Aguayo MG, Pérez AF, Reyes G, et al (2018) Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the Kraft Pulping process. Polymers (Basel) 10:. https://doi.org/10.3390/polym10101145
Assis CA de, Iglesias MC, Bilodeau M, et al (2018) Cellulose micro- and nanofibrils (CMNF) manufacturing - financial and risk assessment. Biofuels, Bioprod Biorefining 12:251–264. https://doi.org/10.1002/bbb.1835
Axelsson L, Franzén M, Ostwald M, et al (2012) Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioprod Biorefining 6:246–256. https://doi.org/10.1002/bbb
Beghello L, Lindström T (1998) The influence of carboxymethylation on the fiber flocculation process. Nord Pulp Pap Res J 13:269–273
Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358. https://doi.org/10.1007/s10570-014-0452-7
Cai Y, Geng L, Chen S, et al (2020) Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness. ACS Appl Mater Interfaces 12:32090–32098. https://doi.org/10.1021/acsami.0c04504
Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–1029. https://doi.org/10.1007/s10570-018-1653-2
Chattopadhyay S, Keul H, Moeller M (2013) Synthesis of azetidinium-functionalized polymers using a piperazine based coupler. Macromolecules 46:638–646. https://doi.org/10.1021/ma302008s
Clarkson CM, El Awad Azrak SM, Chowdhury R, et al (2019) Melt Spinning of Cellulose Nanofibril/Polylactic Acid (CNF/PLA) Composite Fibers For High Stiffness. ACS Appl Polym Mater 1:160–168. https://doi.org/10.1021/acsapm.8b00030
Clarkson CM, El Awad Azrak SM, Forti ES, et al (2020a) Recent Developments in Cellulose Nanomaterial Composites. Adv. Mater.
Clarkson CM, El Awad Azrak SM, Schueneman GT, et al (2020b) Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer. Polymer (Guildf) 187:122101. https://doi.org/10.1016/j.polymer.2019.122101
Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80:543–549. https://doi.org/10.1016/S0141-3910(03)00051-X
Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: Binding mechanism, pH effects, and adsorption kinetics. Langmuir 24:8036–8044. https://doi.org/10.1021/la800490t
Derksen AJ (2017) Polycarbodiimides as classification-free and easy to use crosslinkers for water-based coatings. Waalwijk, The Netherlands
Desmaisons J, Boutonnet E, Rueff M, et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032
Duker E, Brännvall E, Lindström T (2007) The effects of CMC attachment onto industrial and laboratory-cooked pulps. Nord Pulp Pap Res J 22:356–363. https://doi.org/10.3183/npprj-2007-22-03-p356-363
El Awad Azrak SM, Clarkson CM, Moon RJ, et al (2019) Wet-Stacking Lamination of Multilayer Mechanically Fibrillated Cellulose Nanofibril (CNF) Sheets with Increased Mechanical Performance for Use in High-Strength and Lightweight Structural and Packaging Applications. ACS Appl Polym Mater 1:2525–2534. https://doi.org/10.1021/acsapm.9b00635
El Awad Azrak SM, Costakis WJ, Moon RJ, et al (2020) Continuous Processing of Cellulose Nanofibril Sheets Through Conventional Single-Screw Extrusion. ACS Appl Polym Mater 2:3365–3377. https://doi.org/10.1021/acsapm.0c00477
Eyholzer C, Bordeanu N, Lopez-Suevos F, et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. https://doi.org/10.1007/s10570-009-9372-3
Feddersen RL, Thorp SN (2012) Sodium Carboxymethylcellulose. In: Industrial Gums: Polysaccharides and Their Derivatives: Third Edition, Third Edit. ACADEMIC PRESS, INC., pp 537–578
Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification - Its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. https://doi.org/10.1007/s00226-003-0216-2
Foster EJ, Moon RJ, Agarwal UP, et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://doi.org/10.1039/c6cs00895j
Håkansson KMO, Fall AB, Lundell F, et al (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:. https://doi.org/10.1038/ncomms5018
Hesselmans LCJ, Derksen AJ, Van Den Goorbergh JAM (2006) Polycarbodiimide crosslinkers. Prog Org Coatings 55:142–148. https://doi.org/10.1016/j.porgcoat.2005.08.011
Hospodarova V, Singovszka E, Stevulova N (2018) Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am J Anal Chem 09:303–310. https://doi.org/10.4236/ajac.2018.96023
Jiang F, Hsieh Y Lo (2016) Self-assembling of TEMPO Oxidized Cellulose Nanofibrils As Affected by Protonation of Surface Carboxyls and Drying Methods. ACS Sustain Chem Eng 4:1041–1049. https://doi.org/10.1021/acssuschemeng.5b01123
Kafy A, Kim HC, Zhai L, et al (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-17713-3
Kaur G, Uisan K, Ong KL, Ki Lin CS (2018) Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a circular economy. Curr Opin Green Sustain Chem 9:30–39. https://doi.org/10.1016/j.cogsc.2017.11.003
Kim HC, Kim D, Lee JY, et al (2019) Effect of Wet Spinning and Stretching to Enhance Mechanical Properties of Cellulose Nanofiber Filament. Int J Precis Eng Manuf - Green Technol 6:567–575. https://doi.org/10.1007/s40684-019-00070-z
Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580. https://doi.org/10.1007/s10570-008-9200-1
Liimatainen H, Haavisto S, Haapala A, Niinimäki J (2009) Influence of adsorbed and dissolved carboxymethyl cellulose on fibre suspension dispersing, dewaterability, and fines retention. BioResources 4:321–340. https://doi.org/10.15376/biores.4.1.321-340
Lin X, Li Y, Chen Z, et al (2013) Synthesis, characterization and electrospinning of new thermoplastic carboxymethyl cellulose (TCMC). Chem Eng J 215–216:709–720. https://doi.org/10.1016/j.cej.2012.10.089
Lionetto F, Del Sole R, Cannoletta D, et al (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials (Basel) 5:1910–1922. https://doi.org/10.3390/ma5101910
Liu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27:8718–8728. https://doi.org/10.1021/la200628a
Lu P, Zhang Y, Jia C, et al (2016) Use of polyurea from urea for coating of urea granules. Springerplus 5:. https://doi.org/10.1186/s40064-016-2120-x
Lundahl MJ, Klar V, Wang L, et al (2017) Spinning of cellulose nanofibrils into filaments: A review. Ind Eng Chem Res 56:8–19. https://doi.org/10.1021/acs.iecr.6b04010
Mather RR, Wardman RH (2011) The Chemistry of Textile Fibres. Royal Society of Chemistry
Mojarradi H (2011) Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation. Uppsala University
Moon RJ, Martini A, Nairn J, et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b
Moon RJ, Schueneman GT, Simonsen J (2016) Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM 68:2383–2394. https://doi.org/10.1007/s11837-016-2018-7
Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10:2360–2375. https://doi.org/10.15376/biores.10.2.2360-2375
Müller Y, Tot I, Potthast A, et al (2010) The impact of esterification reactions on physical properties of cellulose thin films. Soft Matter 6:3680–3684. https://doi.org/10.1039/c0sm00005a
Murray JCF (2009) Cellulosics. In: Handbook of Hydrocolloids: Second Edition. pp 710–723
Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surfaces A Physicochem Eng Asp 302:525–531. https://doi.org/10.1016/j.colsurfa.2007.03.025
Onyianta AJ, Dorris M, Williams RL (2018) Aqueous morpholine pre-treatment in cellulose nanofibril (CNF) production: comparison with carboxymethylation and TEMPO oxidisation pre-treatment methods. Cellulose 25:1047–1064. https://doi.org/10.1007/s10570-017-1631-0
Pantze A, Karlsson O, Westermark U (2008) Esterification of carboxylic acids on cellulosic material: Solid state reactions. Holzforschung 62:136–141. https://doi.org/10.1515/HF.2008.027
Pham HH, Winnik MA (2006) Polymer interdiffusion vs cross-linking in carboxylic acid-carbodiimide latex films. Effect of annealing temperature, reactive group concentration, and carbodiimide substituent. Macromolecules 39:1425–1435. https://doi.org/10.1021/ma051685w
Piasek Z., Urbanski T. (1962) The Infrared Absorption Spectrum and Structure of Urea. Bul L’ Acad Pol Des Sci X:113–120
Posthumus W, Derksen AJ, van den Goorbergh JAM, Hesselmans LCJ (2007) Crosslinking by polycarbodiimides. Prog Org Coatings 58:231–236. https://doi.org/10.1016/j.porgcoat.2006.09.031
Rol F, Vergnes B, El Kissi N, Bras J (2020) Nanocellulose Production by Twin-Screw Extrusion: Simulation of the Screw Profile to Increase the Productivity. ACS Sustain Chem Eng 8:50–59. https://doi.org/10.1021/acssuschemeng.9b01913
Rosa MF, Medeiros ES, Malmonge JA, et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059
Samaniuk JR, Scott CT, Root TW, Klingenberg DJ (2012) Rheological modification of corn stover biomass at high solids concentrations. J Rheol (N Y N Y) 56:649–665. https://doi.org/10.1122/1.3702101
Samaniuk JR, Scott CT, Root TW, Klingenberg DJ (2015) Effects of process variables on the yield stress of rheologically modified biomass. Rheol Acta 54:941–949. https://doi.org/10.1007/s00397-015-0884-5
Schmid CF, Klingenberg DJ (2000) Properties of Fiber Flocs with Frictional and Attractive Interfiber Forces. J Colloid Interface Sci 226:136–144. https://doi.org/10.1006/jcis.2000.6803
Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. https://doi.org/10.1021/bm100490s
Sharma S, Deng Y (2016) Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind Eng Chem Res 55:11467–11474. https://doi.org/10.1021/acs.iecr.6b02910
Shogren R, Wood D, Orts W, Glenn G (2019) Plant-based materials and transitioning to a circular economy. Sustain Prod Consum 19:194–215. https://doi.org/10.1016/j.spc.2019.04.007
Siqueira EJ (2014) Polyamideamine Epichlorohydrin-Based Papers: Mechanisms of Wet Strength Development and Paper Repulping. Universite de Grenoble
Siqueira EJ, Salon M-CB, Belgacem MN, Mauret E (2015) Carboxymethylcellulose (CMC) as a model compound of cellulose fibers and polyamideamine epichlorohydrin (PAE)-CMC interactions as a model of PAE-fibers interactions of PAE-based wet strength papers. J Appl Polym Sci 132:n/a-n/a. https://doi.org/10.1002/app.42144
Uetani K, Yano H (2012) Zeta potential time dependence reveals the swelling dynamics of wood cellulose nanofibrils. Langmuir 28:818–827. https://doi.org/10.1021/la203404g
Watanabe M, Gondo T, Kitao O (2004) Advanced wet-end system with carboxymethyl-cellulose. Tappi 3:15–19
Williams PA, Phillips GO (2009) Introduction to food hydrocolloids. In: Handbook of Hydrocolloids: Second Edition. Woodhead Publishing Limited, pp 1–22
Yan H, Lindström T, Christiernin M (2006) Some ways to decrease fibre suspension flocculation and improve sheet formation. Nord Pulp Pap Res J 21:36–43
Yang D, Diflavio JL, Gustafsson E, Pelton R (2018) Wet-peel: A tool for comparing wet-strength resins. Nord Pulp Pap Res J 33:632–646. https://doi.org/10.1515/npprj-2018-0013
Yang W, Bian H, Jiao L, et al (2017) High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film: Via cross-linking with poly-amide epichlorohydrin resin. RSC Adv 7:31567–31573. https://doi.org/10.1039/c7ra05009g
Zhang Y, Nypelö T, Salas C, et al (2013) Cellulose nanofibrils: From strong materials to bioactive surfaces. J Renew Mater 1:195–211. https://doi.org/10.7569/JRM.2013.634115