein are confined to synthetic data and still
require real-world data assimilation process validation. Furthermore, the proposed
methodology can be applied in more general cases and is not restricted to the UNISIM
IV context. Using our methodology, other 4D seismic attributes, different databases,
and alternative encoder-decoder model architectures can be considered.

Acknowledgments

This work was carried out in association with the ongoing project registered under
ANP number 23202-5 as the “Frequent 4D seismic data acquisition for enhanced
reservoir management in Brazilian pre-salt fields – Phase 3” (Universidade Estad-
ual de Campinas [UNICAMP]/Shell Brazil/ANP) funded by Shell Brasil Petróleo
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