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Abstract 

In the field of computer vision, vehicle object detection has been a topic of significant and 

complex interest. With the rise of intelligent transportation systems and autonomous driving 

technology, the importance of vehicle object detection continues to be highlighted. Given the 

current issues of low precision, high miss rate, and poor robustness in existing algorithms, this 

study introduces an improved vehicle detection algorithm, SSB-YOLO, based on the YOLOv8 

model. The SSB-YOLO algorithm integrates the Shuffle Attention mechanism to filter out 

unimportant factors and enhance model performance; it also incorporates the spatial and channel 

reconstruction convolution mechanism to reduce spatial and channel redundancy between 

features in convolutional neural networks. Furthermore, a new and better algorithm based on 

Wise-IoU optimization is proposed, which yields superior bounding box regression performance 

throughout the training period. The model demonstrated improved detection accuracy and 

reduced computational cost. The experimental results indicate that, compared to the YOLOv8n 

model, SSB-YOLO achieves a 1.6% increase in mAP@50. This approach outperforms other 

object detection algorithms, enhancing the overall system's robustness and accuracy and thereby 

providing higher precision in the field of vehicle detection. 
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1 Introduction 

In the field of computer vision, vehicle target detection has been an important and complex issue. With the 

rise of intelligent transportation systems and autonomous driving technology, the significance of vehicle 

target detection continues to grow. An accurate and efficient vehicle target detection system is paramount 

in achieving intelligent transportation and vehicle autonomous driving. [1]Additionally, vehicle target 

detection places strict constraints on computational resources, making it a major challenge to maintain 

high accuracy while minimizing computational resources in complex road environments. [2] 

 

Currently, there are two main types of detection models in the target detection field: dual-stage algorithms, 

such as Faster-Rcnn[3], which have better accuracy but slower speed; and single-stage target detection 

algorithms, such as the YOLO seriesError! Reference source not found., SSD[4]and RetinaNet[6], 

which have faster speeds but slightly lower accuracy. Despite the high accuracy of dual-stage algorithms, 

the two-stage processing of images and slow processing speed make them unsuitable for vehicle detection. 

On the other hand, single-stage algorithms extract features only once for detection, leading to faster 

processing but at the cost of reduced accuracy. 

 

To address the shortcomings of target detection in vehicle recognition, ZHANG et al.[7] proposed the 

YOLOv7-RAR algorithm, which involves restructuring the YOLOv7 backbone network with the 

introduction of the Res3Unit structure. They also incorporated the ACmix attention mechanism to reduce 

interference from other targets and added the RFLA module at the connection of the detection head and 

feature fusion area to enhance the network model's receptive field. WANG et al.[8] proposed the 

YOLOv5-NAM algorithm, which added the NAM attention module and proposed methods for tracking 

small target vehicles, embedding the feature extraction process into the joint training of the prediction 

head. Moreover, Farid et al. [9] enhanced the accuracy of vehicle detection by modifying YOLO weights 

and utilizing transfer learning. Nitika et al.[10] employed a region-based convolutional neural network to 

detect moving vehicles both during the day and at night, optimizing the detection performance under 

different weather conditions. ZHAO et al.[11] utilized an attention mechanism to suppress interference 

features in images through both channel and spatial dimensions while also modifying the network 

structure to enhance effective features. YUAN et al. [12] introduced a high-performance bounding box 

proposal matching module and a keypoint selection strategy to compress collective perception messages 

and address the data fusion problem for multiple vehicles. These algorithms have to some extent improved 

the performance of target detection algorithms, but challenges related to robustness, real-time 

performance, and precision in complex road scenarios remain. Vehicle target detection systems need to be 

able to handle various complexities, such as weather, lighting, and road conditions, while achieving real-

time and efficient target detection. 
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This study focuses more on the overall performance enhancement of the system rather than solely on 

individual improvements. Moreover, this research introduces unique methodological considerations aimed 

at comprehensively improving the overall system's robustness and accuracy. This paper aims to improve 

the YOLOv8 model by (1) introducing attention mechanisms, (2) improving convolutional structures, and 

(3) optimizing loss functions to enhance the system's adaptability and accuracy in complex scenarios. 

Through empirical evidence, this study demonstrates the feasibility and effectiveness of the new 

algorithm, providing a more advanced and practical solution for vehicle target detection in the fields of 

intelligent transportation and autonomous driving. This not only holds significant academic importance 

but also plays a proactive role in advancing industry applications. 

2 Methods 

2.1 YOLOv8 network structure 

The latest algorithm in the YOLO series, YOLOv8, is an optimized and upgraded version based on the 

previous generation and has improved performance and accuracy. In contrast to dual-stage models such as 

Faster-Rcnn, the YOLO algorithm ensures faster detection while maintaining a certain level of accuracy. 

 

YOLOv8 comprises three main components: the backbone, neck, and head, as shown in Figure 1. The 

backbone network consists of CBS, C2f, and SPPF. Compared to YOLOv5[13], YOLOv8 eliminates the 

top-down upsampling phase of the PAN[14]-FPN [15]in the neck layer, replacing the C3 module with the 

more gradient-enriched C2f. The head network adopts the mainstream decoupled head structure, 

separating detection from classification and replacing the anchor-based concept with Anchor-free, 

reducing model computations and improving convergence speed and effectiveness. 
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Fig. 1. YOLOv8n 

2.2 Improved YOLOv8 model 

2.2.1 BWIoU 

The regression loss function for bounding boxes is crucial in the field of object detection. YOLOv8 adopts 

the CIoU [16]as the loss function, which continuously improves the accuracy of the predicted bounding 

boxes. However, the CIoU metric does not consider the balance between easy and hard samples in the 

dataset, leading to slow convergence and low efficiency of the network. In contrast, the WIoU [17]utilizes 

a nonmonotonic aggregation mechanism to construct dynamic gradient gain factors, providing a clear gain 

allocation strategy, as shown in Equations (1)–(3). 

 ℒ𝑊𝐼𝑜𝑈 = ℛ𝑊𝐼𝑜𝑈 × ℒ𝐼𝑜𝑈 (1) 

ℛ𝑊𝐼𝑜𝑈 = exp ((𝑥 − 𝑥𝑔𝑡)2 + (𝑦 − 𝑦𝑔𝑡)2(𝑊𝑔2 + 𝐻𝑔2)∗ ) (2) 
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ℒ𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 (3) 

Specifically, ℛ𝑊𝐼𝑜𝑈  represents the penalty term of the WIoU, ℒ𝐼𝑜𝑈 is the IoU loss function, 𝑥 and 𝑦 

refer to the coordinates of the center point of the predicted box, and 𝑥𝑔𝑡 and 𝑦𝑔𝑡represent the coordinates 

of the predicted box for the ground truth box. Additionally, 𝑊𝑔 and 𝐻𝑔 denote the width and height, 

respectively, of the minimum rectangle formed by the predicted box and the ground truth box, while the 

IoU represents the intersection over union of the predicted box and the ground truth box. 

 

Conversely, blindly enhancing the boundary box regression on low-quality samples in the training data 

diminishes the model's generalization performance. A good loss function should attenuate the penalty on 

geometrical factors when the overlap between the predicted box and the target box is high, enabling the 

model to achieve better generalization. Building on the improvements in the WIoU, this model introduces 

the BWIoU, as demonstrated in Equation (4). 

ℒ𝐵𝑊𝐼𝑜𝑈 = ℛ𝑊𝐼𝑜𝑈 × ℒ𝐼𝑜𝑈 + 35 ((𝑥 − 𝑥𝑔𝑡)2 + (𝑦 − 𝑦𝑔𝑡)2𝑊𝑔2 + 𝐻𝑔2 ) (4) 

The BWIoU algorithm dynamically adjusts the bounding box regression: In the early stage of training, 

when the model's IoU is low, the IoU between the predicted candidate box and the actual object 

annotation box should be improved. In the later stage of training, when the IoU is higher, the model 

automatically prioritizes the regression of the center point and aspect ratio of the candidate box, thus 

optimizing the model's performance. 

2.2.2 SCConv 

The complex backgrounds of vehicle images and numerous interfering factors weaken the adaptability and 

generalization performance of traditional convolution methods. This paper introduces spatial and channel 

reconstructive convolution (SCConv) [18]to reduce spatial and channel redundancy among features in 

convolutional neural networks, compressing the model and improving its performance. 

 

As shown in Figure 2, the SCConv module consists mainly of a spatial reconstructive unit (SRU) and a 

channel reconstructive unit (CRU). The SRU reduces spatial redundancy in input features through analysis 

and reconstruction methods, while the CRU employs a segmentation and fusion strategy to reduce channel 

redundancy, effectively enhancing the model's robustness. 
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Fig. 2. Spatial and Channel reconstruction Convolution 

The SCConv is integrated within the bottleneck of the c2f model and replaces the last three layers of the 

neck module, reducing spatial and channel redundancy. By optimizing the feature extraction process, 

resource consumption is minimized, and network performance is enhanced. 

2.2.3 Shuffle Attention 

In vehicle detection, the use of multilayer convolutional processing on images leads to inefficient training 

resources being allocated to nonvehicle images, resulting in poor training efficiency. To address this issue, 

the model incorporates the Shuffle Attention (SA) mechanism[19], which is placed before the SPPF layer 

to filter out irrelevant factors and reduce the complexity of the model. The SA module structure is 

illustrated in Figure 3. 

 

Fig. 3. Shuffle Attention 

It inherits the design concept of the SGE attention mechanism[20], dividing the channel dimension into 

multiple subfeatures and utilizing the shuffling units to aggregate all subfeatures by taking into account 

their spatial and channel dependencies. Furthermore, it introduces the parallel use of two types of attention 

mechanisms—spatial and channel—via random channel partitioning and finally performs random mixing 

on all SA units to obtain the final output feature map, thereby effectively combining the two types of 

attention mechanisms. 
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Fig. 4. SSB-YOLO 

2.3 Datasets 

The experiment tested the performance of the model using the Pascal VOC dataset. A total of 4610 images 

were extracted from the training and validation sets of Pascal VOC 2007 and 2012 for five vehicle 

categories: car, bus, train, bicycle, and motorbike. The images were randomly divided into training, 

validation, and testing sets at a ratio of 7:1:2, with 3227 images in the training set, 461 in the validation 

set, and 922 in the testing set. 

2.4 Device 

The experiment was conducted on a Windows 10 operating system using Python 3.11.5, CUDA 11.7, and 

PyTorch 2.0.0. The training was performed on an Nvidia GeForce RTX 3090 using YOLOv8n as the base 

model, with an image input size of 640x640, a batch size of 16, 2 threads, an initial learning rate of 0.01, 

and training for 300 epochs using the SGD optimization function. 
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3 Results 

3.1 Evaluation metrics 

This experiment uses Precision, Recall, and the mean Average Precision (mAP) as evaluation metrics. 

Referring to equations (5)~(7), Precision = TPTP + FP (5) 

Recall = TPTP + FN (6) 

mAP = 1N ∑ APiN
i=1 (7) 

The evaluation of the model's performance involves several key elements, as represented by the following 

equations. True positive predictions (TP) indicate instances where both the predicted and true values are 

positive. Conversely, false positive predictions (FP) occur when the predicted value is positive but the true 

value is negative. On the other hand, false negative predictions (FN) arise when the predicted value is 

negative, yet the true value is positive. Moreover, the area under the Precision-Recall curve is denoted as APi for each detection target class, and the average mAP is calculated based on multiple classes. 

Additionally, the model's advantages are emphasized through the consideration of parameters such as size, 

computational workload, and model file size as evaluation criteria. 

3.2 Ablation experiment 

To evaluate the performance of each module, we conducted experiments using the YOLOv8n base model 

and vehicle images extracted from the Pascal VOC dataset. We designed a series of comparative ablation 

experiments and used the precision (P), recall (R), mAP@0.5, and GFLOPS as quantitative evaluation 

metrics. The experimental results are presented in Table 1. 

Table 1. Ablation experiment 

Method BWIou SA SCConv P(%) R(%) mAP@50(%) GFLOPs(G) 

1  
  90.0 76.3 85.9 16.4 

2 √   89.9 77.0 86.6 17.8 

3  √  90.5 76.0 85.9 16.4 
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4   √ 87.2 76.4 85.5 17.2 

5 √  √ 91.4 76.5 86.9 16.0 

6 √ √ √ 89.9 77.1 87.5 15.8 

 

The optimal results of the ablation experiments were selected for analysis. In Table 1, when comparing 

Method4 and Method5, the model's introduction of BWIou led to a 1.7% increase in mAP@50 and an 

approximately 1.9% increase in precision, while the GFLOPs decreased by 1.2G. When comparing 

Method2 and Method5, the model's introduction of SCConv led to an approximately 2.8% increase in 

precision, an approximately 0.7% increase in mAP@50, and an approximately 0.7% increase in recall. 

When comparing Method1 and Method3, the model's introduction of the SA model resulted in virtually 

unchanged recall and an approximately 0.3% increase in precision. The data show that the SSB-YOLO 

model, based on the improved YOLOv8, exhibits enhanced performance and accuracy. 

3.3 Model Comparison 

To verify the detection performance of the SSB-YOLO algorithm model, quantitative indicators such as 

parameters, GFLOPS, mAP@0.5, and model_size were used. A quantitative analysis was conducted to 

compare the results of Faster R-CNN, SSD, YOLOv3, YOLOv4, YOLOv5, and YOLOv8 with those of 

mainstream algorithms for vehicle detection on the PASCAL VOC dataset. The comparative numerical 

results are shown in Table 2. 

Table 2. Comparison of SSB-YOLO with other models 

Method Parameters(10−6) mAP@50(%) GFLOPs(G) 

Faster-RCNN 136.8 76.4 369.8 

SSD 24.1 84.0 61.2 

YOLOvXs 8.9 84.1 26.8 

YOLOv5n 2.5 86.4 14.4 

YOLOv6n 4.2 85.1 23.8 

YOLOv8n 3.0 85.9 16.4 

SSB-YOLO 2.9 87.5 15.8 

After analyzing Table 2 and comparing SSB-YOLO with the Faster R-CNN and SSD algorithms, it is 

evident that Faster R-CNN uses ResNet50 as the backbone network, while SSD uses VGG. SSB-YOLO 

shows a significant improvement in GFLOPs and average precision across all categories, with a noticeable 

reduction in computational complexity. Compared to YOLOvXs, YOLOv5n, YOLOv6n, and YOLOv8n, 

SSB-YOLO exhibited improvements in average precision of 3.4%, 1.1%, 2.4%, and 1.6%, respectively. 

Comparative experiments show that SSB-YOLO outperforms mainstream detection models and the 
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original models in terms of performance and accuracy. It is more suitable for the deployment and 

application of vehicle target detection models, demonstrating superior overall performance compared to 

other algorithms. 

3.4 Elucidation of the Results 

Figures 5 and 6 compare the actual detection differences between YOLOv8n and SSB-YOLO. In image 

number 003576, there is a bus, two cars, and a motorbike. The scene with four vehicles is complex and 

has considerable overlap. YOLOv8n failed to detect one car and misidentified the motorbike as a bicycle, 

resulting in detection errors. In contrast, SSB-YOLO accurately detects all the vehicles in this scene. In 

image 2008_004326, the six cars overlap. YOLOv8n detected only four cars, whereas SSB-YOLO 

successfully detected all six cars. 

 

Fig. 5. YOLOv8n (left) and SSB-YOLO (right) 

 

 

Fig. 6. YOLOv8n (left) and SSB-YOLO (right) 

4 Discussion 

To enhance the accuracy and performance of vehicle detection algorithms, this study proposes a new 

vehicle detection algorithm, SSB-YOLO, based on improvements to YOLOv8. SSB-YOLO incorporates 

the SA mechanism to filter out irrelevant factors, reducing model complexity. Additionally, the BWIoU 

algorithm, an improvement over the WIoU algorithm, is introduced to enhance model generalizability 

throughout the training period. Furthermore, the C2f module in the neck layer is enhanced to reduce 
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computational resource consumption and improve model detection performance. Compared with 

YOLOv8n on the PASCAL VOC 2007 and PASCAL VOC 2012 vehicle datasets, SSB-YOLO shows a 

1.6% improvement in mAP@50 while reducing GFLOPs by 0.6%. Consequently, in comparison with the 

original model, SSB-YOLO achieves better accuracy and reduced computational resource consumption. 
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