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Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat
worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease.
Spring wheat PI 660072 (Triticum aestivum) has been identi�ed to possess both adult-plant resistance (APR)
and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a
mapping population consisting of 211 F5 - F7 recombinant inbred lines (RILs) was developed from a cross of
PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust
responses across �ve �eld environments from 2020 to 2022 and genotyped using the 15K SNP (single
nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested
at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the
greenhouse. Stripe rust resistance genes were identi�ed using the quantitative trait locus (QTL) mapping
approach. Two QTL were identi�ed with QYrPI660072.swust-2BL mapped on the long arm of chromosome
2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-
assisted selection breeding, Kompetitive allele speci�c PCR (KASP) markers, KASP-1269 for
QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could
be used to introgress the effective resistance QTL into new wheat cultivars.

Key Message
Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI
660072, and their KASP markers were developed.

Introduction
Wheat stripe rust is a highly contagious disease caused by the fungal pathogen Puccinia striiformis f. sp.
tritici (Pst). The pathogen is capable of spreading rapidly over long distances and causing large-scale
epidemics (Wellings 2011; Chen 2020). When wheat crops in a large geographic region are affected by stripe
rust, the grain yield can be reduced by 5% − 20% (Wellings 2021). In an individual �eld grown with a highly
susceptible wheat cultivar, severe stripe rust can cause a complete loss of grain yield (Chen 2014; Zhou et al.
2022). The most effective approach for controlling stripe rust is to breed resistant cultivars. Unfortunately,
many wheat varieties that were once resistant to the disease have become susceptible in China and many
other countries (Chen et al. 2009; Kang et al. 2015). It is urgent to identify wheat germplasm and genes for
resistance to be used in developing wheat cultivars with effective and durable resistance to stripe rust (Zhou
et al. 2015b).

There are two types of stripe rust resistance genes, all-stage resistance (ASR) and adult-plant resistance
(APR). ASR refers resistance to the disease throughout all growth stages, whereas plants with only adult-plant
resistance (APR) are susceptible at the seedling stage, but become resistant after the seedling stage and the
resistance level can increase as plants grow older and often when the weather becomes warmer (Chen 2005,
2013). ASR can be easily detected in the seedling stage and easily transferred into new cultivars. When
effective, an ASR gene can provide complete control for the cultivar or cultivars carrying the gene, but the
gene can be circumvented by new virulent races of the pathogen. In contrast, APR is usually non-race speci�c
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and therefore durable. However, APR is usually partial, and some APR genes may not provide adequate
resistance if stripe rust starts early in the plant growth season and the weather is not warm enough for the full
expression of the resistance genes (Chen 2013, 2014). The best approach is to combine both effective ASR
and APR genes in wheat cultivars to achieve adequate and durable resistance for control of stripe rust (Chen
2013).

To date, 86 o�cially named Yr genes (Klymiuk et al. 2022; Feng et al. 2023; Zhu et al. 2023) and more than
300 provisionally named genes or quantitative trait loci (QTL) in wheat and its wild relatives have been
identi�ed for resistance to stripe rust (Wang and Chen 2017; Pakeerathan et al. 2019; Li et al. 2020). Of the 86
permanently designated genes, about 30 genes confer APR, including Yr11, Yr12, Yr13, Yr14, Yr16, Yr18, Yr29,
Yr30, Yr34, Yr36, Yr39, Yr46, Yr48, Yr49, Yr52, Yr54, Yr56, Yr58, Yr59, Yr60, Yr62, Yr68, Yr71, Yr75, Yr77, Yr78,
Yr79, Yr80, Yr83 and Yr86; and the others confer ASR. Six ASR genes (Yr5, Yr7, Yr15, YrAS2388, YrSP and
YrU1) (Klymiuk et al. 2018; Marchal et al. 2018; Wang et al. 2020; Zhang et al. 2020) and three APR genes
(Yr18, Yr36 and Yr46) (Fu et al. 2009; Krattinger et al. 2009; Moore et al. 2015) have been cloned. Although
the number of reported stripe rust resistance genes is quite large, many of the race-speci�c ASR genes are no
longer effective. It is still needed to identify more effective genes and develop molecular markers for more
e�ciently breeding stripe rust resistant wheat cultivars.

The utilization of marker-assisted selection (MAS) enables breeders to incorporate multiple resistance genes
into new cultivars (Zhou et al. 2015a). With the advancing high-throughput sequencing and molecular marker
technologies, more effective and user-friendly markers have been developed for various traits, including stripe
rust resistance and used in breeding programs through MAS (Barendse et al. 2009; Kump et al. 2011). Simple
nucleotide polymorphisms (SNPs) offer an extremely promising approach for exploring genetic variations in
crop germplasms and permit the identi�cation of markers closely linked to the target genes or QTL (Wu et al.
2018). By converting SNPs into Kompetitive Allele Speci�c PCR (KASP) markers, individual markers can be
used to screening breeding lines for the speci�c traits (Rasheed et al. 2016).

Spring wheat PI 660072 was developed by the Wheat Health, Genetics and Quality Research Unit of the US
Department of Agriculture, Agricultural Research Service (USDA-ARS) and Washington State University and
deposited in the USDA-ARS National Small Grains Collection (Wang et al. 2012). The line was selected from
the progeny from a cross of stripe rust susceptible spring wheat Avocet S (AvS) and resistant spring wheat
line PI 180957 originally from India. In the previous study, PI 660072 was resistant to US Pst races PST-114
and PST-127 and moderately resistant to PST-43 and PST-100 in the seedling tests and highly resistant in the
�elds under natural Pst infection in Washington State before its registration, and it was thus concluded to
have both ASR and high-temperature adult-plant resistance (Wang et al. 2012). PI 660072 has continually
shown high resistance to stripe rust in the United States (Wang MN and Chen XM, unpublished data). In
China, PI 660072 was also highly resistant to the predominant Pst races in both greenhouse seedling and
�eld adult-plant tests (Zhou et al. 2015b). However, the genetic basis of the stripe rust resistance in PI 660072
was not clear. The objectives of this study were to: 1) genetically characterize the stripe rust resistance in PI
660072 and map its resistance genes using a whole-genome QTL mapping approach, 2) assess the stability
of the resistance genes across different environments, 3) determine if the genes confer ASR and APR and 4)
to develop KASP markers to be used in MAS.



Page 5/23

Materials and methods

Plant materials
Used as the male parent, PI 660072 was crossed to AvS for developing a mapping population. AvS, an
Australian spring wheat selection, is susceptible to most Pst races in Australia, China, the United States and
many other countries, and was used as the recurrent parents in developing near-isogenic lines and mapping
populations to identifying stripe rust resistance in many wheat genotypes (Wellings et al. 2004; Lin et al.
2007; Sui et al. 2009; Cheng et al. 2010; Li et al. 2011; Ren et al. 2012; Wang et al. 2012; Sharma-Poudyal et
al. 2013; Xu et al. 2013; Cheng et al. 2014; Lu et al. 2014; Zhou et al. 2014; Zhou et al. 2015b; Xiang et al.
2016; Feng et al. 2023). From the cross AvS/PI 660072, a mapping population consisting of 211 recombinant
inbred lines (RIL) was developed using the single-seed descent method, and its F5 - F7 generations were used
in the phenotypic tests for stripe rust responses.

Field tests
The 211 RILs, together with PI 660072 and AvS, were evaluated for stripe rust response at Mianyang (MY)
(31°33′N, 104°55′E, 485 m above sea level) in Sichuan province in 2020–2022 using the F5 - F7 generations,
respectively and at Yangling (YL) (34°17′N, 108°04′E, 530 m above sea level) in Shaanxi province in 2021 and
2022 using the F6 and F7 generations, respectively. MY is an area where Pst is able to overwinter and occurs
naturally with no need of arti�cial inoculation. The predominant Pst races in Shannxi and Sichuan provinces
were CYR32, CYR33, and CYR34 in recent years (Ma et al. 2016; Wang 2017; Li et al. 2018; Zhao et al. 2023).
In the YL nurseries, the plants were inoculated with a mixture of the prevalent races CYR32 and CYR34. The
�eld tests were conducted in a completely randomized block design with three replications. In each
replication, approximately 30 seeds for each line were sown in a row of 100 cm with 25 cm between rows.
The parents and susceptible check were planted every 20 rows throughout the �eld. ITs were recorded based
on the 0–9 scale, with 0–3 classi�ed as resistant, 4–6 moderately resistant and 7–9 susceptible (Line et al.
1992; Wan et al. 2004), and disease severity (DS) was recorded as percentage of leaf areas infected. Both IT
and disease severity (DS) of each row were recorded three times starting when DS on MX169 reached 80%
and plants were at the adult stage with the second and third notes taken 7 and 14 days after the �rst note,
respectively.

Seedling tests
Seedling tests were conducted in a greenhouse. Chinese predominate Pst races CYR31, CYR32 and CYR34
and a new local isolate (PST-YX1-3-1) were used for evaluating the stripe rust responses of PI 660072, AvS
and selected F7 RILs. CYR32, CYR34 and PST-YX1-3-1 were used in phenotyping the mapping populations. In
the seedling phenotyping tests, the two parents and their F8 RILs were seeded in a 9 × 9 × 9 cm pot with
approximately 10 seeds and grown in the greenhouse with the temperature and light conditions optimal for
wheat seedling growth. The seedlings were inoculated at the two-leaf stage with urediniospores of a single
race. Inoculated plants were kept in a dew chamber in the dark at 8 ℃ for approximately 24 h. The seedlings
were then moved to a growth chamber at 16 ℃ with a daily 16 h light for stripe rust development.
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Approximately 15 days later, the infection type (IT) data were recorded based on a 0–9 scale (Line and
Qayoum 1992). Chinese wheat cultivar Mingxian 169 (MX169) was used as a susceptible check.

Genotyping the parental lines and RILs
Genomic DNAs of the parents and the 211 F6 RILs were extracted from fresh seedling leaves using the
cetyltrimethylammonium bromide (CTAB) method (Anderson et al. 1993). The stock DNA solutions were
determined for their quality and concentration using a NanoDrop ND-1000 (Thermo Scienti�c, Wilmington, DE,
USA) and were diluted to 50 ng/µl using deionized distilled water (ddH2O) to be used for genotyping. The
parents and RILs were genotyped using the 15K Illumina® iSelect wheat SNP array by Zhongyujin Marker
Biotechnology Co., Ltd. (Beijing, China).

Statistical analyses and QTL mapping
The IT data from greenhouse, and IT and DS data from each environment were used for the analysis of
variance (ANOVA) and subsequent QTL mapping. ANOVA and Pearson’s correlation coe�cients were
calculated using QTL IciMapping V4.1 (Meng et al. 2015). The broad-sense heritability ( ) of stripe rust
resistance was estimated using the following formula: , where ,  and

 are estimates of the genotype, genotype × environment interaction and error variances, respectively, and e
and r are the number of environments and number of replicates for each environment, respectively (Yang et
al. 2005). For the plotting purpose, the step was set to 1 cM and the PIN (probability of SNP being included in
the model) was set to 0.001. For QTL mapping, the threshold value of the logarithm of odds (LOD) score for
each chromosome analysis was set to 2.5 to declare a signi�cant QTL. To determine the additive effects of
QTL, boxplots were used to demonstrate the effects of QTL combinations on the mean IT and DS of RILs that
shared the same number of bene�cial alleles.

Developing KASP markers
To �nd more close markers for stripe rust resistance QTL, the parents were genotyped using the 660K SNP
chip. SNP markers near or at the peaks of the identi�ed resistance QTL based on the results obtained from
both 15K and 660K SNP chips were selected for developing KASP markers by Zhongyujin Marker
Biotechnology Co., Ltd. (Beijing, China). The developed KASP markers were validated using the parents and
RILs.

Results

Phenotypic evaluation
The infection types of AvS and PI 660072 tested with the Pst races or isolates were shown in Table 1. AvS
was susceptible (IT 8–9), whereas PI 660072 was resistant to CYR31 (IT 2), CYR32 (IT 3), CYR34 (IT 2) and
PST-YX1-3-1(IT 2). In the �eld tests, AvS had IT 9 across the three years and two locations, and its �nal DS
values ranged from 90–100%. In contrast, PI 660072 was highly resistant (IT 2) in all �eld tests with DS 10–
20%. The mean values of IT and DS of the RILs ranged from 0 to 9 and 0 to 100%, respectively, suggesting
that the stripe rust resistance in PI 660072 was quantitatively inherited (Fig. 1a, b). The broad-sense
heritability values of IT and DS were 0.86 and 0.87, respectively. The ANOVA analysis revealed signi�cant
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differences (P < 0.001) among RILs, environments, and line × environment interactions, indicating that the
resistance genes in the RIL population are the primary source of phenotypic variation (Table 2). The
correlation coe�cients for IT and DS ranged from 0.73–0.95 and 0.68–0.95 (P < 0.001) based on the YL and
MY data, respectively (Table 3).

 
Table 1

Infection types of AvS, PI 660072, and 15 selected F7 recombinant inbred lines tested with Puccinia
striiformis f. sp. tritici (Pst) races or isolates CYR32, CYR34 and PST-YX1-3-1 in the seedling stage under

controlled greenhouse conditions

    Infection types produced by Pst race isolate

Wheat line QTL CYR31 CYR32 CYR34 PST-YX1-3-1a

AvS None 9 9 9 9

PI 660072 2BL, 4BL 2 3 2 2

RIL-5 2BL 2 2 3 2

RIL-19 2BL 1 2 4 2

RIL-32 2BL 1 2 5 4

RIL-53 2BL 1 2 2 2

RIL-94 2BL 1 2 5 1

RIL-166 2BL 2 2 5 3

RIL-179 2BL 2 2 5 2

RIL-182 2BL 1 2 5 1

RIL-209 2BL 1 2 3 3

RIL-18 4BL 7 7 7 7

RIL-40 4BL 7 7 7 7

RIL-44 4BL 7 7 7 7

RIL-76 4BL 7 7 7 7

RIL-128 4BL 7 7 7 7

RIL-131 4BL 7 7 7 7

a PST-YX1-3-1 is an isolate obtained from stripe rust collection in Zhongxing Town, Youxian District,
Mianyang, Sichuan in 2023, and its race based on the Chinese differentials has not been determined.
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Table 2
Analysis of variance and the estimates of broad-sense heritability (h2) of the

infection type (IT) and disease severity (DS) in the recombinant line (RIL) population
of AvS × PI 660072 tested at Mianyang (MY) and Yangling (YL) in 2020–2022

Source IT DS

dfa MSb F value df MS F value

Line 210 25.38 12.59***c 210 3322.62 12.65***

Environments 3 268.91 133.40*** 3 14068.55 53.57***

Line/environment 630 38.86 19.28*** 630 9110.39 34.69***

Error 840 2.02 840 262.63

h2 0.86 0.87

a df, degree of freedom

b MS, Mean square

c “***” denotes the signi�cant level of P < 0.001
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Table 3
Correlation coe�cients (r) of infection type (IT) and disease severity (DS) of the recombinant inbred lines of

AvS × PI 660072 tested in different environments
Trait Environmenta 20MY 21MY 21YL 22MY 22YL

IT 20MY 1.00***b        

  21MY 0.73*** 1.00***      

  21YL 0.75*** 0.75*** 1.00***    

  22MY 0.75*** 0.68*** 0.71*** 1.00***  

  22YL 0.95*** 0.74*** 0.79*** 0.78*** 1.00***

DS 20MY 1.00***        

  21MY 0.75*** 1.00***      

  21YL 0.78*** 0.92*** 1.00***    

  22MY 0.73*** 0.68*** 0.73*** 1.00***  

  22YL 0.95*** 0.76*** 0.79*** 0.77*** 1.00***

a MY and YL denote Mianyang and Yangling, respectively. 20, 21 and 22 denote 2020, 2021 and 2022,
respectively

b The r values based on the DS data are given in parentheses. “***” denotes the r value is signi�cant at P 
< 0.001

Inheritance of stripe rust resistance
To determine the number of genes conferring stripe rust resistance in PI 660072, genetic analysis was
performed. In the F5 generation tested in Mianyang in 2020, 170 lines were resistant and 41 lines susceptible,

�tting a 3:1 ratio (χ2 = 3.20; P = 0.06). In the F6 generation at Mianyang in 2021, 174 lines were resistant and

37 lines susceptible, marginally �tting the 3:1 ratio (χ2 = 5.88; P = 0.01). In the F6 generation tested at

Yangling, 172 lines were resistant and 39 lines susceptible, also marginally �tting the 3:1 ratio (χ2 = 4.44; P = 
0.03). In the F7 generation tested at Mianyang in 2022, 167 lines were resistant and 44 lines susceptible,

�tting the 3:1 segregation ratio (χ2 = 1.72; P = 0.16). In the F7 generation tested at Yangling, 170 lines were

resistant and 41 lines susceptible, �tting the 3:1 segregation ratio (χ2 = 3.20; P = 0.06). When the F8 generation
tested at the seedling stage in the greenhouse with CYR32, 167 lines were resistant and 44 lines susceptible,
�tting the 3:1 segregation ratio (χ2 = 1.72; P = 0.16); with CYR34, 167 lines were resistant and 44 lines
susceptible, �tting the 3:1 segregation ratio (χ2 = 1.72; P = 0.16); and with PST-YX1-3-1, 174 lines were
resistant and 37 lines susceptible, �tting the 3:1 segregation ratio (χ2 = 5.88; P = 0.01) (Table 4). The genetic
analyses indicated two genes for stripe rust resistance.
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Table 4
The number of genes for resistance to stripe rust in the AvS × PI 660072
determined by genetic analysis based on the infection type data of adult
plants in Mianyang (MY) and Yangling (YL) in 2020 (20), 2021 (21), 2022

(22) and seedling stage with CYR32, CYR34 and PST-YX1-3-1 in 2023
Test Ra Sb Total No. of genes χ2 P-values

20MY(F5) 170 41 211 2 3.20 0.06

21MY(F6) 174 37 211 2 5.88 0.01

22MY(F7) 167 44 211 2 1.72 0.16

21YL(F6) 172 39 211 2 4.44 0.03

22YL(F7) 170 41 211 2 3.20 0.06

CYR32 167 44 211 2 1.72 0.16

CYR34 167 44 211 2 1.72 0.16

PST-YX1-3-1 174 37 211 2 5.88 0.01

a R, RILs showing IT < 7

b S, RILs showing IT ≥ 7

Genetic linkage maps
A total of 13,946 SNPs were found between the two parents using the 15K SNP array, of which 13,198 SNPs
had known chromosomal locations. After �ltering the redundant markers based on “BIN”, 3,869 SNPs were
used to construct genetic linkage maps. These markers were distributed across 21 linkage groups
corresponding to the 21 wheat chromosomes, spanning a total length of 5,884.82 cM (Fig. 2). The number of
markers per chromosome in the genetic linkage map ranged from 7 for chromosome 1D to 248 for
chromosome 3A, with an average of 94 SNP markers (Table 5). The map lengths of individual chromosomes
ranged from 35.10 cM (chromosome 6A) to 994.95 cM (chromosome 7D). The mean distance between
adjacent SNP markers in the genetic linkage map varied across chromosomes, ranging from 0.37 cM for
chromosome 6A to 29.93 cM for chromosome 1D. The genetic maps were subsequently used to locate the
stripe rust resistance QTL.
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Table 5
Summary of chromosome assignment, number of SNPs, map length and marker

density of the genetic maps of the AvS × PI 660072 recombinant inbred line
population

Chromosome No. of SNPs Map length (cM) Mean SNP distance (cM)

1A

1B

1D

2A

2B

2D

3A

3B

3D

4A

4B

4D

5A

5B

5D

6A

6B

6D

7A

7B

7D

98

12

7

46

87

105

248

33

43

74

66

66

55

244

33

95

49

100

58

220

235

382.44

236.82

209.51

354.94

351.74

214.90

278.34

307.41

218.87

297.17

135.32

247.24

231.87

237.06

137.75

35.10

271.85

298.95

307.08

135.51

994.95

3.90

19.73

29.93

7.72

4.04

2.05

1.12

9.32

5.09

4.02

2.05

3.75

4.22

0.97

4.17

0.37

5.55

2.99

5.29

0.62

4.23

QTL mapping
To identify the resistance genes for stripe rust in PI 660072, QTL analysis was conducted using the genotypic
data and the stripe rust phenotype data from the �ve �eld environments and the seedling tests with three
races in the greenhouse. Two major QTL for resistance to stripe rust were identi�ed in the mapping
population and were located on chromosomes 2BL and 4BL, named QYrPI660072.swust-2BL and
QYrPI660072.swust-4BL, respectively (Fig. 3a, b). Both QTL were from PI 660072. QYrPI660072.swust-2BL
was located between SNP markers AX-109547533 and AX-111640532 at the 376,495,312 bp and
682,801,798 bp positions, respectively, about 21.0 cM apart. This QTL explained about 10.04–24.77%
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phenotypic variation explained (PVE), with the LOD value of 3.78 ‒ 11.63. QYrPI660072.swust-4BL was
located between AX-109412222 and AX-108847266, at 362,135,412 bp and 429,339,058 bp positions,
respectively, about 1.5 cM apart. This QTL explained 20.50 ‒ 28.18% PVE, and its LOD value ranged from
13.59 to 18.10 (Table 6).

 
Table 6

Summary of two quantitative trait loci (QTL) for stripe rust resistance identi�ed based on mean disease
severity (DS) and infection type (IT) of the 211 recombinant inbred lines from cross AvS × PI 660072 tested in

Mianyang (MY) and Yangling (YL) in 2020 (20), 2021 (21) and 2022 (22) and seedling stage with CYR32,
CYR34 and Pst-YX1-3-1 in 2023

QTL Environment Marker
interval

IT DS

LOD PVE
(%)

Add LODa PVE
(%)b

Addc

QYrPI660072.swust-
2BL

20MY AX-
109547533

AX-
111640532

9.92 17.32 -0.98 7.97 14.53 -9.83

21MY 10.54 18.44 -0.87 11.22 19.62 -12.12

21YL 7.82 12.89 -0.74 11.63 19.43 -14.54

22MY 6.05 10.04 -0.69 7.81 14.27 -9.11

22YL 8.74 15.24 -1.03 6.61 12.42 -10.18

QYrPI660072.swust-
4BL

CYR32 AX-
108847266

AX-
109412222

10.16 24.34 -0.87 10.33 24.77 -9.57

CYR34 5.16 12.91 -0.60 5.31 13.14 -6.40

Pst-YX1-3-1 3.78 11.10 -0.52 3.83 11.15 -5.19

20MY 17.19 25.74 -1.20 15.58 24.61 -12.85

21MY 15.53 22.83 -0.97 14.10 20.50 -12.42

21YL 15.26 24.74 -1.04 16.48 22.99 -15.87

22MY 13.59 23.33 -1.06 14.66 22.50 -11.51

22YL 17.96 27.40 -1.39 18.10 28.18 -15.40

  CYR32   - - - - - -

  CYR34   - - - - - -

  Pst-YX1-3-1   - - - - - -

a LOD, logarithm of odds score

b PVE, percentage of the phenotypic variance explained by individual QTL

c Add, the additive effect of resistance allele. A negative value indicates that the resistance allele is from
PI 660072

Development and validation of KASP markers
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The scanning of the 660K SNP chip for the two parents resulted in 65 different SNPs on chromosome 2B and
37 polymorphic SNPs on 4B between the parents. From the 65 SNPs on 2B, 24 were initially selected for
converting to KASP markers, and 3 KASP markers were �nally developed. From the 37 SNPs on chromosome
4B, 14 were initially selected for developing KASPs, and 4 KASP markers were eventually developed. The 3
KASP markers on chromosome 2BL were KASP-072-1269, KASP-072-7058 and KASP-072-4948, and the 4 on
chromosome 4BL were KASP-072-3209, KASP-072-9918, KASP-072-2222 and KASP-072-1793. The
corresponding SNPs of the three 2BL KASP markers were AX-108941269 (at the 682,743,322 bp position, AX-
108757058 (640,086,397 bp) and AX-11114948 (655,225,005 bp); and those on 4BL were AX-109493209
(385,557,144 bp), AX-110399918 (376,431,384 bp), AX-109412222 (362,135,412 bp) and AX-111501793
(404,838,495 bp), respectively. KASP markers KASP-072-1269 on 2BL and KASP-072-3209 on 4BL were tightly
linked to the target QTL (Fig. 3). The genotypes of seven recombinant RILs with their phenotypes in the
genetic interval between markers AX-109412222 and AX-108847266 of QYrPI660072.swust-4BL are shown in
Table 7, indicating that the QTL region has a high recombination frequency.

Table 7 SNP genotypes of seven recombinant inbred lines in the genetic interval AX-109412222 and AX-
108847266 of QYrPI660072.swust-4BL (A, the resistant genotype from PI 660072; B, the susceptible genotype
from AvS)

Markera
SNP genotype
PI 660072 RIL-146 RIL-33 RIL-31 RIL-81 RIL-117 RIL-181 RIL-80 AvS

AX-111022564 A A A A B B B B B
AX-110359713 A A A A B B B B B
AX-109412222 A A A A A B B B B
KASP-072-3209 A A A A A A B B B
AX-109015565 A A A A B B B B B
AX-108847266 A A A B B B B B B
AX-109368728 A A B B B B A B B
AX-109296842 A B B B B B A A B
Phenotype R R R R R S S S S

a The eight markers were from the 15K SNP and KASP marker development

Effects of the individual QTL and their combination
To estimate the individual and combined effects of the two QTL on IT and DS, the 211 RILs were grouped into
different genotypic groups based on the presence of markers highly associated with the two QTL. These
genotypes were further grouped into 4 groups based on the number of QTL. RILs without any of the two QTL
had a mean infection type (MIT) 6 and mean DS (MDS) 54.9%. RILs carrying only QYrPI660072.swust-2BL
had MIT 4 and MDS 30%. RILs carrying only QYrPI660072.swust-4BL had MIT 3 and MDS 23%. RILs carrying
the two QTL had MIT 2 and MDS 11%. As expected, these results demonstrated that RILs carrying the two
QTL had the highest level of resistance. RILs carrying only QYrPI660072.swust-4BL had lower IT and DS than
those carrying only QYrPI660072.swust-2BL (Fig. 4a, b). The results showed that combining different QTL
could increase the level of resistance through additive interactions.

Determination of resistance types of the QTL
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Based on the SNP marker data, 9 lines with QYrPI660072.swust-2BL and 6 lines with QYrPI660072.swust-4BL
were identi�ed from the 211 RILs. These 15 lines were either highly or moderately resistant at the adult-plant
stage in all �eld tests. These lines were further tested with CYR31, CYR32, CYR34 and PST-YX1-3-1 at the
seedling stage in the greenhouse, and their infection types produced by the four Pst races or isolates are
presented in Table 1. The nine lines with QYrPI660072.swust-2BL were resistant to the four races (IT 0–4)
similar to their �eld resistance (IT 1–4). The six lines with QYrPI660072.swust-4BL were intermediate to
susceptible to the three races (IT 5–8), which were different to their high or moderate resistance (IT 2–5) in
the �eld tests. Based on these results, we concluded that QYrPI660072.swust-2BL confers ASR, and
QYrPI660072.swust-4BL confers APR. The results con�rmed the conclusion of both ASR and HTAP resistance
in PI 660072 in the previous study (Wang et al. 2012).

Discussion
To achieve sustainable control of stripe rust, it is critical to identify and use effective genes to develop new
cultivars with high-level and durable resistance (Chen 2013, 2020). In the present study, we identi�ed two QTL,
QYrPI660072.swust-2BL and QYrPI660072.swust-4BL, conferring resistance to stripe rust in wheat line PI
660072. The two major QTL were identi�ed through QTL mapping using the stripe rust phenotypic data of
�ve �eld environments. Two KASP markers, KASP-072-1269 for the 2BL QTL and KASP-072-3209 for the 4BL
QTL, were developed and could be used in MAS for incorporating the QTL into wheat cultivars to improve
resistance to stripe rust.

QYrPI660072.swust-2BL, mapped on chromosome 2BL, was effective against the tested predominant
Chinese Pst races in the greenhouse seedling tests and consistently detected in all �ve �eld environments.
This ASR QTL was mapped between SNP markers AX-109547533 and AX-111640532, corresponding to the
376,495,312 bp and 682,801,798 bp positions, respectively on 2BL of the Chinese Spring reference genome
(IWGSC RefSeq v1.0 2BL). Many stripe rust resistance genes or QTL have been reported on 2BL (Wang and
Chen 2017; Liu et al. 2019; Nicolas et al. 2019). Five permanently named stripe rust resistance genes, Yr5
(Yan et al. 2003), Yr7 (Yao et al. 2006), Yr43 (Sui et al. 2009), Yr44 (Cheng et al. 2010) and Yr53 (Xu et al.
2013) have been mapped to 2BL and conferred ASR. Yr5, Yr7 and YrSP have been cloned, and their physical
position was 685.27 Mb on 2BL in the Chinese Spring reference genome (IWGSC RefSeq v1.0) (Marchal et al.
2018). Yr43 in a hard white spring wheat cultivar ‘IDO377s’ (PI 591045) is �anked between Xwgp103 and
Xwgp110, with a genetic distance of 4.4 and 5.5 cM, respectively (Cheng et al. 2010). Yr43 was susceptible to
the Pst CYR32, CYR33 and CYR34 at the seedling stage (Liu et al. 2017). Yr44 is originally from a soft white
spring wheat cultivar ‘Zak’ (PI 607839). This gene is 3.9 and 9.4 cM to its frank markers Xwgp100 and
XpWB5/N1R1, respectively (Sui et al. 2009). Xwgp100 is on the same side as Xgwm501 that is around
672,082,697 bp on 2BL of the Chinese Spring genome (IWGSC RefSeq v1.0 2BL). Yr53 in durum wheat PI
480148 originally from Ethiopia was mapped between XLRRrev/NLRRrev350 and Xwmc441, about 5.6 cM to
the latter marker (Xu et al. 2013). Xwmc441 is around 598,064,318 bp on 2BL in the Chinese Spring genome
(IWGSC RefSeq v1.0 2BL). Because QYrPI660072.swust-2BL had no linked markers between the �anking
markers, this interval also includes Yr44 and Yr53. However, according to a previous study, Yr44 was
susceptible to Chinese Pst races CYR32, CYR33 and CYR34 at the seedling stage (Wang et al. 2019).
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Therefore, QYrPI660072.swust-2BL should be different from Yr44. Further research is needed to narrow the
target interval and determine whether Yr53 and QYrPI660072.swust-2BL are the same gene.

QYrPI660072.swust-4BL, mapped on chromosome 4BL, was consistently associated with stripe rust APR in
all �ve �eld environments. This QTL was mapped between markers AX-109412222 and AX-108847266
corresponding to the 362,135,412 bp and 429,339,058 bp positions, respectively on 4BL in the Chinese Spring
genome (IWGSC RefSeq v1.0 4BL). So far, more than ten genes or QTL have been reported on chromosome
4BL. QYrus.vt-4BL for APR in wheat line USG 3555 was mapped between SSR markers gwm165 and gwm149
corresponding to the 412,716,441 bp and 544,649,745 bp positions respectively on 4BL in the Chinese Spring
genome (IWGSC RefSeq v1.0) (Christopher et al. 2013). QYrhm.nwafu-4B in wheat Humai 15 was mapped to
an interval of 3.4 cM on chromosome 4BL, �anked by SNP markers AX-111150955 and Xgwm251
corresponding to the interval between 523,448,600 and 568,556,138 bp, respectively on 4BL in the Chinese
Spring genome (IWGSC RefSeq v1.0) (Yuan et al. 2018). Permanently named stripe rust resistance genes on
4BL include Yr50 (Liu et al. 2013) and Yr62 (Lu et al. 2014). Yr50 is an ASR gene mapped between SSR
markers Xbarc1096 and Xwmc47, about 8.0 cM and 7.2 cM apart to these markers, respectively (Liu et al.
2013). The two markers correspond to the positions 105,145,886 and 644,865,926 bp, respectively on 4BL of
the Chinese Spring genome (IWGSC RefSeq v1.0). The HTAP resistance gene Yr62 in PI 192252 was mapped
between SSR markers Xgwm251 and Xgwm192 (Lu et al. 2014). The Xgwm251 is around the 568,556,138 bp
position on 4BL in the Chinese Spring genome (IWGSC RefSeq v1.0). Based on the physical positions, some
of the above-mentioned genes are different from QYrPI660072.swust-4BL, but QYrus.vt-4BL is close to
QYrPI660072.swust-4BL. The relationship between QYrPI660072.swust-4BL and QYrus.vt-4BL needs a further
study.

The present study showed that the combination of QYrPI660072.swust-2BL and QYrPI660072.swust-4BL
increased the level of resistance through additive interactions. The selected RILs carrying the two genes, as
well as PI 660072, are valuable sources to be used in wheat breeding programs for developing cultivars
resistant to stripe rust. The two QTL can be used in combination and also with other genes for stripe rust
resistance. The KASP markers for the two QTL should be useful for MAS in pyramiding them with other
resistance genes.
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Figures

Figure 1

Frequency distributions of mean infection types (IT) and disease severity (DS) values for 211 recombinant
inbred lines from cross AvS × PI 660072 tested in Mianyang (MY) and Yangling (YL) in 2020-2022. Arrows
indicate the values of the parent lines
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Figure 2

Stripe rust resistance quantitative trait loci detected by the biparental population analysis in the AvS × PI
660072 recombination inbred line populations across �ve �eld environments in 21 chromosome based on
mean infection type (IT) and mean disease severity (DS)
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Figure 3

Stripe rust resistance quantitative trait loci (QTL) on the genetic maps of chromosomes 2BL and 4BL. (a) The
plot of LOD values calculated from 15K SNP genotyping and stripe rust phenotypic data. The red rectangle on
the genetic map indicates the corresponding QTL region. (b) The genetic distance (cM) between markers
calculated by QTL IciMapping V4.1. (c) The physical position of a portion of SNP markers with differences in
the parents between �anking markers
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Figure 4

Effects of combined quantitative trait loci (QTL) on stripe rust using infection type (a)and disease severity (b)
data for the AvS × PI 660072 recombinant inbred line population data from Mianyang (MY) and Yangling
(YL). Y-axes, ‘QTL combination’


