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Abstract

This work investigated the redispersion and setting behavior of highly loaded (~18 wt.% solids in water)
pastes of cellulose nanofibrils (CNFs) with carboxymethyl cellulose (CMC). A single-screw extruder was
used to continuously process CNF+CMC pastes into cord. The adsorption of CMC onto the CNF fibrils
was assessed through zeta potential and titration which revealed a surface charge change of ~61 % from
-36.8 mV and 0.094 mmol/g COOH for pure CNF to -58.1 mV and 0.166 mmol/g COOH for CNF+CMC with
a CMC degree of substitution of 0.9. Dried CNF with adsorbed CMC was found to be fully redispersible in
water and re-extruded back into a cord without any difficulties. On the other hand, chemical treatment
with hydrochloric acid, a carbodiimide crosslinker, or two wet strength enhancers (polyamide
epichlorohydrin and polyamine epichlorohydrin) completely suppressed the dispersibility previously
observed for dried-untreated CNF+CMC. Turbidity was used to quantify the level of redispersion or setting
achieved by the untreated and chemically treated CNF+CMC in both water and a strong alkaline solution
(0.1 M NaOH). Depending on the chemical treatment used, FTIR analysis revealed the presence of ester,
N-acyl urea, and anhydride absorption bands which were attributed to newly formed linkages between
CNF fibrils, possibly explaining the suppressed redispersion behavior. Water uptake of the differently
treated and dried CNF+CMC materials agreed with both turbidity and FTIR results.

Introduction

Cellulose nanomaterials (CNMs) are abundant, sustainable, biodegradable, and can be produced at an
industrial scale (up to 1000 kg/day dry equivalent) at relatively low costs(Moon et al. 2011; Axelsson et
al. 2012; Assis et al. 2018; Rol et al. 2020). Due to these facts, CNMs are a natural fit to the growing
concept of a circular economy(Kaur et al. 2018; Shogren et al. 2019). Depending on the nanoparticle
isolation process, source material, and pretreatments used, different types of CNMs are possible each
with its own unique characteristics and properties(Moon et al. 2011, 2016; Foster et al. 2018). The current
study focuses on cellulose nanofibrils (CNFs) which are typically produced by mechanically fibrillating
wood pulp. In contrast to other CNMs, CNFs are flexible nanoparticles with a lower crystalline content (51
% to 69 % crystallinity), higher aspect ratios (up to 500), and a strong tendency to form
tangled/aggregated networks as well as have little to no charge(Moon et al. 2011, 2016). Current and
potential applications for CNFs include foams, gels, coatings, as well as a reinforcement material in
composite fibers and films or as self-standing neat isotropic films (“nanopaper”) and laminated sheets, to
name just a few(Sehaqui et al. 2010; Zhang et al. 2013; Clarkson et al. 2019, 2020b, a; El Awad Azrak et
al. 2019).

Unlike CNFs which are produced by mechanical fibrillation, carboxymethyl cellulose (CMC) is an ionic
ether derived from cellulose prepared from the esterification reaction between alkaline cellulose and
monochloroacetic acid(Murray 2009; Lin et al. 2013). This reaction causes the substitution of some of
the hydroxyl groups in the glucose repeat unit for negatively charged carboxymethyl groups (-CH,-CO0~)
(Murray 2009). The average number of hydroxyl groups substituted per glucose unit is referred to as the
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groups were replaced. Owing to its nontoxic nature and its ability to fully dissolve in water, CMC has
found uses in the food, cosmetic, and pharmaceutical industries as a highly effective thickener,
viscosifier, gelling agent, and rheological modifier(Williams and Phillips 2009; Feddersen and Thorp
2012). CMC has even been reported to significantly reduce the yield stress by 60—80 % of highly loaded
lignocellulosic biomass pastes (up to 25 wt.% solids) from corn stover which, in turn, facilitated their
processing for use as plausible liquid fuel alternatives(Samaniuk et al. 2012, 2015). More recently, CMC
has shown to be an excellent water-soluble processing aid to highly loaded CNF pastes (up to 25 wt.%
solids) and in turn allowed for continuous extrusion of CNF sheets without reducing the mechanical
performance(El Awad Azrak et al. 2020).

CMC'’s effectiveness as a processing aid in CNF systems could be tied to its ability to adsorb irreversibly
to the surface of the fibrils(Butchosa and Zhou 2014). This adsorption occurs due to the attachment of
unsubstituted CMC cellulose units onto the surface of exposed cellulose chains on CNF fibrils. In the wet
state (i.e., suspension), the adsorbed CMC carboxylates reduce fibril-fibril contacts and fibril-fibril friction
and entanglements(Schmid and Klingenberg 2000). A reduction in apparent viscosity has been reported
in highly loaded CNF + CMC and corn-stover + CMC pastes which agrees with the stated
theories(Samaniuk et al. 2012; El Awad Azrak et al. 2020). This absorption behavior has also been
observed for low solids (1-3 wt.%) pulp systems that contain CMC as a wet end additive(Beghello and
Lindstrom 1998; Watanabe et al. 2004; Yan et al. 2006; Liimatainen et al. 2009). Furthermore, fully dried
CNF with adsorbed CMC have been reported to be redispersible possibly due to the reduced number of
hydrogen bonds formed and the added negative surface charges which facilitates swelling(Butchosa and
Zhou 2014).

Considering that most CNMs processed today contain no more than 30 wt.% solids, the ability of a CNM
system, like that of CNF, to fully redisperse after being dried can significantly aid their commercialization
by reducing the costs associated with transportation. In this way, CNFs can be transported in the dry state
and redispersed at the manufacturing plant to the desired solids concentration for further processing.
Additionally, understanding the possible methods or pretreatments that will allow for a semi-permanent
setting of CNFs after being processed into the desired shape (e.g., clamshells, cups, sheets, etc.) can in
turn expand their possible uses in the dry state by reducing their susceptibility to humid conditions. For
these reasons, understanding and having the ability to control the redispersion and setting behavior of
CNFs becomes very important.

In this paper highly loaded (~ 18 wt.% solids) CNF + CMC pastes were prepared using a high shear
Banbury mixer. Subsequently, a single-screw extruder was used to form the prepared pastes into wet
filament/cord and proved to be an effective bulk processing technique for CNF + CMC. Three different
CMC degrees of substitution were evaluated (0.7, 0.9, and 1.2), all with the same molecular weight of
250,000. Zeta potential and titration were used to quantify the surface charge (mV) and the amount of
active carboxylic groups (mmol/g) adsorbed on CNF fibrils, respectively. The re-dispersibility of the dry
and pelletized CNF + CMC pastes was qualitatively assessed by remixing and re-extrusion and
rasurements both in DI water and in an alkaline solution (0.1
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M NaOH). To investigate the possible setting of CNF + CMC, different chemical treatments were assessed
including two popular waterborne wet strength enhancers (polyamide epichlorohydrin (PAE) and
polyamine epichlorohydrin (PAME)) and a waterborne carbodiimide crosslinker (CDI). Treatment with
hydrochloric acid (HCI), the multivalent cationic salt calcium chloride (CaCl,) and the polycationic
polymer polyethyleneimine (PEI) was also investigated. Similarly, the effectiveness of the setting behavior
of the different chemical treatments was assessed through turbidity. Lastly, FTIR was used to elucidate
the possible mechanisms behind the suppressed redispersion behavior observed for each chemical
treatment.

Experimental Section/methods
Materials

Hydrochloric acid (HCI) solution at 37 %, calcium chloride (CaCl,) powder, and branched
polyethyleneimine (PEI, My, ~800) were procured from Sigma-Aldrich. Standardized 0.1 M NaOH solution
was purchased from Fisher Scientific. Picassian® XL 702, a waterborne polycarbodiimide (CDI)
crosslinker with a solids content of 40%, was kindly provided by Stahl Polymers. Two waterborne
crosslinking resins of polyamide epichlorohydrin (Polycup™ 9200, Lot#0002475278, 20 % solids, PAE)
and polyamine epichlorohydrin (Polycup™ 7360A, Lot# 2459303, 38 % solids, PAmME), were kindly
supplied by Solenis LLC. Powders of carboxymethyl cellulose sodium salt (CMC-Na) with three different
degrees of substitution (D.S.) of 0.7, 0.9, and 1.2 and with a molecular weight of Mw = 250,000 (Lot#
MKCK7917, Lot# MKCF4819, and Lot# MKCF8509) were purchased from Sigma Aldrich. Mechanically
fibrillated CNFs were procured from University of Maine, Orono, ME, USA at a concentration of ~ 23.5
wt.% solids in water (Batch #122, 90% fines retained). The process of isolating this specific type of CNFs
is explained in detail by C.A. de Assis et al(Assis et al. 2018). Two TEM images of the mechanically
fibrillated CNF used are shown Figure S1. Purified water was produced using a Barnstead system and
used for all experiments. Unless otherwise stated, solutions of HCI, CaCl,, PEI, PAE, and PAmE were

prepared with water.

Preparation of Highly Loaded CNF + CMC Pastes

The preparation of highly loaded CNF + CMC pastes has been explained in detail in a previous
publication(El Awad Azrak et al. 2020). In brief, 52 g of CNF (at ~ 23.5 wt.%) was loaded into a high shear
torque mixer (Plasti-Corder PL 2100 Electronic Torque Rheometer, C. W. Brabender, South Hackensack,
NJ) equipped with Banbury type mixing blades and mixed at 55°C and 120 rpm. While the CNF was being
mixed, CMC powder was gradually added until reaching a dry weight CMC:CNF ratio of 0.1:1. Water was
added to adjust the paste's solids concentration to ~ 18 wt.%. The paste was mixed until complete CMC
incorporation, which was signaled by a constant toque reading/plateau. The entire mixing process took
on average less than 40 min and yielded approximately 66 g of wet CNF + CMC paste. This mixing
process was repeated for each of the different CMC degrees of substitution (0.7,0.9, and 1.2). The
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quickly as possible. It is important to note that the word “paste” is used throughout the report to refer to
these highly loaded CNF + CMC mixtures. The word “suspension” is used to refer to dilute suspensions
prepared from the wet or dried pastes, respectively.

CNF + CMC Filament/Cord Processing

The prepared CNF + CMC pastes were extruded using a Brabender torque rheometer (ATR) with an
attached single-screw extruder unit (L/D = 25, barrel diameter of 1.9 cm, and a conventional 3:1
compression screw). A filament head attachment with a 2 mm nozzle was used. Extrusion was carried
out at 25°C and at a screw speed of 10 rpm. The filament/cord was collected using a cardboard roll.

Chemical Treatment

The extruded wet CNF + CMC cords were cut into ~ 100 mm long segments with an approximate wet
diameter of 2 mm (see Figure S2a). Treatment solutions of 0.1 M HCI, 0.1 M CaCl,, 10 % PEI, 10 % PAE,
and 10 % PAmME were freshly prepared. The still wet cord segments were carefully submerged into the
different treatment solutions, respectively. Treatment time, solution concentration, and drying/curing
temperature were optimized through preliminary experimental trials with HCl and assumed to also apply
for CaCl, (see Figure S3, Figure S4, and Figure S5). It was determined that a concentration of 0.1 M was
ideal to retain the cord’s dimensions while a soak time of 20 min allowed for the treatment to penetrate a
distance of 2 mm (i.e., the cord’s diameter). After the respective treatment, excess solution was drained
off and the cord segments were oven dried at 70 °C for 1 h, to avoid any oxidation or browning. For
treatment with PEI, PAE, and PAmE, the cord segments were cured in the oven at 70°C for PEI, and 85°C or
25°C for PAE and PAmME (per supplier recommendations). Due to CDI's reactivity at room temperature
conditions and the required acidic conditions for correct activation, the treatment process was slightly
adjusted. CDI was mixed directly into the CNF + CMC paste at a dry weight ratio of CMC:CDI of 1:1.
Subsequently, the CNF + CMC + CDI cord segments were submerged for 20 minutes in 0.1 M HCI and
cured at 70°C or 25°C. Lastly, oven dried CNF + CMC cord segment without any treatment, termed
“untreated” were also prepared and dried at 70°C for 1 h.

Pelletization

For all treatments and degrees of substitution, the dried and cured CNF + CMC cords were cut by hand
using scissors into pellets with an approximate length of ~ 1 mm. Longer untreated CNF + CMC cords
were pelletized using a commercial pelletizer (Davis Standard, Pawcatuck, CT, Model PK-102) running at
30 rpm for the rehydration and remixing analysis.

Zeta Potential

The prepared CNF + CMC pastes (D.S. = 0.7, 0.9, and 1.2 all at ~ 18 wt.%) were diluted to 1 wt.%. CNFs
adsorbed with CMC were precipitated by centrifugation (10,000 RFC) with any unbound CMC remaining
in the supernatant. The supernatant was discarded and the CNF fibrils were resuspended by shear mixing
in purified water. This process was repeated 3 times. Subsequently, the washed suspensions were further
6. Zeta potential measurements were carried out using a
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Zetasizer Nano ZS (Malvern Panalytical) and disposable folded capillary cells (Model: DTS1070). The
viscosity of the suspensions was not measured but was assumed to be that of water due to the low
solids concentration. The pH of all the suspensions was measured to be 6.6 (HANNA® Instruments).
Eight measurements were recorded, and the average was reported along with + STD error bars. Quality
criteria were met for all suspensions analyzed, yet the count rate varied for pure CNF suspensions.

Titration

From the ~ 1 wt.% CNF + CMC suspensions prepared for zeta potential analysis, 5 mL were added to 250
mL beakers and diluted with 50 mL of deionized water. 500 mL of 0.1 M HCI was added to fully protonate
the carboxylic acid groups on the CNFs. The resulting mixture was titrated with 5 mM NaOH solution. The
pH was monitored using an Oakton Acorn pH meter. Representative titration curves (pH verses titrant
volume) can be seen in Figure S6. The volume between the two inflection points on the curve was used to
calculate the amount of COOH present on the nanofibers.

Turbidity

0.17 g of the treated or untreated CNF + CMC pellets were added into a scintillation vial followed by 17
mL of purified water or 177 mL of a 0.1 M NaOH solution (i.e., a target concentration of 1 wt.% solids). The
pellets were stirrer in solution for 24 h at 1000 rpm and 25 °C. This was repeated for each different degree
of substitution and treatment type. Additionally, 1 wt.% never-dried CNF + CMC and pure CNF suspensions
were prepared as control groups. Following stirring, 100 mL of the supernatant, with an unknown solids
concentration of redispersed CNFs, was diluted with an additional 17 mL of purified water. Dilution was
performed to be in the most accurate reading range of the turbidity meter. The dilute suspensions were
analyzed using a nephelometric turbidimeter (Vernier®, Beaverton, OR) consisting of a 90° photodiode
detector and an 890 nm infrared LED light source. The turbidity meter was calibrated using a 100 NTU
Formazin standard and DI water (i.e., 0 NTU) in a glass cuvette. Before collection, a 10 mm stir bar was
added to the sample glass cuvette, and the turbidity meter was placed on top of a stir plate. Turbidity was
continuously collected every 0.5 s for 650 s while the suspension was being stirred at 400 rpm. Six
measurements were carried out per sample group with a fresh diluted sample loaded for every
measurement. The average between all 6 measurements is reported along with + STD error bars as stated
under the figures, respectively.

FTIR-ATR

Treated and untreated CNF + CMC pellets, CMC powder (D.S. = 0.7), and a pure cast CNF film were
conditioned in a vacuum oven for 24 h at room temperature. The samples were placed in direct contact

with the ATR crystal and a 550 cm™ " to 4000 cm™ ! spectra was captured using an FTIR-ATR system

(PerkinElmer) with a resolution of 4 cm™'. 20 sample scans were collected, and background subtraction
was performed, respectively. Baseline correction was applied to all the spectra for fair comparison.

Scanning Electron Microscopy (SEM)
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~ 25 mm long dry segments of untreated CNF + CMC cord were secured to a conductive aluminum stub
with carbon tape and then sputter coated (SPI sputter coater) with a platinum-gold target for 60 s. No
polishing or sanding was used. The samples were imaged using a Quanta 650 FEG field emission
electron microscope at 3 KeV and a spot size of 5. The working distance varied from 39-41 mm to
achieve the highest resolution.

Results And Discussion
CNF + CMC Bulk Processing and Pelletizing

Extrusion-based processes are one of the most versatile, commercially available, and easily scalable
processing methods used for current commodity polymers. For these reasons, a single-screw extruder
was employed to continuously extrude the highly loaded (~ 18 wt.%) CNF + CMC pastes. Results show
that wet filament with a diameter of ~2 mm (~ 1 mm dry) can be successfully processed without any
restrictions on its final length. The extrusion and collection process are shown in Video S1. The extruded
cord was collected and oven dried on a carboard roll as shown in Fig. 1Ta and Fig. 1b. Constrained drying
was necessary for the CNF + CMC cord to retain its shape and avoid shrinking/warping (see Fig. 1c verses
Figure S7). Following drying, the cord was easily pelletized by using a commercial pelletizer running at 30
rpm as shown in Fig. 1d and Video S2. The processed CNF + CMC pellets had an average length of 6.73 +
2.5 mm. Roughly 10 g of dry cord were processed and presented in Fig. 1d.

With the current set up used, dry CNF + CMC extrusion output rates of up to 0.25+ 0.072 kg/h and nozzle
speeds of up to 7.68 + 2.22 m/min were possible at a screw speed of 110 rpm. Although the nozzle
speeds are lower than those typically reported in conventional spinning processes (20—150 m/min)
(Lundahl et al. 2017), filament die extrusion can process larger diameter cord (> 1 mm) versus those
typically seen for spinnerets (10—500 mm)(Mather and Wardman 2011), making it a more effective bulk
processing methodology. Additionally, larger diameter cord allowed for easier handling and collection as
the wet cord extrudate was relatively fragile and does not strain harden as conventional synthetic
polymeric filament.

The mechanical properties of the processed CNF + CMC cords are not expected to be higher than those
typically observed for CNF, (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) oxidized CNF or composite
fiber filaments prepared using wet- or dry- spinning methodologies(Hakansson et al. 2014; Kafy et al.
2017; Clarkson et al. 2019). This is due to the lower shear rates typically observed in larger nozzles and
the lack of filament drawing, both of which facilitate CNF fibril alignment in the axial direction and
improve the mechanical properties. However, the intent of this report is to understand the redispersion
and setting behavior of highly loaded CNF + CMC systems rather than improve the mechanical
performance of the extruded filament/cord.

The surface morphology of the oven dried and untreated CNF + CMC cords with a varying CMC degree of

cuthetitition (NS = N7 N A and 1 2 ie chawn in Fig. 2 below. It is evident that there is a lack of fibril
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alignment when Fig. 2 is compared to other reported drawn CNF filament micrographs(Kim et al. 2019;
Cai et al. 2020). Furthermore, there appears to be no difference between cords prepared with CMC with a
D.S. of 0.7 and 0.9 (Fig. 2a and Fig. 2b, respectively), while the cord prepared with a D.S. of 1.2 appeared
to have a slightly rougher surface (Fig. 2c).

CMC Adsorption onto CNF fibrils

As mentioned in the introduction, CMC has been reported to adsorb irreversibly to the surface of CNF even
under mild heating conditions (22°C) in low solids (~ 1T wt.%) suspensions in water(Butchosa and Zhou
2014). This adsorption occurs due to the attachment of unsubstituted CMC cellulose units onto the
surface of exposed cellulose chains on CNF fibrils through hydrogen bonding and can be improved if
cations (e.g., Ca?*) are added to the CNF suspension(Duker et al. 2007; Liu et al. 2011). In this work, both
the Banbury high-shear mixing process and the relatively high mixing temperatures (55°C) used to
prepare CNF + CMC pastes also caused CMC to adsorb irreversibly to the surface of CNF even at high
solids loadings (~ 18 wt.%). This was confirmed through zeta potential and titration measurements on
dilute CNF + CMC suspensions prepared from the different pastes. As shown in Table 1, CMC adsorption
caused an increase in surface charge from - 36.8 + 2.04 mV for pure CNF t0-59.3 + 1.31 mV for CNF +
CMC (D.S. = 0.7). Additionally, there was no statistical difference between the three CMC degrees of
substitution with respect to zeta potential (one-way ANOVA: F 5 =2.22, P=0.133, RZ = 0.175). This

could mean that the surfaces were completely saturated even with a more negative CMC with a D.S. of
1.2.

As shown in Table 1, titration of the different CNF + CMC suspensions with NaOH revealed the presence
of weak acid functionalities from the adsorbed CMC's carboxylic acids. More specifically, surface charge
increased from 0.094 + 0.005 mmol/g COOH for pure CNF to 0.166 + 0.035 mmol/g COOH for CNF + CMC
with a degree of substitution of 0.9. However, while zeta potential revealed a change in magnitude of
surface charge (mV) for all D.S. in CNF + CMC when compared to pure CNF, titrated surface charges for
CNF + CMC with a D.S. of 0.7 and 1.2 were not significantly different to pure CNF (0.104 + 0.024 and
0.082 + 0.012 mmol/g COOH, respectively). As expected, the titrated charges for pure CNF and CNF + CMC
are lower than those typically observed for TEMPO oxidized CNF (up to 1.5 mmol/g) (Lasseuguette 2008;
Jiang and Hsieh 2016) due to the lower level of carboxylic functionalities.
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Table 1

Zeta potential and titration of dilute pure CNF and CNF + CMC suspensions. Each suspension was mixed,
centrifuged, and resuspended in water 3 times to remove non-adsorbed CMC or other loose species. Eight
measurements per sample were carried out for zeta potential analysis while 3 measurements per sample
were performed for titration. The average and standard deviation of the samples are displayed. 5 mM
NaOH was used for titration.

Suspension Type Ave. Zeta Potential [nV]t STD  Surface Charge [mmol/g COOH] + STD
Pure CNF -36.8+2.04 0.094 + 0.005
CNF+CMC (D.S.=0.7) -59.3+1.31 0.104 £ 0.024
CNF+CMC (D.S.=0.9) -58.1+2.02 0.166 = 0.035
CNF+CMC (D.S.=1.2) -58.4+2.06 0.082 +0.012

Given that CMC adsorption was present, its plausible that the CNF fibril’s ability to form irreversible
hydrogen bonds between themselves was suppressed. Hence, the pelletized and untreated cord was
able to rehydrate itself rapidly (under 20 min) without any stirring/mixing as shown in Fig. 3(a-c).
These rehydrated pellets were re-mixed using the same Banbury mixer and reformed into the original
~ 18 wt.% paste as shown in Fig. 3d. Complete re-mixing was confirmed by an equivalent torque
reading on the mixer when compared to a freshly prepared CNF + CMC paste (see Figure S8). It is
important to note that the torque plateau for the rehydrated CNF + CMC pellets was reached in less
than 2 min verses the original ~ 19 min (see Figure S8), hence complete re-mixing was easily and
quickly achieved. Furthermore, this paste was re-extruded into a cord without any difficulty and dried
as shown in Fig. 3e and Fig. 3f and appeared identical to the original cord before pelletizing (Fig. 1c).
Importantly, this shows that by adding CMC, the material can be extruded, dried, pelletized, rehydrated,
and extrluded to the same consistency to “close the loop”, which conceptually allows dry shipment of
material.

Dispersibility and Setting Behavior of CNF + CMC

To evaluate the dispersibility and setting behavior of highly loaded CNF + CMC pastes, different chemical
treatments were selected and applied to the extruded wet cords. The treatments assessed were HCI,
CaCly, PEI, CDI, PAE, and PAmME. Light scattering techniques like turbidity are often used to monitor the
degree of fibrillation/quality during CNF manufacturing processes(Moser et al. 2015; Desmaisons et al.
2017) and, in this work, served to gauge the level of redispersion achieved by the treated and untreated
dry CNF + CMC materials in water. Turbidity results in Fig. 4e show that complete redispersion is observed
when the dried-untreated CNF + CMC samples (~ 29 NTU) are compared to the never-dried CNF + CMC
dilute suspensions (~ 30 NTU), regardless of CMC'’s degree of substitution. On the other hand, chemical
treatment with HCI, CDI, PAE and PAmE all significantly suppressed the level of redispersion achieving a
value of less than 1 NTU when compared to the control groups of never-dried pure CNF (~ 29 NTU), never-
dried CNF + CMC (~ 30 NTU), and dried-untreated CNF + CMC (~ 29 NTU). As shown in Fig. 4(a-d) and
Figure S9, complete redispersion was assessed visually where no observable macroscopic pellets were
left in the suspension after mixing versus clearly visible pellets that did not redisperse (i.e., semi-
permanent setting). Furthermore, pellets treated with HCI, CDI, PAE, or PAmME did not show any sign of
redispersion even after 4 weeks of being immersed in water.
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Unlike PAmME, PAE, CDI, and HClI, treatment with PEI and CaCl, did not seem to suppress the redispersion
behavior of CNF + CMC possibly due to the inability of these treatments to form crosslinks between CNF
fibrils which then permitted the adsorbed CMC to redisperse them as shown in Figure S9. It is important
to note that the lower turbidity values observed for the PEI treatment (~ 19 NTU) are due to the strong
cationic nature of the ammonium groups which caused the negatively charged fibrils to flocculate while
in suspension rather than the lack of pellet redispersion. This was confirmed through a solids contents
measurement of the supernatant (~ 1 wt.%) after redispersion which matched with the original target
concentration (1 wt.%) when water was added to the dry pellets. Additionally, for all treatments studied,
the degree of carboxymethylation or substitution (D.S. = 0.7, 0.9, and 1.2) of CMC appears to have no
significant effect on the level of redispersion.

For the best performing setting treatments (HCI, CDI, PAE, and PAmME) dispersion in a strong alkaline
solution (0.1 M NaOH, pH > 10) was also performed. The different treatments were assessed at two
curing temperatures. Dispersion in NaOH helped isolate the effect of the different treatments on
crosslinking by promoting negative surface charges on CMC by neutralizing any acid present, thus
improving the swelling and dispersion behavior of CNF + CMC fibrils(Uetani and Yano 2012). This then
revealed differences between treatments which were not evident in water (pH ~ 7). The results in Fig. 5b
show that HCI was effective regardless of the curing temperature achieving low turbidity values (6.7 NTU
for 25°C and 6.0 NTU for 70°C, respectively) while PAmE and CDI were only effective at their higher curing
temperatures of 85°C and 70°C achieving turbidity values of ~4 NTU and ~ 3 NTU, respectively. PAE was
not effective regardless of the curing temperature hence high turbidity values were observed (23.9 NTU
for 25°C and 17.7 NTU for 85°C), however there was a difference between the dispersion behavior
observed for a cure temperature of 85°C and 25°C, (one-way ANOVA: F; 1,=74.3, P=6.1 % 10 —6,R?=
0.881). The difference in dispersion behavior observed between the two different curing temperatures for
CDI, PAE and PAME suggests the formation of physical crosslinks rather than purely structural irreversibly
changes that might have occurred during drying (i.e., hornification), while at higher temperatures
chemical crosslinking occurs(Fernandes Diniz et al. 2004). As shown in Figure S10 and Fig. 5a small
pellet fragments were visible for all treatments hence some level of dispersion was still possible in the
studied time period (24 h).

Optical micrographs, shown in Fig. 6, of the redispersed CNF + CMC fibrils in water and 0.1 M NaOH
revealed that the fibril's morphology remained intact before and after redispersion when compared to
never-dried pure CNF (Fig. 6a) and dried-untreated CNF + CMC (Fig. 6b). It is important to note that the
reduced presence of CNF fibrils displayed in the micrographs for CDI (Fig. 6¢), HCI (Fig. 6d), PAE (Fig. 6e),
and PAmE (Fig. 6f) match with the results obtained for turbidity. Perhaps only non-crosslinked and or
smaller fibrils were able to be redispersed back into the solution. Furthermore, expanded optical
micrographs show the same behavior (see Figure S11 and Figure S12).

FTIR Analysis of Treated CNF + CMC
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To understand the possible setting mechanism behind the chemical treatments (HCI, CDI, PAE, and
PAmME) which significantly suppressed the dispersibility of CNF + CMC, FTIR was used. As shown in
Figure S13 through Figure S16, complete spectra (550 cm™ " to 4000 cm™ ") were captured for each
treatment at two curing temperatures. As expected for all samples, common cellulose IR peaks at 3335
cm™1,2899cm™1,1429 cm™1,1368 cm™1,1335¢cm™ ', 1024 cm™ ', and 896 cm™ ! were observed. These
peaks were assigned to the O-H hydroxyl stretching, C-H stretching, and bending and stretching of -CH,, -
CH, -OH, and C-0 bonds in cellulose, respectively(Aguayo et al. 2018; Hospodarova et al. 2018).

Further analysis of the 1000 cm™ to 1800 cm™ ' spectrum region, shown in Fig. 7, revealed key peak
differences between the treated CNF + CMC samples and the control groups of pure CMC powder, pure
CNF, untreated CNF + CMC, and cured pure compounds of CDI, PAE, and PAmME. As shown in Fig. 7a
treatment with HCI caused the formation of a strong peak at 1731 cm™ " which was assigned to the
carbonyl stretching of newly formed ester linkages (i.e., COOC) or, equally likely, the carbonyl stretching of
protonated carboxylates (i.e,, COOH)(Miiller et al. 2010). This occurred for both curing temperatures (25°C
and 70°C). The peak at 1591 cm™ ! which was observed only for CMC powder and untreated CNF + CMC
was assigned to the asymmetric stretching vibration of the carboxylate (COO™) moiety(Cuba-Chiem et al.
2008; Eyholzer et al. 2010; Onyianta et al. 2018). It is important to note that the peak at 1591 cm™ ' was
not present for HCl 25°C or HCI 70°C, indicating a possible replacement of COO™ groups with ester
linkages or, due to the high acidity of 0.1 M HCI treatment, the protonation of the carboxylate that caused
a shift of the 1591 cm™" peak to 1731 cm™ ' as shown by Cuba-Chiem et. al(Cuba-Chiem et al. 2008).
Protonation and esterification could not be separated due to the similarity of the peak locations for the C
= O stretching vibration which typically lies between 1760 - 1700 cm™ . However, esterification
crosslinking between CNF fibrils with adsorbed CMC could possibly explain the suppressed dispersibility
behavior observed for both cure temperatures during turbidity measurements (Fig. 5b). A schematic of
the possible ester linkages between CNF fibrils with adsorbed CMC is shown in Fig. 8a(Pantze et al. 2008;
Miiller et al. 2010). The weak peak observed at 1645 cm™ ! was assigned to the (0-H) bending vibration of
adsorbed/bound water on CNF fibrils which was present in all samples CNF + CMC samples and pure
CNF(Eyholzer et al. 2010; Rosa et al. 2010; Carrillo et al. 2018).

As shown in Fig. 7b, treatment with CDI lead to prominent absorption peaks located at 1754 cm™',1716
cm™1,1639cm™7, 1549 cm™7, 1448 cm™ ', 1247 cm™ ', and 1033 cm™ . The appearance of these peaks
could be understood through two possible reaction pathways between carbodiimides and CMC's
protonated carboxylates, both of which start with the formation of unstable O-acyl urea as a reaction
intermediate. The first reaction route leads to the formation of stable N-acyl urea linkages formed from
the rearrangement of O-acyl urea(Hesselmans et al. 2006; Posthumus et al. 2007). The formation of new
N-acyl urea linkages between the adsorbed CMC repeat units can then possibly explain the observed
1639 cm™ ' (C = O stretching, CONH) and 1549 cm™ " peak (N-H bending)(Posthumus et al. 2007; Derksen
2017). However, because these peaks were also present in the spectra for pure CDI cured at 70°C (shown

v the dotted vertical lines in Fia. 7b). thev could simply originate from the added presence of the resin in
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the CNF + CMC system. The second CDI-carboxylic acid reaction route leads to the formation of
anhydride linkages and urea as byproduct from the reaction between O-acyl urea and a additionally
available carboxylic acid(Posthumus et al. 2007). The formation of anhydride linkages can then possibly
explain the observed strong 1033 cm™ ! peak (CO-O-CO stretching) and the 1754 cm™ peak (C=0
stretching), which were not present in the pure CDI spectra (shown by the dashed lines in Fig. 7b), while
the 1448 cm™ ' (N-C-N asymmetric stretching) and the 1247 cm™ ! peak (C-N stretching, amine) can be
linked to the urea byproduct(Piasek Z. and Urbanski T. 1962; Lu et al. 2016). A schematic of the possible
anhydride linkages formed between CNF fibrils with adsorbed CMC is shown in Fig. 8b(Posthumus et al.
2007).

There is also the possibility that ester linkages were formed between CMC units through a subsequent
reaction between anhydride linkages and a nucleophile like that of a hydroxyl from either CMC or CNF
leading to intra- or inter-molecular linkages which could also explain the appearance of the 1754 cm™"
peak/shoulder (C = O stretching, COOC) which was not present for the pure CDI compound (see dashed
line in Fig. 7b)(Posthumus et al. 2007; Mojarradi 2011). The peak observed at 1716 cm™' (C=0
stretching) could belong to carboxylic acids which were not converted during the CDI reaction. It is
important to note that both reaction routes can occur simultaneously and the ratio between N-acyl urea
and anhydride/urea has been reported to be dependent on the mobility of the reactive groups and ratio of
concentration between carbodiimide and carboxyl groups(Posthumus et al. 2007). Additionally, similar to
treatment with HC, the lack of the 1592 cm™ " peak for either CDI 25°C and CDI 70°C points to a possible
consumption of the (COO™) groups for the formation of N-acyl urea, anhydride, and ester linkages as well
as the possible protonation of the carboxylates due to the low pH at treatment (0.1 M HCI). Although both
CDI25°C and CDI 70°C appeared to contain the same major peaks in the 1000 cm™" to 1800 cm™ ! region,
the disappearance of the 2117 cm™ " peak (assigned to the -N = C = N- stretching vibration of
carbodiimides(Pham and Winnik 2006)) shown in Figure S17, confirmed that a higher curing temperature
(70°C) was necessary for complete CDI resin reaction/activation. Hence, the lack of complete CDI
activation could possibly explain the much higher turbidity values observed for the CDI treatment cured at
25°C (27.6 NTU) when compared to the CDI treatment cured at 70°C (3.3 NTU) as shown in Fig. 5b.

Treatment with PAE, shown in Fig. 7c, revealed amide | and amide Il peaks at 1641 cm™ " (C = O stretching,
CONH) and 1546 cm™! (N-H bending), respectively. These were also present in the spectra for pure PAE
cured at 85°C (see vertical dotted lines in Fig. 7c and Fig. 8c for the backbone structure) and are likely due
to the added presence of the resin in the CNF + CMC system rather than the formation of new amide
linkages between CMC units. However, carbonyl stretching vibrations of ester linkages (COOC) were
observed at two different adsorption bands, one for PAE treated CNF + CMC (1742 cm™ ', dashed line) and
one for pure PAE cured at 85°C (1732 cm™ ', dotted line). For PAE treated CNF + CMC, esterification has
been reported to be the primary crosslinking mechanism behind the wet strength development or
improvement in other (CO0~) containing nanocellulose systems like that of TEMPO oxidized CNF and

cellulose ethers like CMC(Obokata and Isogai 2007; Siqueira et al. 2015; Sharma and Deng 2016; Yang et
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al. 2017). The ester bonds are formed from the thermally induced reaction between (COO™) and the
azetidinium groups in the PAE resin(Siqueira et al. 2015). A schematic of the possible ester linkages
between CNF fibrils with adsorbed CMC is shown in Fig. 8c(Yang et al. 2018). On the other hand, pure PAE
has been reported to crosslink with itself forming ester linkages though its tail end carboxylates or, as a
secondary crosslinking reaction, form 2-propanol linkages between the azetidinium groups on its
backbone(Obokata and Isogai 2007; Chattopadhyay et al. 2013; Siqueira 2014). Hence, PAE esterification
with CMC and self-crosslinking could possibly explain the shift or appearance of the two ester absorption
bands as shown in Fig. 7c. It is important to note that while HCl and CDI treatment may have led to
protonation of CMC's carboxylate groups, treatment with PAE or PAME did not require a low pH and hence
the peaks observed are likely ester carbonyl stretching vibrations. When the two cure temperatures (25°C
and 85°C) are compared, the ester band (1742 cm™) is almost not present for the 25°C cured sample
possibly due to a reduced number of linkages formed, hence it was much easier for CNF + CMC to
redisperse as seen in the higher turbidity values (see Fig. 5b, 23.9 NTU for 25°C verses 17.7 NTU for
85°C).

As shown in Fig. 7d, a similar spectrum to the PAE treatment was observed for treatment with PAME.
Again, the amide peaks simply confirmed the presence of the PAME resin in the CNF + CMC system as
these were also present in the pure PAME cured at 85°C spectra (dotted lines). Similar to PAE, two
different absorptions bands for carbonyl stretching of esters were observed, one at 1742 cm™ (dashed
line) for PAME treated CNF + CMC and one at 1732 cm™ ! (dotted line) for pure PAME cured at 85°C. This
is possibly due to the fact that both resin systems (PAE and PAmME) can react with the same functional
groups (carboxylates, hydroxyls, thiols, and amines) which led to identical crosslinking linkages. Perhaps
the only difference between the two resin spectra (PAE verses PAmME) is the lower peak intensities
observed for PAME. However, the performance of PAME was superior in terms of redispersion
suppression to that of PAE, as observed in Fig. 5b. The reason for this is unknown but could be linked to
the high cationic charge of PAmME which might have allowed for the resin to interact more strongly with
the exposed (COO~) groups in CMC or other slightly negative charges on the surface of CNF fibrils as well
as go into the nanopores between fibrils(Yang et al. 2017). Furthermore, it is important to note that unlike
all other treatments, the carboxylate peak (1592 cm™ ') was not consumed significantly for either cure
temperature (25°C and 85°C). When the two cure temperatures are compared for treatment with PAmME,
the intensity for the 1732 cm™ peak for a cure temperature of 25°C were of weaker intensity when
compared to the spectra for 85°C, which might explain the much higher turbidity value of 21.7 NTU when
compared to 3.9 NTU, respectively (see Fig. 5b).
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Table 2
Peak intensity normalized by the invariant peak intensity at 1024 cm™".

Treatment 1033/1024 1549/1024 1591/1024 1641/1024 1731/1024 1754/1024
type and (co-0-co (Amide I, (CO0" (Amidel, C (C=0 (C=0
cure stretch, N-H bend, asymmetric = O stretch, stretch, stretch,
temperature  anhydride) = CONH) stretch) CONHorH-  COOC or COOC or
(°C) O stretch) COOH) CO-0-CO)
HCI 70°C 0.996 0.045 0.058 0.118 0.186 0.138
HCI 25°C 0.988 0.066 0.080 0.133 0.188 0.147
CDI170°C 1.082 0.336 0.112 0.278 0.203 0.124
CDI 25°C 1.018 0.109 0.071 0.141 0.113 0.084
PAE 85°C 1.024 0.323 0.226 0.413 0.112 0.100
PAE 25°C 1.018 0.245 0.194 0.316 0.073 0.064
PAmME 85°C 1.021 0.087 0.151 0.139 0.076 0.074
PAME 25°C 1.018 0.095 0.167 0.153 0.065 0.061
Pure CNF 1.003 0.027 0.036 0.056 0.027 0.026
Pure CMC 0.996 0.338 0.877 0.299 0.081 0.084
Untreated 0.982 0.079 0.182 0.129 0.057 0.054
CNF +CMC

Table 2 summarizes the FTIR results shown in Fig. 7 where the intensity of the main peaks of interest
(1033cm™1,1549 cm™",1591 cm™ 7, 1641 cm™",1731 cm™ ', and 1754 cm™ ') was normalized by that of
the intensity of the invariant 1024 cm™" peak assigned to the C-O stretching in cellulose(Colom et al.
2003; Lionetto et al. 2012). Overall, due to the numerous different reaction routes, treatment with CDI
could have led to the formation of ester, N-acyl urea, anhydride, or all of the above linkages which made it
a very effective treatment for the setting of CNF + CMC. PAmE was an equally effective setting treatment
possibly due to the formation of ester linkages and, unlike PAE, had a high cationic charge which might
have improved its interaction with CMC's carboxylate groups. However, both of these treatments were
only effective when cured at higher temperatures (70°C and 85°C, respectively). On the other hand, HCI
was effective even when cured at room temperature (25°C). Lastly, PAE was the least effective setting
treatment for CNF + CMC regardless of the curing temperature.

Water Uptake of Treated CNF + CMC

Water uptake of the differently treated CNF + CMC with a D.S. of 0.7 agreed with both the observed
turbidity behavior and the possibly newly formed linkages detected through FTIR. For example, the best
performing setting treatments of HCl and CDI (both cured at 70°C) absorbed on average only 20.1+0.19

%.and 175+ 0.58 % of their weiaht in water respectively. PAE and PAmME treated CNF + CMC (both cured
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at 85°C) absorbed 41.6 +0.32 % and 59.7 + 1.1 % of their weight in water, respectively. The higher water
uptake for the PAE and PAmME treated CNF + CMC led to a much more flexible structure which could, in
turn, be more susceptible to redispersion by mechanical stirring (i.e., softer structure). On the other hand,
HCI and CDI treated materials were much more rigid and possibly less susceptible to redispersion by
stirring. The flexibility of the treated CNF + CMC materials is qualitatively shown in Figure S18. Unlike HCI
and CDI, hydrated PAE and PAmME treated CNF + CMC cord segments could be folded onto itself without
fracturing into two pieces.

Ramifications of efforts

More broadly, the results obtained show that the redispersion and setting behavior of CNF with adsorbed
CMC can be controlled through different chemical treatments. Industrially, redispersion grants the ability
to transport CNF in a dry state, thus providing a significant reduction in weight and transportation cost.
On the other hand, semi-permanent setting of CNF + CMC systems allows for CNF products (e.g., sheets,
cups, lids, clamshells, etc.) to retain their shape after being processed while at the same time reducing
their susceptibility to high humidity conditions, and hence extending the life of use and expanding their
possible applications. Furthermore, bulk processing of CNF + CMC through conventional polymer
processing equipment like a Banbury high-shear mixer, a single-screw extruder, and a commercial
pelletizer takes advantage of the already developed polymer melt-processing industry and reduces the
initial capital investment destined for new processing equipment.

Conclusion

Highly loaded CNF+CMC pastes (~18 wt.%) were prepared and continuously processed into cord using a
single-screw extruder. Output rates of up to 0.25 + 0.072 kg/h (dry) and nozzle speeds of up to 7.68
2.22 m/min were possible with the current set up. Thus, proving to be a successful bulk processing
technique for highly loaded CNF+CMC systems. Zeta potential of never dried and dilute CNF+CMC
suspensions showed a change in surface charge from -36.8 mV for pure CNF to -59.3 mV for CNF+CMC
(D.S. = 0.7). Titration of the CNF+CMC suspensions with NaOH revealed the presence of weak acid
functionalities attributed to the adsorbed CMC's carboxylic acids and showed an increase in surface
concentration from 0.094 + 0.005 mmol/g COOH for pure CNF t0 0.166 + 0.035 mmol/g COOH for
CNF+CMC (D.S. = 0.9). Due to the adsorbed CMC on the CNF fibrils, dried-untreated CNF+CMC could be
completely redispersed in water at room temperature conditions and allowed for complete remixing and
re-extrusion back into a cord. Turbidity measurements confirmed that dried-untreated CNF+CMC fully
redispersed, reaching values of ~29 NTU when compared to never-dried CNF+CMC (~30 NTU). On the
other hand, chemical treatment with HCI, CDI, PAE, and PAmE almost entirely suppressed the dispersibility
of dried-untreated CNF+CMC achieving turbidity values of less than 1 NTU. Overall, the dispersibility
observed for dried untreated and treated CNF+CMC was not dependent on the degree of substitution of
CMC. Subsequently, dispersion in a strongly alkaline solution (0.1 M NaOH) showed that HCI treatment
was effective regardless of the curing temperature achieving low turbidity values (6.7 NTU for 25 °C and

O NTI1far 70 °C) while CDIand PAmE treatments were effective only at the higher curing temperatures
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(85 °C and 70 °C) achieving turbidity values of ~3 NTU and ~4 NTU, respectively. Treatment with PAE was
the least effective, hence relatively high turbidity values were observed (23.9 NTU for 25 °C and 17.7 NTU
for 85 °C) when compared to the other chemical treatments at either cure temperatures. Depending on the
chemical treatment used, FTIR analysis of the treated CNF+CMC samples revealed the presence of
possible ester, N-acyl urea, and anhydride linkages which could possibly explain the suppressed
redispersion behavior. Lastly, water uptake of the differently treated and dried CNF+CMC materials agreed
with both turbidity and FTIR results.
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Figure 1

Single-screw filament/cord extrusion of a CNF+CMC paste (at ~18 wt.%) through a 2 mm nozzle (a),
collected CNF+CMC wet cord extrudate on a cardboard roll (b), oven dried CNF+CMC cord (c), and

pelletized cord (d).
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Figure 2

Surface morphology of the extruded and dried untreated CNF+CMC cords with a varying degree of CMC
carboxymethylation or substitution of 0.7 (a), 0.9 (b), and 1.2 (c).
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Figure 3

Pelletized untreated CNF+CMC pellets at different stages of the rehydration process starting completely
dry (a), ~30 s after adding water (b), 20 min after adding water (c), after being re-mixed in the Banbury
shear mixer (d), and re-extruded into a filament/cord (e) and oven dried at 35 °C on a cardboard roll (f).
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Figure 4

Dispersed never-dried CNF+CMC (a), redispersed dried-untreated CNF+CMC (b), redispersed HCI treated
CNF+CMC (c), and redispersed PAE treated CNF+CMC (d) all in water after 24 hours of mechanical
stirring and with a D.S. of 0.7. The turbidity response of treated and untreated CNF+CMC materials each
prepared with CMC with three different degrees of substitution (D.S. = 0.7, 0.9, and 1.2) (e). Untreated, PE],
CaCl2, HCl, and CDI treated samples were dried at 70 °C while PAE, PAmME treated samples were dried at
85 °C. The CNF+CMC pellets were stirrer for 24 h in water at 25 °C before turbidity was collected and the
pictures were taken. For each treatment type and D.S., a freshly prepared suspension was analyzed. Six
measurements were carried out per sample. The mean and standard deviation error bars are displayed,
respectively.
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Figure 5

Redispersion behavior at different points in time for CNF+CMC treated with PAE cured at 85°Cin 0.1 M
NaOH (a) and turbidity response of different treated and untreated CNF+CMC materials in 0.1 M NaOH at
two curing temperatures(b). The suspensions were stirrer for 24 h before turbidity was collected. For each
treatment type, two curing temperatures were evaluated while the CMC's D.S. remained constant at 0.7. A
freshly prepared suspension was analyzed for each measurement. Six measurements were carried out
per sample. The mean and standard deviation error bars are displayed, respectively.
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Figure 6

Optical micrographs of never-dried pure CNF dispersed in water (a), and dried-untreated CNF+CMC with a
D.S. of 0.7 redispersed in water (b). Optical micrographs of CNF+CMC treated with CDI cured at 70 °C (c),
CNF+CMC treated with HCI cured at 70 °C (d), CNF+CMC treated with PAE cured at 85 °C (e), and
CNF+CMC treated with PAmE cured at 85 °C (f) all redispersed in 0.1 M NaOH and with a CMC D.S. of 0.7.
The black scale bars in the top right have a length of 400 pm. Expanded (i.e., lower magnification) optical
micrographs of the same dispersions are shown in Figure S11 and Figure S12.
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Figure 7

FTIR analysis of CNF+CMC treated with; HCI cured at 25 °C and 70 °C (a), CDI cured at 25 °C and 70 °C
(b), PAE cured at 25 °C and 85 °C (c), and PAME cured at 25 °C and 85 °C (d) all with a CMC D.S. of 0.7.
The control groups of pure CNF, pure CMC powder, and untreated CNF+CMC are also shown on the
respective plots. The samples were conditioned under vacuum for 24 h at room temperature before
testing. All the spectra shown were baseline corrected and 20 scans were collected. All intensities were all
normalized by the invariant cellulose peak intensity at 1024 cm-1. Dashed vertical lines mark the peak
locations found in the treated CNF+CMC spectra while the dotted vertical lines mark peaks found in the
pure compound spectra, respectively.
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Figure 8

Schematic of CNF with adsorbed CMC through hydrogen bonding with possible ester linkages (circled in
green) formed due to treatment with HCI (a), anhydride linkages (circled in red) due to treatment with CDI
(b), and ester linkages (circled in green) formed due to treatment with PAE and PAmME (c). Note that amide
groups (circled in blue) are present in the PAE and PAME backbone. All the schematics shows CMC with a
D.S. of 1.
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