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Abstract

With the rapid development of computer and internet technology, quantum sig-

nature plays an extremely important role in modern secure communication.

Quantum homomorphic aggregate signature, as an important guarantee of quan-

tum signature, plays a significant role in reducing storage, communication, and

computing costs. This article draws on the idea of quantum multi-party summa-

tion and proposes a quantum homomorphic aggregate signature scheme based

on quantum Fourier transform. Our scheme uses n-particle entangled states as

quantum channels, with different particles of each entangled state sent separately.

This ensures secure transmission of signatures and messages with fewer entan-

gled particles during transmission, further improving the efficiency of quantum

signatures. Meanwhile, our scheme generates private keys for each participating

party by randomly constructing key generation matrixes. Different signers per-

form quantum Fourier transforms and basis exchange operations on entangled

particles based on different messages and private keys to generate signatures.

In addition, the aggregator does not need to measure and verify the signature

particles after receiving signatures from different signers, and the group addi-

tion operation process has additive homomorphism. Security analysis shows that

our scheme has unforgeability, non-repudiation, and can resist various attacks
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such as entanglement measurement attacks, intercept-resend attacks, private key

sequence attacks, and internal attacks by aggregator.

Keywords: Quantum homomorphic aggregate signature, Quantum Fourier transform,
Key generation matrix, Basis exchange operator

1 Introduction

With the advancement of communication technology and the development of quantum
computing theory, traditional encryption algorithms based on computational com-
plexity have faced severe challenges. Quantum cryptography [1, 2] is a cryptographic
technique that utilizes quantum mechanic to generate keys and ensure secure infor-
mation transmission. It ensures secure communication between legitimate users and
effectively solves the challenges of classical cryptography, truly achieving uncondi-
tional security. In 1984, Bennett and Brassard [3] proposed the famous concept of
quantum key distribution, which marked the true beginning of quantum cryptography.
Subsequently, due to its ability to resist quantum attacks in information protection
and secure communication, quantum cryptography has attracted high attention and
achieved rapid development. In recent years, multiple branches of quantum cryptog-
raphy have been extensively studied, such as quantum secret sharing (QSS) [4, 5],
quantum signature (QS) [6–8], quantum key distribution (QKD) [9, 10], quantum
secure direct communication (QSDS) [11, 12],and so on.

With the rapid development of internet technology, information security has
become a demand for people to keep confidential communication, and information
security protection has become a focus of international attention. Digital signature, as
an important guarantee of information security, is widely used in fields such as military,
communication, e-commerce, and e-government due to its ability to achieve network
identity authentication, data integrity protection, and non repudiation services. How-
ever, classical digital signature is not unconditionally secure, so QS has been proposed
based on the special properties of quantum. QS is a new type of signature system that
combines quantum cryptography and digital signature technology, utilizing the phys-
ical properties of quantum to achieve unconditional communication security. In 2001,
Gottesman and Chuang [13] first proposed the concept of quantum signature based
on quantum one-way function. This protocol utilizes the fundamental principles of
quantum physics and employs quantum swap test to verify signature. Subsequently,
in order to achieve different goals, researchers conducted in-depth research on QS and
successively proposed many QS schemes with unconditional security. In 2002, Zeng
et al. [14] proposed an arbitrated quantum signature (AQS) scheme using the entan-
glement properties of Greenberger-Horne-Zeilinger (GHZ) state. This scheme securely
transmits messages through quantum channels and provides a detailed explanation of
the general principles of QS scheme, clearly stating that the verification of AQS also
requires the assistance of arbitrator. In 2009, Li et al. [15] proposed an AQS scheme
using Bell states instead of GHZ states based on Zeng’s scheme [14]. This scheme
can be applied to both known and unknown quantum states. And while retaining the
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advantages of the original scheme, it reduces the complexity of the implementation
and improves the efficiency of the scheme. In 2010, Zou et al. [16] found that Zeng’s
scheme [14] and Li’s scheme [15] were easily denied by recipients in terms of secu-
rity. To overcome this drawback, they proposed an AQS scheme using bulletin boards.
This scheme not only avoids being denied by the receiver, but also retains the advan-
tages of the original scheme. In addition, Zou et al. [16] also found that existing AQS
schemes rely on entanglement, and proposed a non entangled AQS scheme, which
reduces the complexity of scheme implementation and improves the efficiency of the
scheme. In the above AQS schemes, in order to improve the security of the scheme,
trusted third parties need to know the specific content of the message, so most AQS
schemes require the arbitrator to be trustworthy. Based on the above discussion, Yang
et al. [17] proposed an AQS scheme using an untrusted arbitrator in 2011, drawing on
the idea of quantum multi-party computing. This scheme is based on the signature of
classical messages and proves the necessity and feasibility of messages signing under
the control of an untrusted arbitrator. In 2013, Zou et al. [18] discovered that Yang’s
scheme [17] was insecure and conducted security analysis and improvement, proposing
an improved AQS scheme with untrusted arbitrators. This scheme effectively solves
the problem in Yang’s scheme [17] where dishonest signers can deny their signatures
and verifiers can forge signatures. In 2018, Zhang et al. [19] proposed an improved
quantum proxy blind signature scheme, which introduces a trusted third party and
uses a six-qubit entangled state to enhance the security of the scheme, making it
impossible for the receiver or attacker to forge or modify messages in any way. At the
same time, this scheme adopts GHZ state measurement and Bell state measurement,
which is easier to implement under existing technology and experimental conditions.
In 2019, Jiang et al. [20] proposed a quantum multi-signature scheme based on locally
indistinguishable orthogonal product states. This scheme encodes the message into
a quantum sequence of orthogonal product states, which can resist known message
attacks. And because orthogonal product states are easier to prepare than entangled
states, they are easier to implement under current technological conditions. In 2021,
He et al. [21] studied the security of Jiang’s quantum multi signature scheme [20] and
found that Jiang’s scheme [20] suffers from signature forgery attacks and signature
receiver denial attacks. Based on the above issues, He et al. [21] proposed an improved
quantum multi-signature scheme. This scheme addresses the security flaws of Jiang’s
scheme [20], and since the arbitrator cannot forge any quantum signature of the signer,
the arbitrator is semi trustworthy. In 2022, Lu et al. [22] proposed a verifiable AQS
scheme based on controlled quantum teleportation using a five-qubit entangled state as
a quantum channel. This scheme utilizes a pair of function values of symmetric binary
polynomials to perform unitary operations on mutually unbiased basis particles, which
prevents any illegal attackers from forging and enables eavesdropping detection and
identity authentication among participants. In 2021, Gao et al. [23] proposed a novel
quantum (t, n) threshold signature scheme based on d-dimensional quantum systems.
This scheme utilizes the cyclic property of mutually unbiased bases to generate effec-
tive signatures, and designs a new method to prevent known signature attacks. This
method can also be used in other AQS schemes. In 2022, Huang et al. [24] proposed
an improved identity based public key quantum signature scheme. In this scheme, the
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signer uses her key and the verifier’s secret parameter to generate a quantum signature,
and the signer and verifier do not need to exchange keys before signing the message,
making the scheme highly efficient. In 2023, Deng et al. [25] proposed a quantum
(t,m, n) threshold group blind signature scheme with flexible number of participants.
In this scheme, any m signers can use the shamir threshold secret sharing scheme to
reconstruct the key for signature verification, and due to the XOR operation in the
blinding process, the scheme is easier to implement in real scenarios.

Quantum Fourier Transform (QFT) is a crucial step in quantum factorization and
many quantum algorithms. Using QFT to encrypt messages ensures secure trans-
mission of messages over the channel. In 2019, Lou et al. [26] proposed a quantum
blind signature scheme based on block encryption and QFT. This scheme uses a high-
dimensional quantum carrier to transmit measurement information encrypted by QFT
and permutation algorithms, which can not only resist general forgery attacks but also
effectively prevent selective forgery attacks. In 2020, Lou et al. [27] proposed an ordered
quantum multi-party signature scheme based on QFT and chaotic systems. In this
scheme, the message sender uses QFT encryption and sends the message. Compared
with AQS and quantum broadcast multi-party signature, this quantum multi-party
signature scheme improves verification efficiency. In 2021, Zhu et al. [28] proposed an
efficient quantum blind signature scheme based on QFT. This scheme uses quantum
logic gates to manipulate quantum states containing classical information, and uses
QFT encryption to transmit them through N -dimensional quantum states. Compared
with existing efficiency analysis schemes, this scheme has higher signature efficiency.
In 2022, Fan et al. [29] proposed a multi-proxy signature scheme based on controlled
quantum teleportation using a five-qubit entangled state. This scheme uses QFT to
encrypt quantum states containing messages, which improves quantum efficiency com-
pared to quantum one-time pad. With the continuous deepening of research, many
special digital signatures suitable for different usage environments have emerged, such
as homomorphic signature, aggregate signature, and digital signature under certificate
free systems.

Homomorphic signature [30, 31] is a digital signature with homomorphic prop-
erties. In 2000, Rivest [32] first proposed the concept of homomorphic signature.
Subsequently, Johnson et al. [33] provided the overall framework and formal def-
inition of homomorphic signature. Suppose M is the message space of a digital
signature and Σ is the signature space of a digital signature, their binary opera-
tors are ⊕ and ⊗, respectively. For message signature pairs (m1,σ1) and (m2,σ2)
from M and Σ, where σ1 = f(m1) and σ2 = f(m2), if the signature algorithm
f is a homomorphic mapping from an algebraic system (M , ⊕) to (Σ, ⊗), then
f(m1 ⊕ m2) = f(m1) ⊗ f(m2) = σ1 ⊗ σ2. It can be seen that in the same mes-
sage space M , digital signature can be generated through homomorphic combination
algorithms. However, classical homomorphic signature is not suitable for quantum
networks, and it is not easy to apply classical networks for identity authentication of
different messages. Therefore, studying quantum homomorphic signature is impera-
tive. In 2015, Shang et al. [34] proposed the first quantum homomorphic signature
scheme based on entanglement swapping, which combines two initial signatures to
generate a new quantum homomorphic signature through entanglement swapping. In
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2016, Luo et al. [35] proposed a quantum homomorphic signature scheme based on
Bell state measurement. This scheme only uses Bell state measurement, which is easy
to implement under existing technical conditions, and is safer and more practical com-
pared to Shang’s scheme [34]. In 2023, Chen et al. [36] proposed a verifiable identity
based quantum homomorphic signature scheme based on four-particle Cluster states.
This scheme uses a four-particle Cluster state as a quantum channel, and verifies the
identity of the signer through quantum measurement technology, while ensuring the
security of the key and the unforgeability of the signature while satisfying the addi-
tive homomorphic property. The quantum homomorphic signatures introduced above
only satisfy the properties of additive homomorphism and fail to fully consider cost
reduction and resource allocation. Based on the above analysis, we attempt to com-
bine quantum homomorphic signature with quantum aggregate signature to explore
quantum homomorphic aggregate signature scheme with homomorphism.

Aggregated signature [37, 38] can compress signatures from different signers
and messages into a single digital signature, thereby reducing the communication
transmission cost of signatures. In 2003, Boneh et al. [39] first proposed the con-
cept of aggregate signature with the aim of improving the efficiency of verifying
a large number of individual signatures. Aggregated signature is different from
homomorphic signature. Aggregated signature consists of three types of entities:
signers(Alice1,Alice2,...,Alicen), aggregator of signatures (Bob), and verifier of signa-
tures (Charlie). After receiving signatures from (Alice1,Alice2,...,Alicen), aggregator
(Bob) use aggregation algorithms to generate aggregated signature. Subsequently, the
aggregator (Bob) sends the aggregated signature to the verifier (Charlie) for signature
verification. If the aggregated signature is valid, it can be determined that the sin-
gle signature generated respectively by the signers (Alice1,Alice2,...,Alicen) is valid.
However, due to the continuous improvement of people’s computing power, the secu-
rity based on classical digital signature schemes is facing unprecedented challenges.
Therefore, many researchers have shifted their research on aggregate signature to the
study of quantum aggregate signature. In 2022, You et al. [40] proposed a quantum
aggregate signature scheme based on controlled quantum teleportation using a four-
qubit Cluster state, which cannot be denied by the signer or forged by any illegal
attacker. Meanwhile, intercept-resend attacks is ineffective in this scheme. The digital
signatures introduced above have both the functions of ordinary signatures and their
unique characteristics. If they are combined and flexibly used, they can achieve twice
the result with half the effort in cloud computing environments.

This paper proposes a quantum homomorphic aggregate signature scheme that
satisfies additive homomorphic properties, starting from quantum homomorphic sig-
nature and quantum aggregate signature. This scheme first generates a signature by
using QFT and basis exchange operator on entangled particles from different signers
based on different messages. Then, the aggregator aggregates the signature particles
received from different signers to form one signature. Due to the addition homomor-
phism during aggregation operations, the quantum signature generated by aggregation
is called a quantum homomorphic aggregate signature. Finally, the aggregator encrypts
the quantum signature with a private key and sends it to the verifier for final signa-
ture verification. Compared with other similar signature schemes, our scheme’s main
contributions are as follows:
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(1) After receiving signature particles from different signers, the aggregator uses
group addition operations to aggregate multiple signatures into one signature. This
process does not require measurement and verification of signature particles, and the
group addition operation has additive homomorphism.

(2) By using key generation matrixes to generate private keys for each partici-
pant, and using quantum algorithms such as QFT and basis exchange operations, the
scheme has unforgeability and non-repudiation. At the same time, it can resist various
attacks such as entanglement measurement attacks, intercept-resend attacks, private
key sequence attacks, and internal attacks by aggregator.

(3) The security of the scheme is improved by randomly generating key generation
matrixes, and the secure transmission of signatures and messages is ensured with fewer
entangled particles, which makes the signature scheme highly efficient.

The remaining structure of this article is as follows. Section 2 introduces concepts
such as key generation matrix, quantum Fourier transform, SUM gate, and group
addition operation. Section 3 introduces the detailed process of the proposed quantum
homomorphic aggregate signature. In Section 4, we will provide a specific example
in comparison to this scheme. Section 5 provides an analysis of the correctness and
homomorphism of the scheme. Section 6 provides a security analysis of the scheme.
Section 7 conducts an efficiency analysis. Section 8 provides a brief conclusion.

2 Preliminary

2.1 Key generation matrix

The key generation matrix is used to generate private keys for multiple participants,
and then encrypt information using the private keys to ensure the secure transmission
of information for each participant. The key generation matrix is an n × n square
matrix [41], which is represented as











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann











. (1)

Where ait(ait ∈ {1, 2, 3, ...}) represents the element in the ith row tth column of the
key generation matrix, and the sum modulus d(d = 2n) of each row is 0, which means
n
∑

t=1
ait(modd) = 0.

2.2 Quantum Fourier transform

QFT is a key step in quantum factor decomposition and many quantum algorithms,
and is an effective quantum algorithm for performing Fourier transform of quantum
mechanical amplitudes [42]. This article uses QFT to encrypt information in order to
ensure secure transmission of information in the channel. In a d-dimensional quantum
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system, for x ∈ {0, 1, ..., d− 1}, QFT is defined as follows:

QFT : |x⟩ → 1√
d

d−1
∑

y=0

e2πi
x
d
y|y⟩. (2)

Meanwhile, inverse QFT is defined as:

QFT−1 : |y⟩ → 1√
d

d−1
∑

x=0

e−2πi y
d
x|x⟩. (3)

In addition, due to the

d−1
∑

y=0

e2πi
x
d
y =

{

0, ifx ̸= 0modd

d, ifx = 0modd
, (4)

so there is QFT−1(QFT |x⟩) = |x⟩.

2.3 SUM gate

The definition of a SUM gate is as follows:

SUM(|u⟩, |v⟩) = (|u⟩, |u+ v(modd)⟩), (5)

where |u⟩ and |v⟩ are the control bit and target bit respectively, and u, v ∈ {0, 1, ..., d−
1}(d = 2n).
Let’s assume that the binary expressions for u and v are u = u0 · 20 + u1 · 21 + u2 ·
22 + · · ·+ un−1 · 2n−1 and v = v0 · 20 + v1 · 21 + v2 · 22 + · · ·+ vn−1 · 2n−1 respectively,
where uj , vj ∈ {0, 1}, (j = 0, 1, 2, ..., n−1). Therefore, the operations of SUM gate can
be transformed into operations between the binary of u and v. As shown in Figure 1,
a quantum circuit diagram for SUM gate binary operations is presented.

2.4 Basis exchange operator

In d-dimensional quantum systems, the basis exchange operator Uk is defined as:

Uk =

d−1
∑

u=0

|u+ k⟩⟨u|, (6)

where k ∈ {0, 1, ..., d − 1}. Obviously, for a d-dimensional ground state |e⟩(e ∈
{0, 1, ..., d− 1}) , the result of being acted upon by operator Uk is

Uk|e⟩ = |e+ k(modd)⟩. (7)
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Fig. 1 Quantum circuit diagram of SUM gate binary operations

2.5 Group addition operation

In this article, we need to use the group addition operator Θ to aggregate multi-
ple initial signatures to generate a quantum homomorphic aggregate signature with
homomorphic properties. Its definition is as follows:
Definition 1 (Group addition operation). Firstly, the addition operation of module

d on the set {0, 1, 2, ..., d − 1} forms a group that satisfies the properties of asso-

ciative law, identity element, and inverse element. Then, we define a mapping from

set {0, 1, 2, ..., d− 1} to set {|0⟩, |1⟩, ..., |d− 1⟩}, with a mapping function δ satisfying

δ(0) = |0⟩, δ(1) = |1⟩, ..., δ(d − 1) = |d − 1⟩. Based on this mapping function δ, there

is δ(x)Θδ(y) = δ((x + y)modd) for ∀x, y ∈ {0, 1, 2, ..., d − 1}, where the symbol Θ is

the group addition operator on the set {|0⟩, |1⟩, ..., |d − 1⟩}, and the operation of the

symbol Θ on the set {|0⟩, |1⟩, ..., |d− 1⟩} forms an addition group. Suppose d = 4, the
operations between the elements in the group are shown in Table1.

Table 1 The operation situation between each element

Θ |0⟩ |1⟩ |2⟩ |3⟩

|0⟩ |0⟩ |1⟩ |2⟩ |3⟩
|1⟩ |1⟩ |2⟩ |3⟩ |0⟩
|2⟩ |2⟩ |3⟩ |0⟩ |1⟩
|3⟩ |3⟩ |0⟩ |1⟩ |2⟩

3 The proposed scheme

This scheme needs to involve n + 2 participants in total. They are respectively:
Alicei(i = 1, 2, ..., n) are the initial signers of messages, Bob is the aggregator of the
initial signatures, Charlie is the verifier of homomorphic aggregate signature. The
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scheme consists of four stages, namely: initialization phase, signature phase, aggrega-
tion phase, and verification phase. The specific details of the scheme are described as
follows:

3.1 Initialization phase

Suppose there are n initial signers Alicei(i = 1, 2, ..., n) who each need to sign messages
Xi ∈ {0, 1}n. Alicei(i = 1, 2, ..., n) and Charlie share a key KAiC with a length of
n bits respectively. To ensure unconditional security, the distribution of these keys
can be completed through QKD [43]. In this stage, the initial signers, aggregator, and
verifier generate their own private keys through the key generation matrixes. Then
Bob generates entangled particles through quantum operations such as QFT, and
distributes the entangled particles to the initial signers.

Step I1. the initial signers Alicei(i = 1, 2, ..., n), aggregator Bob, and verifier
Charlie jointly construct n n+2-order key generation matrixes, which can be referred
to as {B0, B1, ..., Bn−1}. Taking the key generation matrix Bj(j = 0, 1, 2, ..., n− 1) as
an example, we will construct and explain the matrix. Firstly, each participant con-
structs a row of the key generation matrix Bj , which means that Alicei constructs
the ith row element of the key generation matrix Bj , Bob generates the (n + 1)th
row element of the key generation matrix Bj , and Charlie generates the (n + 2)th
row element of the key generation matrix Bj . Then, Alicei randomly generates n+ 2
positive integers {aji1, a

j
i2, ..., a

j
in, b

j
i , c

j
i} as the ith(1 ≤ i ≤ n) row element of the key

generation matrix Bj , where the ith row element satisfies
n
∑

t=1
a
j
it+ b

j
i + c

j
i = 0(modd),

a
j
it represents the ith row tth column element in matrix Bj , bji represents the ith

row (n + 1)th column element in matrix Bj , and c
j
i represents the ith row (n + 2)th

column element in matrix Bj . Bob randomly generates n + 2 positive integers
{aj(n+1)1, a

j

(n+1)2, ..., a
j

(n+1)n, b
j
n+1, c

j
n+1} as the (n+1)th row element of the key gener-

ation matrix Bj , where the (n+1)th row element satisfies
n
∑

t=1
a
j

(n+1)t+ b
j
n+1+ c

j
n+1 =

0(modd), aj(n+1)t represents the (n+1)th row tth column element in matrix Bj , bjn+1

represents the (n + 1)th row (n + 1)th column element in matrix Bj , and c
j
n+1 rep-

resents the (n + 1)th row (n + 2)th column element in matrix Bj . Next, Charlie

randomly generates n + 2 positive integers {aj(n+2)1, a
j

(n+2)2, ..., a
j

(n+2)n, b
j
n+2, c

j
n+2}

as the (n + 2)th row element of the key generation matrix Bj , where the (n + 2)th

row element satisfies
n
∑

t=1
a
j

(n+2)t + b
j
n+2 + c

j
n+2 = 0(modd), a

j

(n+2)t represents the

(n + 2)th row tth column element in matrix Bj , bjn+2 represents the (n + 2)th row

(n + 1)th column element in matrix Bj , and c
j
n+2 represents the (n + 2)th row

(n + 2)th column element in matrix Bj . Subsequently, Alicei publicly discloses ele-
ments other than a

j
ii from the ith(1 ≤ i ≤ n) row element {aji1, a

j
i2, ..., a

j
in, b

j
i , c

j
i} of

the matrix Bj she generates to other participants, while retaining the element ajii her-

self. Bob publicly exposes elements other than b
j
n+1 from the (n + 1)th row element
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{aj(n+1)1, a
j

(n+1)2, ..., a
j

(n+1)n, b
j
n+1, c

j
n+1} of the matrix Bj he generates to other partic-

ipants, while retaining element bjn+1 himself. Charlie publicly exposes elements other

than c
j
n+2 from the (n+ 2)th row element {aj(n+2)1, a

j

(n+2)2, ..., a
j

(n+2)n, b
j
n+2, c

j
n+2} of

the matrix Bj he generates to other participants, while retaining element cjn+2 himself.

At this point, after receiving the element {aj1i, a
j
2i, ..., a

j

(i−1)i, a
j

(i+1)i, ..., a
j

(n+2)i} pub-

licly disclosed by other participants, Alicei sets a
j
i as the sum of all elements in the ith

column of the key generation matrix Bj , i.e. aji =
n+2
∑

z=1
a
j
zi, so that Alice′is private key

in the key generation matrix Bj is aji . Combining matrix sequences {B0, B1, ..., Bn−1},
Alicei has a private key sequence kAi

= (a0i , a
1
i , ..., a

n−1
i ). After receiving the element

{bj1, bj2, ..., bjn, bj(n+2)} publicly disclosed by other participants, Bob sets bj as the sum of

all elements in the (n+1)th column of the key generation matrix Bj , i.e. bj =
n+2
∑

z=1
bjz,

so that Bob′s private key in the key generation matrix Bj is bj . Combining matrix
sequences {B0, B1, ..., Bn−1}, Bob has a private key sequence kB = (b0, b1, ..., bn−1).
After receiving the element {cj1, cj2, ..., cjn+1} publicly disclosed by other participants,
Charlie sets cj as the sum of all elements in the (n+2)th column of the key generation

matrix Bj , i.e. cj =
n+2
∑

z=1
cjz, so that Charlie′s private key in the key generation matrix

Bj is cj . Combining matrix sequences {B0, B1, ..., Bn−1}, Charlie has a private key

sequence kC = (c0, c1, ..., cn−1). It is obvious that
n
∑

i=1

a
j
i + bj + cj = 0(modd). Finally,

Alicei(i = 1, 2, ..., n) respectively encrypts the message Xi(i = 1, 2, ..., n) with the key
KAiC to obtain EkAiC

(Xi), which is then sent to Charlie via a classical channel. The

schematic diagram of the key generation matrix Bj is shown in Figure 2. The process
of generating the key generation matrix Bj is shown in Figure 3.

Fig. 2 The representation of key generation matrix Bj

Step I2. At this stage, aggregator Bob generates n entangled n-particle states,
denoted as {|w⟩0, |w⟩1, ..., |w⟩n−1}, by using QFT and SUM gate. Next, take the prepa-
ration of |w⟩j(j = 0, 1, 2, ..., n−1) as an example for explanation. Firstly, Bob prepares
n single particle states {|0⟩1, |0⟩2, ..., |0⟩n} and applies QFT to the first particle |0⟩1,
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Fig. 3 The generation process of key generation matrix Bj

resulting in |φ⟩ = QFT |0⟩1 = 1√
d

d−1
∑

p=0
|p⟩1. Then, Bob uses n − 1 SUM gate opera-

tions to generate an n-particle entangled state |w⟩j , where |φ⟩ is the control bit and

|0⟩m(m = 2, 3, ..., n) is the target bit. Thus, there is |w⟩j = 1√
d

d−1
∑

p=0
|p⟩j1|p⟩j2 · · · |p⟩jn,

where |p⟩ji represents the ith particle in the entangled state of the jth particle.
Step I3. Bob generates n entangled n-particle states in the Step I2, with the order

represented as

(

1√
d

d−1
∑

p=0

|p⟩01|p⟩02 · · · |p⟩0n,
1√
d

d−1
∑

p=0

|p⟩11|p⟩12 · · · |p⟩1n, · · · ,
1√
d

d−1
∑

p=0

|p⟩n−1
1 |p⟩n−1

2 · · · |p⟩n−1
n

)

.

(8)

Then Bob extracts the ith particle from each n-particle entangled state to construct a
sequence containing n particles, thus generating n n-particle sequences and sending the
ith n-particle sequence directly to Alicei through quantum secure communication [44].
Therefore, the particle sequence obtained by each initial signer Alicei(i = 1, 2, ..., n) is
(|p⟩0i , |p⟩1i , ..., |p⟩n−1

i ), where |p⟩ji represents the ith particle in the jth entangled state.
The schematic diagram of particles distribution is shown in Figure 4.
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Fig. 4 Particles distribution diagram

3.2 Signature phase

After receiving a particle sequence (|p⟩0i , |p⟩1i , ..., |p⟩n−1
i ) from Bob, Alicei(i =

1, 2, ..., n) perform QFT and basis exchange operations on the received particles based
on their own private keys kAi

= (a0i , a
1
i , ..., a

n−1
i ) and Xi ∈ {0, 1}n to generate signa-

tures. Then Alicei(i = 1, 2, ..., n) send the computed particle sequences to Bob. This
stage is completed in two steps, as shown below.

Step S1. The initial signers Alicei(i = 1, 2, ..., n) respectively perform U
r
j
i+a

j
i
QFT

operations on the particles they own, and the r
j
i + a

j
i in U

r
j
i+a

j
i
corresponding to

different messagesXi are different. The corresponding rule is: if the jth(j = 0, 1, ..., n−
1) bit of the binary bits of message Xi is 1, then the parameter rji = 1 in U

r
j
i+a

j
i
acting

on the jth particle; If the jth(j = 0, 1, ..., n− 1) bit of the binary bits of message Xi

is 0, then the parameter rji = 0 in U
r
j
i+a

j
i
acting on the jth particle.

Next, the entangled state |w⟩j prepared by Bob will be used as an example to
illustrate, where n particles contained in the entangled state |w⟩j are respectively
sent to n initial signers Alicei(i = 1, 2, ..., n). Each initial signer Alicei performs
corresponding operations based on the corresponding rules mentioned above. Suppose
that the entangled state |w⟩j is subjected to U

r
j
i+a

j
i
QFT operations, the result of the

operations is denoted as |R⟩j . The calculation process is as follows:

12



|R⟩j = (U
r
j
1
+a

j
1

QFT )⊗ (U
r
j
2
+a

j
2

QFT )⊗ · · · ⊗ (U
r
j
n+a

j
n
QFT )|w⟩j

=
1√
d

d−1
∑

p=0

(U
r
j
1
+a

j
1

QFT )|p⟩j1 ⊗ (U
r
j
2
+a

j
2

QFT )|p⟩j2 ⊗ · · · ⊗ (U
r
j
n+a

j
n
QFT )|p⟩jn

=
1√
d

d−1
∑

p=0





1√
d

d−1
∑

l
j
1
=0

e2πi
p
d
l
j
1 |lj1 + r

j
1 + a

j
1⟩



⊗





1√
d

d−1
∑

l
j
2
=0

e2πi
p
d
l
j
2 |lj2 + r

j
2 + a

j
2⟩





⊗ · · · ⊗





1√
d

d−1
∑

l
j
n=0

e2πi
p
d
ljn |ljn + rjn + ajn⟩





= d−
n+1

2

d−1
∑

p=0





d−1
∑

l
j
1
,l
j
2
,··· ,ljn=0

e2πi
l
j
1
+l

j
2
+···+l

j
n

d
p|lj1 + r

j
1 + a

j
1⟩ ⊗ · · · ⊗ |ljn + rjn + ajn⟩





= d−
n+1

2

d−1
∑

l
j
1
,l
j
2
,··· ,ljn=0

(

d−1
∑

p=0

e2πi
l
j
1
+l

j
2
+···+l

j
n

d
p|lj1 + r

j
1 + a

j
1⟩ ⊗ · · · ⊗ |ljn + rjn + ajn⟩

)

.

(9)
Combining the property of QFT

d−1
∑

p=0

e2πi
l
j
1
+l

j
2
+···+l

j
n

d
p =

{

0, l
j
1 + l

j
2 + · · ·+ ljn ̸= 0modd

d, l
j
1 + l

j
2 + · · ·+ ljn = 0modd

, (10)

So there is

|R⟩j = d−
n−1

2

∑

l
j
1
+l

j
2
+···+l

j
n=0mod d

|lj1 + r
j
1 + a

j
1⟩ ⊗ |lj2 + r

j
2 + a

j
2⟩ ⊗ · · · ⊗ |ljn + rjn + ajn⟩.

(11)

Based on the above calculation results, the signatures of Alicei(i = 1, 2, ..., n) are
shown in Table 2.

Table 2 Information signature pairs of initial signers

Initial signers Information signature pairs of initial signers

Alice1 {X1, S1 = (|l0
1
+ r0

1
+ a0

1
⟩, |l1

1
+ r1

1
+ a1

1
⟩, ..., |ln−1

1
+ rn−1

1
+ an−1

1
⟩)}

Alice2 {X2, S2 = (|l0
2
+ r0

2
+ a0

2
⟩, |l1

2
+ r1

2
+ a1

2
⟩, ..., |ln−1

2
+ rn−1

2
+ an−1

2
⟩)}

.

.

.
.
.
.

Alicen {Xn, Sn = (|l0n + r0n + a0n⟩, |l
1
n + r1n + a1n⟩, ..., |l

n−1
n + rn−1

n + an−1
n ⟩)}
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Step S2. After Alicei(i = 1, 2, ..., n) complete the signature, they need to return the
signature particles to Bob. During the transmission process, eavesdropping detection
will be used between Alicei and Bob to ensure the secure transmission of signatures.
Taking Alicei as an example, the specific eavesdropping detection process is as follows.

Alicei randomly selects a set of decoy particles from the set V1 = {|0⟩, |1⟩, ..., |d−1⟩}
or V2 = {QFT |0⟩, QFT |1⟩, ..., QFT |d− 1⟩}, and then inserts the decoy particles into
the signature sequence Si to form an ordered quantum sequence S′

i, and records the
position of each decoy particle. Afterwards, Alicei sends the quantum sequence S′

i

to Bob, while informing him of the randomly selected decoy particles’s positions and
corresponding measurement basis.

After receiving S′
i, Bob measures the corresponding particles using the same mea-

surement basis as Alicei. Then Bob sends the measurement results to Alicei, who
compares the measurement results between them. If the error rate is lower than the
predetermined threshold for channel noise, proceed to the next step; Otherwise, Alicei
tells Bob to abandon the sequence and start a new one. Finally, Bob removes the decoy
particles from S′

i and obtains the quantum signature sequence Si. The distribution
and signature process of entangled particles is shown in Figure 5.

Fig. 5 Entangled particle distribution and signature process

3.3 Aggregation phase

In this stage, aggregator Bob first aggregates the quantum signatures among the ini-
tial signers Alicei(i = 1, 2, ..., n) using the group addition operator Θ to generate a
new quantum homomorphic aggregate signature, which is Bob’s quantum signature.
Then, Bob encrypts the quantum homomorphic aggregate signature by combining
his own private key with basis exchange operator. After encryption is completed, the

14



encrypted quantum sequence is sent to Charlie through a quantum channel. This
stage is completed in two steps, and the specific process is as follows.

Step A1. In the Step S2 stage, it is possible to know the signature Si = (|l0i +
r0i + a0i ⟩, |l1i + r1i + a1i ⟩, ..., |ln−1

i + rn−1
i + an−1

i ⟩) recovered by Bob from the inserted
decoy particle’s S′

i. In the preliminary section, a group addition operator Θ is defined
that satisfies: δ(x)Θδ(y) = δ((x + y)modd). Bob performs (n − 1)Θ group addition
operations on the jth(j = 0, 1, 2, ..., n−1) particle from each of the n signature particles
sent by Alicei(i = 1, 2, ..., n), thereby aggregating n sets of quantum sequences into
one set of quantum sequence. Therefore, Bob can obtain S = {|(r01 + r02 + · · · + r0n +
a01 + · · ·+ a0n)modd⟩, |(r11 + r12 + · · ·+ r1n + a11 + · · ·+ a1n)modd⟩, · · · , |(rn−1

1 + rn−1
2 +

· · · + rn−1
n + an−1

1 + · · · + an−1
n )modd⟩}, which is a quantum signature generated by

Bob through Θ group addition operations, that is, a quantum homomorphic aggregate
signature. The specific aggregation process is shown in Figure 6.

Fig. 6 The generation process of quantum homomorphic aggregate signature

Step A2. After Bob generates a quantum homomorphic aggregate signature
through the Θ group addition operations, in order to ensure the secure transmis-
sion of the quantum homomorphic aggregate signature to Charlie, Bob uses the Ubj

operations to add his private key kB = (b0, b1, ..., bn−1) to the quantum homomor-
phic aggregate signature S, resulting in Ubj |rj1 + r

j
2 + · · · + rjn + a

j
1 + · · · + ajn⟩ =

|rj1+r
j
2+ · · ·+rjn+a

j
1+ · · ·+ajn+ bj⟩. Suppose the encrypted quantum sequence is S′,

there is S′ = {|(r01 + r02 + · · ·+ r0n+a01+ · · ·+a0n+ b0)modd⟩, |(r11 + r12 + · · ·+ r1n+a11+
· · ·+a1n+ b1)modd⟩, ..., |(rn−1

1 + rn−1
2 + · · ·+ rn−1

n +an−1
1 + · · ·+an−1

n + bn−1)modd⟩}.
Then, Bob sends the encrypted quantum sequence S′ to Charlie through a quantum
channel.

3.4 Verification phase

At this stage, Charlie will verify the validity of the initial signatures by verifying the
validity of the quantum homomorphic aggregate signature. This stage is completed in
two steps, and the specific process is as follows.

Step V1. After receiving the S′ sent by Bob, Charlie also uses Ucj operations to
add his private key kC = (c0, c1, ..., cn−1) to the quantum sequence S′, marking the
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transformed quantum sequence as S′′. Thus, there is Ucj |(rj1+r
j
2+ · · ·+rjn+a

j
1+ · · ·+

ajn+ bj)modd⟩ = |(rj1+ r
j
2+ · · ·+ rjn+a

j
1+ · · ·+ajn+ bj + cj)modd⟩. By combining the

property of the key generation matrixes, i.e.
n
∑

i=1

a
j
i + bj + cj = 0(modd), the quantum

sequence owned by Charlie is transformed into S′′ = {|(r01+r02+· · ·+r0n)modd⟩, |(r11+
r12 + · · ·+ r1n)modd⟩, · · · , |(rn−1

1 + rn−1
2 + · · ·+ rn−1

n )modd⟩}.
Step V2. Charlie used a set of computational bases {|0⟩, |1⟩, ..., |n⟩} to measure

the quantum sequence S′′, and the measured results are g0 = r01 + r02 + · · ·+ r0n, g
1 =

r11 + r12 + · · · + r1n, ..., g
n−1 = rn−1

1 + rn−1
2 + · · · + rn−1

n . Then Charlie calculates the
sum of the messages Xi(i = 1, 2, ..., n) converted to decimal based on the measurement
results as Sum′ = g0 · 20 + g1 · 21 + g2 · 22 + · · ·+ gn−1 · 2n−1.

When Charlie receives the EkAiC
(Xi) sent by Alicei(i = 1, 2, ..., n), he decrypts it

using the key KAiC to obtain Xi(i = 1, 2, ..., n). Then Charlie converts Xi to decimal
xi(i = 1, 2, ..., n) and calculates Sum = x1 + x2 + · · ·+ xn. Finally, Charlie compares
and verifies Sum with Sum′. If Sum = Sum′ is met, the signature is valid; Otherwise,
Charlie declares the signature invalid and refuses to accept it. For the above stages,
the information exchange between the participants is shown in Figure 7. Here, we also
present the quantum circuit diagram of the proposed scheme, as shown in Figure 8.

Fig. 7 Information exchange diagram
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Fig. 8 Quantum circuit diagram of the proposed scheme

4 Example of scheme

In this section, we provide a example to describe the proposed scheme and verify its
correctness. If n + 2 participants can honestly execute the operations of the scheme,
then their initial signatures generated by the messages and the quantum signature
generated by aggregation using homomorphic properties are both valid. In the process
of giving an example, we overlooked the corresponding security checks.

4.1 Initialization phase

Suppose there are six initial signers Alice1, Alice2, Alice3, Alice4 ,Alice5 and Alice6
who need to sign messages X1 = 101110, X2 = 100100, X3 = 000111, X4 = 001110,
X5 = 011100 and X6 = 111000, there is d = 26 = 64.

Step I1. Firstly, Alice1, Alice2, Alice3, Alice4 ,Alice5, Alice6, Bob, Charlie jointly
construct six key generation matrixes, denoted as {B0, B1, ..., B5}. For each key gen-
eration matrix Bj(j = 0, 1, 2, ..., 5), each participant reconstructs one row of the key
generation matrix. Next, we will describe the process of constructing the key genera-
tion matrix B0. Alice1, Alice2, Alice3, Alice4 ,Alice5, Alice6, Bob, Charlie randomly
generate eight positive integers as elements of the key generation matrix B0, and the
positive integers generated by each participating party are shown in Table 3.
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Table 3 Each participant generates the row elements of the key generation

matrix B0 separately

Participants The row elements of B0 Participants The row elements of B0

Alice1 7, 27, 20, 1, 3, 5, 43, 22 Alice2 23, 13, 3, 25, 9, 6, 2, 47
Alice3 5, 4, 3, 30, 3, 15, 17, 51 Alice4 6, 17, 44, 6, 1, 9, 10, 35
Alice5 24, 30, 14, 8, 1, 5, 36, 10 Alice6 30, 17, 7, 4, 3, 5, 16, 46
Bob 61, 20, 6, 2, 2, 7, 23, 7 Charlie 57, 16, 18, 11, 2, 5, 4, 15

Table 4 Private keys of each participant on matrix B0

Participants Private keys of participant

Alice1 a0
1
= 7 + 23 + 5 + 6 + 24 + 30 + 61 + 57 = 213

Alice2 a0
2
= 27 + 13 + 4 + 17 + 30 + 17 + 20 + 16 = 144

Alice3 a0
3
= 20 + 3 + 3 + 44 + 14 + 7 + 6 + 18 = 115

Alice4 a0
4
= 1 + 25 + 30 + 6 + 8 + 4 + 2 + 11 = 87

Alice5 a0
5
= 3 + 9 + 3 + 1 + 1 + 3 + 2 + 2 = 24

Alice6 a0
6
= 5 + 6 + 15 + 9 + 5 + 5 + 7 + 5 = 57

Bob b0 = 43 + 2 + 17 + 10 + 36 + 16 + 23 + 4 = 151
Charlie c0 = 22 + 47 + 51 + 35 + 10 + 46 + 7 + 15 = 233

Therefore, the B0 matrix is represented as

























7 27 20 1 3 5 43 22
23 13 3 25 9 6 2 47
5 4 3 30 3 15 17 51
6 17 44 6 1 9 10 35
24 30 14 8 1 5 36 10
30 17 7 4 3 5 16 46
61 20 6 2 2 7 23 7
57 16 18 11 2 5 4 15

























(12)

Obviously, the private keys of each participant in matrix B0 are shown in Table 4.

The private keys of the above participants meet
6
∑

t=1
a0i + b0 + c0 = 1024 =

0(mod 64). Similar to matrix B0, the representation of other key generation matrixes
{B1, B2, ..., B5} can be found in the appendix A. Therefore, based on the key
generation matrixes {B0, B1, B2, ..., B5}, the private keys sequence owned by each
participant is shown in Table 5.

Step I2. Bob generates six entangled six-particle states, represented as
{|w⟩0, |w⟩1, ..., |w⟩5}, by using QFT and SUM gate. Thus, there is |w⟩j =

1
8

63
∑

p=0
|p⟩j1|p⟩j2 · · · |p⟩j6(j = 0, 1, 2, ..., 5), where |p⟩ji represents the ith particle in the jth

entangled state.
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Table 5 Private keys sequence owned by each participant

Participants Private keys sequences of participants

Alice1 {a0
1
, a1

1
, a2

1
, a3

1
, a4

1
, a5

1
= 213, 307, 239, 210, 371, 350}

Alice2 {a0
2
, a1

2
, a2

2
, a3

2
, a4

2
, a5

2
= 144, 199, 206, 205, 200, 289}

Alice3 {a0
3
, a1

3
, a2

3
, a3

3
, a4

3
, a5

3
= 115, 147, 240, 268, 182, 306}

Alice4 {a0
4
, a1

4
, a2

4
, a3

4
, a4

4
, a5

4
= 87, 188, 278, 121, 299, 235}

Alice5 {a0
5
, a1

5
, a2

5
, a3

5
, a4

5
, a5

5
= 24, 66, 50, 117, 314, 161}

Alice6 {a0
6
, a1

6
, a2

6
, a3

6
, a4

6
, a5

6
= 57, 138, 166, 67, 160, 192}

Bob {b0, b1, b2, b3, b4, b5 = 151, 162, 174, 275, 241, 252}
Charlie {c0, c1, c2, c3, c4, c5 = 233, 201, 183, 273, 281, 263}

Step I3. Bob generates six entangled six-particle states in the Step I2, with the
order represented as

(

1

8

63
∑

p=0

|p⟩01|p⟩02 · · · |p⟩06,
1

8

63
∑

p=0

|p⟩11|p⟩12 · · · |p⟩16, · · · ,
1

8

63
∑

p=0

|p⟩51|p⟩52 · · · |p⟩56

)

. (13)

Then Bob extracts the ith(i = 1, 2, ..., 6) particle from each six-particle entangled
state to construct a sequence containing six particles, thus generating six six-particle
sequences and sending the ith six-particle sequence directly to Alicei through quantum
channel. Therefore, the particle sequence obtained by each initial signer Alicei(i =
1, 2, ..., 6) is (|p⟩0i , |p⟩1i , ..., |p⟩5i ).

4.2 Signature phase

Step S1. The initial signers Alicei(i = 1, 2, ..., 6) respectively perform U
r
j
i+a

j
i
QFT

operations on the particles they own, and the r
j
i + a

j
i in U

r
j
i+a

j
i
corresponding to

different messages Xi are different. The corresponding rule is: if the jth(j = 0, 1, ..., 5)
bit of the binary bits of message Xi is 1, then the parameter rji = 1 in U

r
j
i+a

j
i
acting on

the jth particle; If the jth(j = 0, 1, ..., 5) bit of the binary bits of message Xi is 0, then
the parameter rji = 0 in U

r
j
i+a

j
i
acting on the jth particle. The detailed description is

shown in Table 6.

Table 6 The case where the initial signers perform basis exchange operators on different particles
they possess

Initial signers i Xi |p⟩0i |p⟩1i |p⟩2i |p⟩3i |p⟩4i |p⟩5i

Alice1 i = 1 X1 = 101110 Ua0
1

U
1+a1

1
U
1+a2

1
U
1+a3

1
Ua4

1
U
1+a5

1

Alice2 i = 2 X2 = 100100 Ua0
2

Ua1
2

U
1+a2

2
Ua3

2
Ua4

2
U
1+a5

2

Alice3 i = 3 X3 = 000111 U
1+a0

3
U
1+a1

3
U
1+a2

3
Ua3

3
Ua4

3
Ua5

3

Alice4 i = 4 X4 = 001110 Ua0
4

U
1+a1

4
U
1+a2

4
U
1+a3

4
Ua4

4
Ua5

4

Alice5 i = 5 X5 = 011100 Ua0
5

Ua1
5

U
1+a2

5
U
1+a3

5
U
1+a4

5
Ua5

5

Alice6 i = 6 X6 = 111000 Ua0
6

Ua1
6

Ua2
6

U
1+a3

6
U
1+a4

6
U
1+a5

6
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Next, the entangled state |w⟩0 = 1
8

63
∑

p=0
|p⟩01|p⟩02 · · · |p⟩06 prepared will be used as

an example to illustrate, where six particles contained in the entangled state |w⟩0
are respectively sent to six initial signers. Alice1 performs Ua0

1
QFT operation on

the first particle of entangled state |w⟩0. Alice2 performs Ua0
2
QFT operation on the

second particle of entangled state |w⟩0. Alice3 performs U1+a0
3
QFT operation on the

third particle of entangled state |w⟩0. Alice4 performs Ua0
4
QFT operation on the

fourth particle of entangled state |w⟩0. Alice5 performs Ua0
5
QFT operation on the

fifth particle of entangled state |w⟩0. Alice6 performs Ua0
6
QFT operation on the sixth

particle of entangled state |w⟩0. Suppose that the entangled state |w⟩0 is subjected to
Ur0i+a0

i
QFT operations, the result of the operations is denoted as |R⟩0. The calculation

process is as follows:

|R⟩0 = (Ua0
1
QFT )⊗ (Ua0

2
QFT )⊗ (U1+a0

3
QFT )⊗ (Ua0

4
QFT )⊗ (Ua0

5
QFT )⊗ (Ua0

6
QFT )|w⟩0

=
1

8

63
∑

p=0

(Ua0
1
QFT )|p⟩01 ⊗ (Ua0

2
QFT )|p⟩02 ⊗ (U1+a0

3
QFT )|p⟩03 ⊗ (Ua0

4
QFT )|p⟩04

⊗(Ua0
5
QFT )|p⟩05 ⊗ (Ua0

6
QFT )|p⟩06

=
1

8

63
∑

p=0





1

8

63
∑

l0
1
=0

e2πi
p
64

l01 |l01 + a01⟩



⊗





1

8

63
∑

l0
2
=0

e2πi
p
64

l02 |l02 + a02⟩



⊗





1

8

63
∑

l0
3
=0

e2πi
p
64

l03 |l03 + 1 + a03⟩





⊗





1

8

63
∑

l0
4
=0

e2πi
p
64

l04 |l04 + a04⟩



⊗





1

8

63
∑

l0
5
=0

e2πi
p
64

l05 |l05 + a05⟩



⊗





1

8

63
∑

l0
6
=0

e2πi
p
64

l06 |l06 + a06⟩





=

(

1

8

)7 63
∑

l0
1
,l0
2
,··· ,l0

6
=0

(

63
∑

p=0

e2πi
l0
1
+l0

2
+···+l0

6
64

p|l01 + a01⟩ ⊗ |l02 + a02⟩ ⊗ |l03 + 1 + a03⟩

⊗|l04 + a04⟩ ⊗ |l05 + a05⟩ ⊗ |l06 + a06⟩).
(14)

Because of

63
∑

p=0

e2πi
l0
1
+l0

2
+···+l0

6
64

p =

{

0, l01 + l02 + · · ·+ l06 ̸= 0mod 64

64, l01 + l02 + · · ·+ l06 = 0mod 64
, (15)

so there is

|R⟩0 =

(

1

8

)5
∑

l0
1
+l0

2
+···+l0

6
=0mod 64

|l01 + a01⟩ ⊗ |l02 + a02⟩ ⊗ |l03 + 1 + a03⟩ ⊗ |l04 + a04⟩

⊗|l05 + a05⟩ ⊗ |l06 + a06⟩.
(16)
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Similarly, the operations of other entangled particles {|w⟩1, |w⟩2, ..., |w⟩5} are as
follows:

|R⟩1 =

(

1

8

)5
∑

l1
1
+l1

2
+···+l1

6
=0mod 64

|l11 + 1 + a11⟩ ⊗ |l12 + a12⟩ ⊗ |l13 + 1 + a13⟩ ⊗ |l14 + 1 + a14⟩

⊗|l15 + a15⟩ ⊗ |l16 + a16⟩.
(17)

|R⟩2 =

(

1

8

)5
∑

l2
1
+l2

2
+···+l2

6
=0mod 64

|l21 + 1 + a21⟩ ⊗ |l22 + 1 + a22⟩ ⊗ |l23 + 1 + a23⟩

⊗|l24 + 1 + a24⟩ ⊗ |l25 + 1 + a25⟩ ⊗ |l26 + a26⟩.
(18)

|R⟩3 =

(

1

8

)5
∑

l3
1
+l3

2
+···+l3

6
=0mod 64

|l31 + 1 + a31⟩ ⊗ |l32 + a32⟩ ⊗ |l33 + a33⟩ ⊗ |l34 + 1 + a34⟩

⊗|l35 + 1 + a35⟩ ⊗ |l36 + 1 + a36⟩.
(19)

|R⟩4 =

(

1

8

)5
∑

l4
1
+l4

2
+···+l4

6
=0mod 64

|l41 + a41⟩ ⊗ |l42 + a42⟩ ⊗ |l43 + a43⟩ ⊗ |l44 + a44⟩

⊗|l45 + 1 + a45⟩ ⊗ |l46 + 1 + a46⟩.
(20)

|R⟩5 =

(

1

8

)5
∑

l5
1
+l5

2
+···+l5

6
=0mod 64

|l51 + 1 + a51⟩ ⊗ |l52 + 1 + a52⟩ ⊗ |l53 + a53⟩ ⊗ |l54 + a54⟩

⊗|l55 + a55⟩ ⊗ |l56 + 1 + a56⟩.
(21)

Based on the above calculation results, the signatures of Alicei(i = 1, 2, ..., 6) are
shown in Table 7.

Table 7 Information signature pairs of initial signers

Initial signers Information signature pairs of initial signers

Alice1 {X1, S1 = (|l0
1
+ a0

1
⟩, |l1

1
+ 1 + a1

1
⟩, |l2

1
+ 1 + a2

1
⟩, |l3

1
+ 1 + a3

1
⟩, |l4

1
+ a4

1
⟩, |l5

1
+ 1 + a5

1
⟩)}

Alice2 {X2, S2 = (|l0
2
+ a0

2
⟩, |l1

2
+ a1

2
⟩, |l2

2
+ 1 + a2

2
⟩, |l3

2
+ a3

2
⟩, |l4

2
+ a4

2
⟩, |l5

2
+ 1 + a5

2
⟩)}

Alice3 {X3, S3 = (|l0
3
+ 1 + a0

3
⟩, |l1

3
+ 1 + a1

3
⟩, |l2

3
+ 1 + a2

3
⟩, |l3

3
+ a3

3
⟩, |l4

3
+ a4

3
⟩, |l5

3
+ a5

3
⟩)}

Alice4 {X4, S4 = (|l0
4
+ a0

4
⟩, |l1

4
+ 1 + a1

4
⟩, |l2

4
+ 1 + a2

4
⟩, |l3

4
+ 1 + a3

4
⟩, |l4

4
+ a4

4
⟩, |l5

4
+ a5

4
⟩)}

Alice5 {X5, S5 = (|l0
5
+ a0

5
⟩, |l1

5
+ a1

5
⟩, |l2

5
+ 1 + a2

5
⟩, |l3

5
+ 1 + a3

5
⟩, |l4

5
+ 1 + a4

5
⟩, |l5

5
+ a5

5
⟩)}

Alice6 {X6, S6 = (|l0
6
+ a0

6
⟩, |l1

6
+ a1

6
⟩, |l2

6
+ a2

6
⟩, |l3

6
+ 1 + a3

6
⟩, |l4

6
+ 1 + a4

6
⟩, |l5

6
+ 1 + a5

6
⟩)}
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After the initial signers Alicei(i = 1, 2, ..., 6) complete the signatures, they return
the signature particles they own to Bob. During the transmission process, eavesdrop-
ping detection is used between Alicei and Bob to ensure the secure transmission of
signatures.

4.3 Aggregation phase

Step A1. Bob performs five group addition operations on the jth(j = 0, 1, ..., 5) particle
from each of the six signature particles sent by Alicei(i = 1, 2, ..., 6), resulting in
the aggregation of six sets of quantum sequences into one set of quantum sequence.
Therefore, Bob can obtain S = {|(l01+ l02+ · · ·+ l06+a01+a02+ · · ·+a06+1)mod 64⟩, |(l11+
l12 + · · ·+ l16 + a11 + a12 + · · ·+ a16 + 3)mod 64⟩, |(l21 + l22 + · · ·+ l26 + a21 + a22 + · · ·+ a26 +
5)mod 64⟩, |(l31+ l32+ · · ·+ l36+a31+a32+ · · ·+a36+4)mod 64⟩, |(l41+ l42+ · · ·+ l46+a41+a42+
· · ·+a46+2)mod 64⟩, |(l51+l52+· · ·+l56+a51+a52+· · ·+a56+3)mod 64⟩} = {|(a01+a02+· · ·+
a06+1)mod 64⟩, |(a11+a12+ · · ·+a16+3)mod 64⟩, |(a21+a22+ · · ·+a26+5)mod 64⟩, |(a31+
a32+· · ·+a36+4)mod 64⟩, |(a41+a42+· · ·+a46+2)mod 64⟩, |(a51+a52+· · ·+a56+3)mod 64⟩},
which is a quantum signature generated by Bob through group addition operations,
that is, a quantum homomorphic aggregate signature.

Step A2. In order to ensure the secure transmission of the quantum homomorphic
aggregate signature to Charlie, Bob uses the Ubj operations to add his private key
kB = (b0, b1, ..., b5) to the quantum homomorphic aggregate signature S. Suppose
the encrypted quantum sequence is S′, there is S′ = {|(a01 + a02 + · · · + a06 + 1 +
b0)mod 64⟩, |(a11+a12+· · ·+a16+3+b1)mod 64⟩, |(a21+a22+· · ·+a26+5+b2)mod 64⟩, |(a31+
a32 + · · ·+ a36 + 4+ b3)mod 64⟩, |(a41 + a42 + · · ·+ a46 + 2+ b4)mod 64⟩, |(a51 + a52 + · · ·+
a56+3+b5)mod 64⟩}. Then, Bob sends the encrypted quantum sequence S′ to Charlie

through a quantum channel.

4.4 Verification phase

Step V1. After receiving the S′ sent by Bob, Charlie also uses Ucj (j = 0, 1, 2, ..., 5)
operations to add his private key kC = (c0, c1, ..., c5) to the quantum sequence S′,
marking the transformed quantum sequence as S′′. Thus, there is S′′ = {|(a01 + a02 +
· · ·+a06+1+ b0+ c0)mod 64⟩, |(a11+a12+ · · ·+a16+3+ b1+ c1)mod 64⟩, |(a21+a22+ · · ·+
a26 + 5 + b2 + c2)mod 64⟩, |(a31 + a32 + · · ·+ a36 + 4 + b3 + c3)mod 64⟩, |(a41 + a42 + · · ·+
a46 +2+ b4 + c4)mod 64⟩, |(a51 + a52 + · · ·+ a56 +3+ b5 + c5)mod 64⟩}. By combining the

property of the key generation matrixes, i.e.
6
∑

i=1

a
j
i +bj+cj = 0(mod 64), the quantum

sequence owned by Charlie is transformed into S′′ = {|1⟩, |3⟩, |5⟩, |4⟩, |2⟩, |3⟩}.
Step V2. Charlie used a set of computational bases {|0⟩, |1⟩, ..., |6⟩} to measure

the quantum sequence S′′, and the measured results are g0 = 1, g1 = 3, g2 = 5, g3 =
4, g4 = 2, g5 = 3. Then Charlie calculates the sum of the messages Xi(i = 1, 2, ..., 6)
converted to decimal based on the measurement results as Sum′ = 1 · 20 + 3 · 21 + 5 ·
22 + 4 · 23 + 2 · 24 + 3 · 25 = 187.

When Charlie receives the EkAiC
(Xi) sent by Alicei(i = 1, 2, ..., 6), he decrypts it

using the key KAiC to obtain Xi(i = 1, 2, ..., 6). Then Charlie converts Xi to decimal
xi(i = 1, 2, ..., 6), i.e. x1 = 46, x2 = 36, x3 = 7, x4 = 14, x5 = 28, x6 = 56, so there is
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Sum = x1+x2+x3+x4+x5+x6 = 187. Finally, Charlie compares and verifies Sum
with Sum′.

5 Analysis of the scheme

5.1 Correctness analysis

In this section, we provide a correctness analysis of the scheme, which mainly focuses
on the signature, aggregation, and final messages verification. This section takes the
messages as the starting point and verifies the validity of the signature by verifying
the correctness of the messages.
Theorem 1. Suppose that the initial signer Alicei owns the message Xi ∈ {0, 1}n
and converts it to decimal xi. Then Alicei performs U

r
j
i
operations on n particles

{|0⟩0i , |0⟩1i , ..., |0⟩n−1
i } based on Xi, corresponding to the rule: if the jth(j = 0, 1, ..., n−

1) bit of the binary bits of message Xi is 1, then the parameter r
j
i in U

r
j
i
acting on the

jth particle is 1; Otherwise, the parameter r
j
i = 0. If and only if 20r0i + 21r1i + · · · +

2n−1rn−1
i = xi, then the proposed quantum homomorphic aggregate signature scheme

is correct.

Proof of Theorem 1. In this scheme, Alicei(i = 1, 2, ..., n) use U
r
j
i+a

j
i
QFT operations

to add the messages Xi to the signature, and then send it to the aggregator Bob

through a quantum channel. Finally, Bob sends it to the verifier Charlie for final
messages verification. To prove the correctness of the proposed signature scheme, it is
only necessary to verify that the operation results encrypted by U

r
j
i
match the origi-

nal messages Xi ∈ {0, 1}n. Firstly, we perform U
r
j
i
operations on {|0⟩0i , |0⟩1i , ..., |0⟩n−1

i }
based on Xi, resulting in the expression {(Ur0i

|0⟩0i ), (Ur1i
|0⟩1i ), ..., (Ur

n−1

i
|0⟩n−1

i )}, and
the results of the operations are represented as {|r0i ⟩0i , |r1i ⟩1i , ..., |rn−1

i ⟩n−1
i }. Then we

measure the operation results to obtain {r0i , r1i , ..., rn−1
i }. Starting from the corre-

sponding rule, rji is the element representation of the jth bit of message Xi. Therefore,
there is 20r0i + 21r1i + · · ·+ 2n−1rn−1

i = xi.

5.2 Homomorphism analysis

In this section, we mainly analyze the homomorphism of the proposed scheme. In
preliminary section, we define a mapping from set {0, 1, ..., d−1} to set {|0⟩, |1⟩, ..., |d−
1⟩}, and the mapping function δ satisfies δ(0) = |0⟩, δ(1) = |1⟩, ..., δ(d− 1) = |d− 1⟩.
Based on this mapping function δ, there is δ(x)Θδ(y) = δ((x + y)modd) for ∀x, y ∈
{0, 1, 2, ..., d−1}, so the mapping δ satisfies the property of additive homomorphism. In
fact, since the mapping δ is a bijective, it is also an isomorphic mapping. Let’s assume
that Alice1’s signature is Sig(X1) = U

r
j
1
+a

j
1

QFT |p⟩j1 = |lj1+ r
j
1+a

j
1⟩ = δ(lj1+ r

j
1+a

j
1).

Alice2’s signature is Sig(X2) = U
r
j
2
+a

j
2

QFT |p⟩j2 = |lj2 + r
j
2 + a

j
2⟩ = δ(lj2 + r

j
2 + a

j
2).

Similarly, Alicen’s signature is Sig(Xn) = U
r
j
n+a

j
n
QFT |p⟩jn = |ljn + rjn + ajn⟩ = δ(ljn +

rjn + ajn). Thus, the signature of the message X1 +X2 + · · ·+Xn can be generated as
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follows:

Sig(X1)ΘSig(X2)Θ · · ·ΘSig(Xn)

= δ(lj1 + r
j
1 + a

j
1)Θδ(lj2 + r

j
2 + a

j
2)Θ · · ·Θδ(ljn + rjn + ajn)

= δ{(lj1 + r
j
1 + a

j
1 + l

j
2 + r

j
2 + a

j
2 + · · ·+ ljn + rjn + ajn)modd}

= δ{(lj1 + l
j
2 + · · ·+ ljn + r

j
1 + r

j
2 + · · ·+ rjn + a

j
1 + a

j
2 + · · ·+ ajn)modd}

= Sig(X1 +X2 + · · ·+Xn)
(22)

Compared with the additive homomorphic model f(ρ(a1), ρ(a2), ..., ρ(an)) = ρ(a1 +
a2 + · · ·+ an), our signature scheme satisfies the additive homomorphic property.

6 Safety analysis

In this section, we provide a security analysis of the scheme, mainly from six
aspects: non-repudiation, unforgeability, entanglement measurement attacks, private
key sequence attacks, intercept-resend attacks, and aggregator Bob’s attacks.

6.1 Unforgeability

In the process of quantum signature, internal attackers generally have a greater ability
to forge signatures than external attackers. Therefore, this section mainly analyzes
the possibility of signature forgery among the participants of the scheme.
6.1.1 The initial signer Alicei cannot forge the signatures of other initial signers

This scheme has n initial signers Alicei(i = 1, 2, ..., n) who need to sign messages
Xi(i = 1, 2, ..., n) respectively. Each initial signer needs to perform U

r
j
i+a

j
i
QFT opera-

tions on n particles based on a message of length n. Let’s assume that Alicei wants to
forge a signature on Alicei+1(i+1 ≤ n), at which point Alicei must know r

j
i+1+a

j
i+1.

Due to the fact that aji+1 =
n+2
∑

z=1
a
j

z(i+1) and a
j

z(i+1) are randomly generated elements,

it is clearly not feasible for Alicei to forge the signature of Alicei+1.
6.1.2 Aggregator Bob cannot forge signature

If Bob wants to forge the signature of the initial signer Alicei, since a
j
i =

n+2
∑

z=1
a
j
zi

and a
j
zi is a randomly generated element in the key generation matrix, it is not feasible

for Bob to forge Alicei’s signature through U
r
j
i+a

j
i
QFT . Further analysis shows that

if Bob uses computational basis V1 = {|0⟩, |1⟩, · · · , |d − 1⟩} to measure the quantum
signature Si sent by Alicei, he still cannot obtain any information about Alicei, so it
is not feasible for Bob to forge Alicei’s signature.
6.1.3 Verifier Charlie cannot forge signature

If Charlie wants to forge the signature of the initial signer Alicei, he must know
r
j
i +a

j
i . Due to Charlie receiving an EkAiC

(Xi) sent by Alicei, only the value of rji can

be inferred, but the value of aji =
n+2
∑

z=1
a
j
zi cannot be inferred. Therefore, Charlie cannot

forge the signature of the initial signer Alicei. If Charlie wants to forge the signature
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of aggregator Bob, because Bob’s signature S also contains the random private key
a
j
i of Alicei, and Bob adds his own random private key bj to the quantum signature

through the basis exchange operations during the quantum signature sending process
to Charlie. Based on the above analysis, Charlie cannot infer aji and bj , so Charlie

cannot forge the signature of aggregator Bob.

6.2 Non-repudiation

This section focuses on two aspects of analysis and explanation, namely, the initial
signer Alicei denies sending the signature to Bob, and the aggregator Bob denies
sending the signature to Charlie.
6.2.1 The initial signer Alicei denies sending the signature Si to Bob

Anyone can only obtain Si with the correct key a
j
i and message Xi. According to

the unconditional security of QKD, only Alicei has the key a
j
i and message Xi, thus

Bob cannot forge the signature. So, in this scheme, Alicei cannot deny that she sent
the signature Si to Bob.
6.2.1 The aggregator Bob denies sending the signature to Charlie

In the previous section, we analyzed that the scheme has unforgeability, so no
one can forge the signature Si of Alicei. When Bob receives a signature from Alicei,
only Bob has Alicei’s signature Si and his private key bj , so only Bob can generate a
quantum homomorphic aggregate signature S. Therefore, in this scheme, Bob cannot
deny that he sent the signature S to Charlie.

6.3 Entanglement measurement attack

Assuming that the adversary Eve attempts an entanglement measurement attack
between n initial signers Alicei. When aggregator Bob sends entangled particles to
Alicei, Eve intercepts these particles during the particles transport from Bob to Alicei.
Then Eve prepares several auxiliary particles and performes SUM operations on the
intercepted particles and auxiliary particles. After Alicei completes the signature, Eve

measures the auxiliary particles to obtain useful information about Alicei.
Let’s assume that Bob sends the ith particle of the jth entangled state to the initial

signer Alicei, and the adversary Eve will intercept this particle during the transmission
process. Then the adversary Eve prepares a d-dimensional auxiliary particle |q⟩(q ∈
0, 1, ..., d− 1), and uses the intercepted particle as the control particle and |q⟩ as
the target particle to perform SUM operation. The operation result is represented as

|E⟩ = USUM |w⟩j = 1√
d

d−1
∑

p=0
|p⟩j1|p⟩j2 · · · |p⟩ji |p+ q⟩Eve · · · |p⟩jn.

Then Eve sends the intercepted particle to Alicei. After completing channel secu-
rity detection in Alicei, if Eve measures auxiliary particle, he will obtain p + q.
Although Eve can deduce p, it does not contain any information about the initial
signer Alicei, so Eve cannot obtain any personal information about Alicei. If Alicei
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will sign, |E⟩ will take the following form:

|E⟩′ = (U
r
j
1
+a

j
1

QFT )⊗ (U
r
j
2
+a

j
2

QFT )⊗ · · · ⊗ (U
r
j
n+a

j
n
QFT )|E⟩

= d
1−n
2

∑

l
j
1
+l

j
2
+···+l

j
n=0mod d

|lj1 + r
j
1 + a

j
1⟩ ⊗ · · · ⊗ |lji + r

j
i + a

j
i ⟩|p+ q⟩Eve

⊗ · · · ⊗ |ljn + rjn + ajn⟩.
(23)

It is obvious that even if Eve measures auxiliary particle, he still cannot obtain any
information about Alicei. Therefore, our scheme can resist entanglement measurement
attacks.

6.4 Private key sequence attack

In this section, we provide a security analysis of the public key generation matrix
elements, except for those retained by each participant themselves.

Firstly, during the initialization phase, the scheme generates the private keys of
each participating party by constructing key generation matrixes, thereby utilizing
the private key sequences for secure transmission of signatures. Secondly, the key
generation matrixes are randomly generated by each participating party under the
condition that the sum of each row element modulus d is 0. Even if all elements except
for those retained by each participating party are publicly available, it can ensure the
secure transmission and verification of messages and signatures. Let’s assume that the
sum of elements in each row of the key generation matrixes is kd. Obviously, it can
be seen that the value of k here is any integer value, so there are infinite possibilities
for the elements retained by each participating party. Therefore, the disclosure of the
remaining elements of the key generation matrixes is secure. Further analysis reveals
that even if the adversary infers the elements retained by each participant, he will
know the private keys of each participant. However, since our quantum signature
Si = (|l0i + r0i + a0i ⟩, |l1i + r1i + a1i ⟩, · · · , |ln−1

i + rn−1
i + an−1

i ⟩) contains not only the
private key sequence (a0i , a

1
i , ..., a

n−1
i ), but also the (l0i , l

1
i , ..., l

n−1
i ) and (r0i , r

1
i , ..., r

n−1
i )

sequences, it is impossible for an adversary to steal the private information of the
signers through the private key sequence.

6.5 Intercept-resend attack

If the adversary Eve wants to carry out intercept-resend attack, the main target of
the attack is concentrated in the transmission process of particles. In this scheme,
the transmission of particles mainly involves three processes: firstly, Bob allocates
entangled particles to Alicei; secondly, after performing the U

r
j
i+a

j
i
QFT operations,

Alicei sends the signed particles to Bob; thirdly, Bob aggregates the signatures of
Alicei through group addition operations and sends the aggregated signature particles
to the verifier Charlie.

In the first process, Bob allocates entangled particles to Alicei through quantum
secure direct communication in the scheme, which has been proven to be uncondi-
tionally secure [44]. Further analysis shows that if Eve intercepts entangled particles,
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based on the analysis in section 6.3, we can conclude that the first process of particle
transport is safe. In the second process, we use eavesdropping detection to randomly
select decoy particles from two sets of conjugate bases V1 and V2 to detect the pres-
ence of external enemies. This technique has been proven to be unconditionally safe
[45]. Further analysis shows that if Eve intercepts the signature particles, according to
section 6.3, it can be concluded that the transmission of the second process signature
particles is secure. In the third process, Bob encrypts the aggregated signature parti-
cles using the private key bj , and then sends them to the verifier Charlie through a
quantum channel. Even if Eve intercepts the signature particles, due to the presence of
Alicei’s random private key a

j
iand Bob’s random private key bj in the signature parti-

cles, Eve still cannot obtain any privacy information about Alicei and Bob. Therefore,
our scheme can resist intercept-resend attack.

6.6 internal attacks by aggregator

Compared to external enemy attacks, Bob has a stronger possibility of attack. Because
he is responsible for the preparation and distribution of entangled particles, as well
as the generation of quantum homomorphic aggregate signature, thus he is a core
participant in the entire scheme. If Bob wants to steal Alicei privacy information, he
can launch the following attacks. Here, we take the n-particle entangled state |w⟩0

prepared by Bob as an example for analysis, where |w⟩0 = 1√
d

d−1
∑

p=0
|p⟩01|p⟩02 · · · |p⟩0n.

6.6.1 Attack 1
Let’s assume that Bob also make a copy of |w⟩0 while preparing |w⟩0, denoted

as |w′⟩0. Firstly, Bob uses computational base V1 = {|0⟩, |1⟩, ..., |d − 1⟩} to mea-
sure all n particles in copy |w′⟩0 and obtains the measurement result (p, p, ..., p).
Then, Bob performs inverse QFT on n particles of |w⟩0, and the result is repre-

sented as QFT−1|w⟩0 = 1√
d

d−1
∑

p=0
(QFT−1|p⟩01) ⊗ (QFT−1|p⟩02) ⊗ · · · ⊗ (QFT−1|p⟩0n).

Bob distributes the ith particle after QFT−1 operation to the initial signer Alicei.
After receiving the ith particle, Alicei performs Ur0i+a0

i
QFT operation on it, and

the operation result is represented as Ur0i+a0
i
QFT (QFT−1|p⟩0i ) = Ur0i+a0

i
|p⟩0i =

|p+ r0i + a0i ⟩0i .
After completing the Ur0i+a0

i
QFT operations, Alicei sends the particles to the

aggregator Bob, and the particle sequence is represented as(|p + r01 + a01⟩01, |p + r02 +
a02⟩02, ..., |p+ r0n + a0n⟩0n). Then, Bob measures these particles and obtains the following
result (p+ r01 + a01, p+ r02 + a02, ..., p+ r0n + a0n). Obviously, Bob knows the value of p,
but he doesn’t know the value of r0i + a0i . Therefore, no relevant information can be
obtained.
6.6.2 Attack 2

Bob first performs QFT on the last n−1 particles of |w⟩0 = 1√
d

d−1
∑

p=0
|p⟩01|p⟩02 · · · |p⟩0n,

keeping the first particle unchanged. The result of the operation is represented as

1√
d

d−1
∑

p=0
|p⟩01(QFT |p⟩02)⊗ · · · ⊗ (QFT |p⟩0n). Then, Bob sends the first particle of |w⟩0 to
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Alicei, while he saves the remaining particles himself. When Alicei receives a particle
and performs Ur0i+a0

i
QFT operation on it, the entangled state will take the following

form

1√
d

d−1
∑

p=0

(Ur0i+a0
i
QFT |p⟩01)⊗ (QFT |p⟩02)⊗ · · · ⊗ (QFT |p⟩0n)

= d
1−n
2

∑

l0
1
+l0

2
+···+l0n=0mod d

|l01 + r0i + a0i ⟩ ⊗ |l02⟩ ⊗ |l03⟩ ⊗ · · · ⊗ |l0n⟩.
(24)

Bob measures n particles in the above equation, and the measurement results are
{l01 + r0i + a0i , l

0
2, l

0
3, ..., l

0
n}. Next, Bob calculates the sum of the measurement results,

which is l01 + r0i + a0i + l02 + l03 + · · ·+ l0n = r0i + a0i (modd). Due to Bob not knowing the
value of r0i + a0i , he is unable to obtain the secret information of Alicei. In summary,
Bob’s attack is ineffective for our scheme.

7 Efficiency analysis

In this section, we analyze the quantum efficiency of the scheme, without considering
the required number of bits for eavesdropping detection. According to reference [46],
here is a formal definition of quantum efficiency

η =
bs

qt + bt
, (25)

where bs represents the number of bits of information X, qt represents the number
of quantum bits transmitted in the quantum channel, and bt represents the number
of classical bits transmitted in the classical channel. In our scheme, the length of
information Xi is n bits, the total quantum information transmitted between Alicei
and Bob is 2n bits, and the total quantum information transmitted between Charlie

and Bob is n bits, so qt = 2n2+n. The classical information transmitted between Alicei
and Bob is a total of 0 bits, the classical information transmitted between Charlie

and Bob is a total of 0 bits, and the classical information transmitted between Alicei
and Charlie is a total of n bits, so bt = n2. Therefore, the efficiency of our scheme is

η =
bs

qt + bt
=

n2

3n2 + n
=

n

3n+ 1
. (26)

For the example presented in this article, its efficiency is η = 6
3×6+1 = 6

19 = 31.5%.
The comparison of schemes is shown in Table 8.

Compared with references [34–36, 40], our scheme has significant characteristics
in quantum resources, length of signature message, eavesdropping detection, quantum
circuit, and efficiency. The comparison of the above schemes is analyzed under the
condition of n = 2. Firstly, references [34–36] are all quantum homomorphic signature
schemes with homomorphic properties. Our scheme uses n-particle entangled states
as quantum channels, generates private keys for each participant using key generation
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Table 8 The comparison of schemes

Scheme Quantum resource Length of signature message Eavesdropping detection Quantum circuit Efficiency

The scheme of reference [34] EPR state 4 bits No No 12%
The scheme of reference [35] Single-quantum state 2n bits No No 14%
The scheme of reference [36] Cluster state 2n bits No Yes 9%
The scheme of reference [40] EPR state tn bits Yes No 14%
The scheme of this article n-particle entangled state n2 bits Yes Yes 28.5%
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matrixes, and uses QFT and basis exchange operator for signature. During the process
of sending signed particles, eavesdropping detection is used. These characteristics are
not present in references [34–36]. Reference [40] is a quantum aggregate signature
scheme based on EPR states. Compared with reference [40], our scheme has significant
advantages in quantum resources, signature message length, quantum circuit, and
efficiency.

8 Conclusion

This article draws on the idea of quantum multi-party summation and proposes a
quantum homomorphic aggregate signature scheme based on quantum Fourier trans-
form. Our scheme uses QFT and SUM gate to generate n-particle entangled states, and
the number of entangled particles can be adjusted according to the number of signers.
This ensures the secure transmission of signatures and messages with fewer entangled
particles during transmission, further improving the efficiency of quantum signatures.
Based on the properties of the key generation matrix, our scheme randomly deter-
mines the row elements of the key generation matrix, and its column elements are the
private keys of each participating party. Moreover, the scheme generates signatures
from different signers based on different messages and private keys, which conforms to
the overall framework and formal definition of aggregate signatures. In addition, the
transmission of signature particles uses eavesdropping detection, and the message and
private key transmission process is a quantum sequence combined with random num-
bers, so the aggregator does not need to measure and verify the quantum signature
after receiving signatures from different signers. Our scheme utilizes quantum algo-
rithms such as QFT and basis exchange operator, combined with randomly constructed
key generation matrixes, making our scheme unforgeability and non-repudiation while
satisfying additive homomorphic property. At the same time, our scheme can resist var-
ious attacks such as entanglement measurement attacks, private key sequence attacks,
intercept-resend attacks, and internal attacks by aggregator.

Appendix A The representation of key generation
matrixes

The B1 matrix is represented as

























40 5 6 1 1 5 4 2
46 29 42 6 1 5 21 42
51 12 30 40 13 18 21 7
44 37 27 32 13 9 17 13
49 36 9 14 2 12 12 58
24 15 10 39 19 50 6 29
14 22 4 39 13 34 57 9
39 43 19 17 4 5 24 41

























(A1)
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The B2 matrix is represented as

























11 2 60 27 4 33 7 48
4 17 43 33 12 17 52 14
37 36 24 42 5 32 13 3
28 53 20 13 2 5 32 39
35 4 59 34 12 35 7 6
31 60 3 4 2 5 25 62
47 24 3 61 9 28 11 9
46 10 28 64 4 11 27 2

























(A2)

The B3 matrix is represented as

























31 48 9 4 2 5 58 35
48 2 61 8 24 6 10 33
44 1 31 5 4 62 62 36
9 64 63 18 5 13 13 12
19 30 11 38 16 49 49 17
18 27 35 36 8 1 1 57
40 25 2 11 1 57 57 50
1 8 56 1 57 25 25 33

























(A3)

The B4 matrix is represented as

























42 30 21 33 62 6 1 61
16 19 28 56 62 7 19 49
64 11 22 18 39 26 54 22
43 18 24 45 31 18 40 37
64 17 6 43 57 40 1 28
56 32 22 37 26 9 64 10
38 17 49 26 26 6 50 44
48 56 10 41 11 48 12 30

























(A4)

The B5 matrix is represented as

























51 44 9 10 63 50 25 4
54 46 27 27 11 6 33 52
28 54 42 33 5 8 54 32
32 3 53 48 16 10 43 51
46 26 47 59 10 9 12 47
22 51 63 12 3 18 36 51
62 2 39 29 43 52 23 6
55 63 26 17 10 39 26 20

























(A5)
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