[1] WanZ., HuangS., GreenM. A., ConibeerG., (2011) Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix,Nanoscale Research Letters 6, 129.
[2] SongD., ChoE.C., ConibeerG., FlynnC., HuangY., GreenM.A, (2008) Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices, Sol. Energy Mater. Sol. Cells 92 ,474.1,2.
[3] B. P. Swain, B. S. Swain, Y. B. Chung, N. M. Hwang, (2009) Small-angle X-ray scattering from nano-Si embedded a-SiC:H deposited by hot-wire chemical vapor deposition, Solid State Sciences 11, 1408-1411.
[4] Q. Cheng, E. Tam, S. Xu, Kostya (Ken) Ostrikov, (2010) Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation, Nanoscale, 2, 594–600.
[5] M. Xu, S. Xu, J. W. Chai, J. D. Long, and Y. C. Ee, (2006) Enhancement of visible photoluminescence in the SiNx films by SiO2 buffer and annealing, Appl. Phys. Lett., 89, 251904.
[6] Lacombe A., Beaudoin F., Koshel D., Barba D., Martin F., Ross G. G., (2009) Photoluminescence intensity modulationby charge carrier injection in siliconnanocrystals at room temperature, Appl. Phys. Lett., 94, 012112(1-3).
[7] Q. J. Cheng, S. Xu, and K. Ostrikov, (2010) Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas, Acta Mater., 58, 560-569.
[8] ParidaB., ChoiJ., LimG., KimK., KimK., (2013) Enhanced visible light absorption by 3C-SiC nanoparticles embedded in Si solar cells by plasma-enhanced chemical vapor deposition, J. Nanomaterials, 953790, 10.http://dx.doi.org/10.1155/2013/953790.
[9]Yang Ji, Dan Shan, Mingqing Qian, Jun Xu, Wei Li, Kunji Chen, (2016)Formation of high conductive nanocrystalline siliconembedded in amorphous silicon-carbide filmswith a large optical band gap, AIP Advances 6, 105107.
[10] Arindam Kole and Partha Chaudhuri, (2014)Growth of silicon quantum dots by oxidation of the silicon nanocrystals embeddedwithin silicon carbide matrix, AIP Advances 4, 107106; DOI: 10.1063/1.4897378.
[11] Tae-Youb Kim, Chul Huh, Nae-Man Park, Cheol-Jong Choi, and Maki Suemitsu,In situ-grown hexagonal silicon nanocrystals insilicon carbide-based films, Nanoscale Research Letters 2012, 7:634http://www.nanoscalereslett.com/content/7/1/634
[12] Philipp L€oper, MariaconettaCanino, DureidQazzazie, Manuel Schnabel, Marco Allegrezza, Caterina Summonte, Stefan W. Glunz, Stefan Janz, and Margit Zacharias, (2013) Silicon nanocrystals embedded in silicon carbide: Investigation of chargecarrier transport and recombination, Appl. Phys. Lett. 102, 033507.
[13] Nae-Man Park, Chel-Jong Choi, Tae-Yeon Seong, and Seong-Ju Park, Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Physical Review Letters, Volume 86, Number 7, 12 February 2001,1355-7.
[14] WeissC., SchnabelM., ReichertA., LöperP., JanzS., (2015) Structural and optical properties of silicon nanocrystals embedded in silicon carbide: comparisonof single layers and multilayer structures, Appl. Surf. Sci., 351, 550-557.
[15] Shigeru Yamada, Yasuyoshi Kurokawa, Shinsuke Miyajima and Makoto Konagai, (2014), Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix,2014, 9:72 http://www.nanoscalereslett.com/content/9/1/72.
[16] Kurokawa Y, Miyajima S, Yamada A, Konagai M, (2006) Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn J Appl Phys Part 2, 45:. J. Appl. Phys., 45, 1064-1066.
[17] Song D, Cho E-C, Conibeer G, Huang C, Flynn C, Green M A, (2008) Structural characterization of annealed multilayers targeting the formation of Si nanocrystals in a SiC matrix. J Appl Phys, 103: 083544.
[18] Song D, Cho E-C, Cho Y-H, Conibeer G, Huang Y, Huang S, Green MA: (2008) Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films 516: 3824.
[19] SongC., RuiY., WangQ., XuJ., LiW., ChenK., ZuoY., WangQ., (2011)Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix, J. Alloys Compd., 509 (9) 3963-3966.
[20] C. Summonte, M. Allegrezza, M. Bellettato, F. Liscio, M.Canino, A. Desalvo, J. López-Vidrier, S. Hernández, L. López-Cones, S.Estradé, F.Peiró, B.Garrido, P.Löper, M.Schnabel, S. Janz, R.Guerr, S.Ossicinie, (2014)Silicon nanocrystals in carbide matrix, Solar Energy Mater. Solar Cells, 128, 138-149.
[21] Matthias Künle, Stefan Janz, Klaus Georg Nickel, Anna Heidt, Martina Luysberg, Oliver Eibl, Solar Energy Mater. Solar Cells, 115 (2013), pp. 11-20.
[22] Matthias Künle, Thomas Kaltenbach, Philipp Löper, Andreas Hartel, Stefan Janza, Oliver Eibl, Klaus-Georg Nickel, Thin Solid Films, 519 (1) (2010), pp. 151-157.
[23] M.Canino, C.Summonte, M.Allegrezza, RimpyShuklaa, I.P.Jain, M.Bellettato, A.Desalvo, F.Mancarella, M.Sanmartin, A.Terrasi, P.Löper, M.Schnabel, S.Janz, (2013) Structural, optical and electrical properties of silicon nanocrystals embedded in SixC1−x/SiC multilayer systems for photovoltaic applications, Mater. Sci. Eng. B, 178 (9) 623-629.
[24] P. Löper, R. Müller, D. Hiller, T. Barthel, E. Malguth, S. Janz, J. C. Goldschmidt, M. Hermle, M. Zacharias, (2011) Quasi-Fermi-level splitting in ideal silicon nanocrystal superlattices, Phys. Rev. B, 84, 195317.
[25] Borrull, J.F., Duparre, A. and Quesnel, E. (2001) ‘Procedure to characterize microroughness of optical thin films: application to ion-beam-sputtered vacuum-ultraviolet coatings’, Appl. Optics, 40(13) 2190–2199.
[26] C. R. Hubbard, H.E. Swanson,F.A. Mauer, (1975). A Silicon Powder Diffraction Standard Reference Material, J. Appl. Cryst. 8, 45.
[27] B. P. Swain, (2007) Investigation of electronic configuration and plasmon loss spectra in Au-catalyzed silicon nanowire networks, Appl. Surf. Sci. 253, 8695.
[28] B. P. Swain, B. S. Swain, S. H. Park, N. M. Hwang, (2009) Plasmon loss and valence band structure of silicon-based alloys deposited by hot wire chemical vapor deposition, J. Alloys Comp. 480, 878.
[29] B. P. Swain, R. O. Dusane,(2006) Multiphase structure of hydrogen diluted a-SiC: H deposited by HWCVD Mater. Chem. Phys. 99, 240.
[30]B.P. Swain,(2006) SAXS analysis of the effect of H2 dilution on microstructural changes of HWCVD deposited a-SiC: H, Mater. Lett. 60, 2767.
[31] B. P. Swain, R. O. Dusane, (2006) Effect of filament temperature on HWCVD deposited a-SiC: H, Effect of filament temperature on HWCVD deposited a-SiC: H, Mater. Lett. 60, 2915.
[32] B. P. Swain, R. O. Dusane,(2007) Effect of substrate temperature on HWCVD deposited a-SiC: H film, Mater. Lett. 61, 4731.
[33] B.P. Swain, D. K. Pattanayak,(2008) Simulated body fluid (SBF) adsorption onto a-SiC: H thin films deposited by hot wire chemical vapor deposition (HWCVD), Mater. Lett. 62 , 3484.
[34]B. P. Swain, (2006) The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy, Surf. Coat. Tech. 201, 1589.
[35] B. P. Swain, (2006) Influence of process pressure on HW-CVD deposited a-SiC: H films, Surf. Coat. Tech. 201, 1132.
[36] B. P. Swain, N. M. Hwang, (2009) Effect of negative substrate bias on HWCVD deposited nanocrystalline silicon (nc-Si) films, Solid State Sci. 11, 467.
[37]B. P. Swain, S. B. Patil, A. Kumbhar, R.O. Dusane, (2003) Revisiting the B-factor variation in a-SiC: H deposited by HWCVD, Thin Solid Films 430, 186.
[38] B.P. Swain, T.K. Gundu Rao, M Roy, J. Gupta, R.O. Dusane, (2006) Effect of H2 dilution on Cat-CVD a-SiC: H films, Thin Solid Films 501, 173.
[39] B. S. Swain, B. P. Swain, N. M. Hwang, (2010) Hydrogen dilution-induced chemical state modification in silicon nanowires, J. Phys. Chem. C 114,15274.