
Hybrid simplicial-randomized approximate
stochastic dynamic programming for multireservoir
optimization
Luckny Zephyr ( lzephyr@laurentian.ca)

Laurentian University
Bernard F. Lamond

Université Laval
Pascal Lang

Université Laval

Research Article

Keywords: Reservoir optimization, stochastic dynamic programming, simplicial-randomized
approximation, piecewise linear approximation

Posted Date: December 28th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3765572/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3765572/v1
mailto:lzephyr@laurentian.ca
https://doi.org/10.21203/rs.3.rs-3765572/v1
https://creativecommons.org/licenses/by/4.0/

Hybrid simplicial-randomized approximate stochastic1

dynamic programming for multireservoir optimization2

Luckny Zephyr∗ Bernard F. Lamond† Pascal Lang‡
3

December 17, 20234

Abstract5

We revisit an approximate stochastic dynamic programming method that we proposed6

earlier for the optimization of multireservoir problems. The method exploits the con-7

vexity properties of the value function to sample the reservoir level space based on the8

local curvature of the value function, which is estimated by the difference between a9

lower and an upper bounds (error bound). Unlike the previous approach where the10

state space was exhaustively partitioned into full dimensional simplices whose vertices11

formed a discrete grid over which the value function was approximated, here we propose12

instead a new randomized approach for selecting the grid points from a small number13

of randomly sampled simplices from which an error bound is estimated. Results of nu-14

merical experiments on three literature test problems and simulated midterm reservoir15

optimization problems illustrate the advantages of the randomized approach which can16

solve models of higher dimensions than with the exhausitive approach.17

Key Words: Reservoir optimization; stochastic dynamic programming; simplicial-randomized18

approximation; piecewise linear approximation19

∗Faculty of Management, Laurentian University, Sudbury (Ontario), Canada P3E 2C6. Email:

LZephyr@laurentienne.ca.
†Département Opérations et systèmes de décision, Université Laval, Québec (Québec), Canada G1V 0A6.

Email: Bernard.Lamond@fsa.ulaval.ca.
‡Département Opérations et systèmes de décision, Université Laval, Québec (Québec), Canada G1V 0A6.

Email: pascal.lang.1@ulaval.ca.

1

1 Introduction20

This work deals with a mid-term reservoir optimization problem over a Ąnite planning hori-21

zon. In each period, water must be released from the reservoirs to produce electricity.22

However, these decisions are constrained by not only the availability of water, but also the23

physical limits of the turbines, and bounds on the level of the reservoirs, that may be set24

by legal requirements. This problem is rightfully acknowledged to be difficult, in particular25

due to the uncertainty associated with the natural inĆows to the reservoirs, e.g., snow-melt,26

snow water equivalent.27

Thus, mid-term reservoir optimization is inherently a multiperiod stochastic problem. As28

a result, the problem is often cast as a multiperiod stochastic program or formulated under29

the framework of stochastic dynamic programming. Numerous meta-heuristic approaches30

have also been proposed for reservoir optimization problems, e.g., [3]. Two recent systematic31

reviews of such methods are available in [4, 5].32

When stochastic programming is employed to solve the problem, the random variables,33

e.g., natural inĆows, and demand for energy, are discretized via a so-called scenario tree,34

which easily becomes intractable if a detailed representation of the stochastic variables is35

needed. This issue is often dealt with through decomposition strategies, such as BendersŠ36

decomposition, e.g., [10, 52], the progressive hedging algorithm, e.g., [28, 9, 62], in which37

the so-called non-anticipativity constraints are dualized in the objective function, stochastic38

dynamic programming (SDP) [53, 55], scenario tree reduction strategies [23, 59], model39

predictive control, e.g., [44, 57, 43], etc.40

Being a sequential decision-making problem, the mid-term optimization of reservoir lends41

itself naturally to stochastic dynamic programming (SDP). Indeed, in the groundbreaking42

theory of dynamic programming presented in [6], Bellman decomposed a multi-stage decision43

process stagewise in a coordinated manner. Thus, it is no surprise that DP quickly found a44

fertile ground for reservoir optimization applications [35].45

The solution of SP or SDP reservoir management problems broadly consists of two main46

steps, namely (i) the calculation of an expectation; and (ii) an optimization step, or vice-47

versa. In models for the mid- or long-term planning of hydroelectric production, the opti-48

2

mization step often has to deal with nonlinear objective functions, due to, among others,49

nonlinear production functions [11]. To take advantage of the widespread availability of lin-50

ear programming solvers, the combined power response curve of the turbines at a power plant51

can often be approximated reasonably well by a concave, piecewise linear function of tur-52

bined water Ćow, even though the response curves of the individual turbines may be highly53

nonlinear. For instance, this strategy is used by companies like Hydro-Quebec [9] and Rio54

Tinto [19] (4-reservoir system) to approximate production functions; similarly in studies on55

the Colombian power network [40] (15-reservoir system), on a “network of hydropower plants56

and irrigated areas in the Nile BasinŤ [29], a network of power plants in southern Brazil [8]57

(4-reservoir system). An immediate consequence of this approximation scheme is that under58

mild assumptions on the terminal value/cost-to-go function, one can easily show that the59

value/cost-to-go functions are concave/convex in the reservoir levels. These ideas are also60

exploited in [63, 64, 65] where an approximate stochastic dynamic programming model of61

a multiperiod, multireservoir hydroelectric system is presented in which the Bellman value62

function is approximated by a piecewise linear function that is evaluated by linear program-63

ming. The piecewise linear approximation is supported by a Ąnite grid of node points (or64

vertices) in the continuous state space where the Bellman function is evaluated at the nodes.65

For other states, the value function is approximated by the best linear interpolation between66

nodes.67

Resorting to SDP to solve reservoir optimization problems poses another technical chal-68

lenge, since in theory an optimization problem has to be solved for each possible state value,69

which is impossible due to the fact that the reservoir level space is continuous. Thus, the70

latter must be discretized or sampled.71

The simplest discretization strategy to approximate our continuous dynamic program72

consists in constructing a uniform grid, obtained as the Cartesian product of same-size and73

Ąxed-spacing grids along each dimension of the reservoir level (state) space. However, this74

approach is impractical, as the complexity of the problem increases exponentially with the75

dimension of the state space, limiting applications to three to four reservoirs. This is known76

in dynamic programming as the curse of dimensionality.77

The above uniform discretization scheme has inspired the development of parsimonious78

3

approaches that select sub-samples of points along each dimension of the state space, and79

then use analytical functions based on multi-linear interpolations, polynomials, cubic splines,80

to approximate the Bellman function [33]. As these techniques did not prove to be a panacea81

against the dimensionality issue, statistical techniques have been employed to sample the82

state space more efficiently. Perhaps, one of the oldest strategies is Latin hypercube, in83

which each dimension of the state space is discretized into p values, and the overall sample84

is chosen so that each uni-dimensional value is selected exactly once. This is a special case85

of orthogonal array with strength d, where d ≤ n, n being the dimension of the state space.86

Under this scheme, each uni-dimensional grid point is chosen exactly a same number of times87

in each possible d−dimensional subspace [16].88

Other sampling techniques resort to some form of Monte Carlo simulation to sample the89

state space in contrast to the discretization strategies used in the above-mentionned schemes.90

For instance, in stochastic dual dynamic programming (SDDP), originally developed for91

reservoir optimization problems in the seminal works [49, 47, 48], the connections between92

SP and SDP, e.g., [53, 55], are exploited to efficiently sample the reservoir level space, based93

on Monte Carlo simulation. Assuming the natural inĆows to be temporally independent,94

SDDP alternates between a backward pass, to build the so-called value/cost-to-go functions,95

and a forward step, to draw a sample of state space values to approximate the value/cost-96

to-go functions in the next backward loop, until a convergence criterion is met.97

On the other hand, quasi-randomized or quasi-Monte Carlo sampling techniques, where98

randomly generated points are replaced with more evenly distributed ones, based on the99

notion of low-discrepancy sequences, are known to enjoy faster convergence rate than ran-100

domized techniques [13, 14]. For further account of reservoir optimization techniques, please101

see [35, 50, 1, 22].102

In [63, 64, 65], we proposed an approximate SDP approach for the mid-term optimization103

of reservoirs. The iterative scheme amounts to partitioning the reservoir level space into a104

Ąnite but potentially large set of simplices in each period of the planning horizon. The105

value function is evaluated at the extreme points of the resulting simplices, and interpolated106

elsewhere. In addition, error bounds are computed for all simplices and, at each iteration,107

a new grid point associated with largest error bound is added to the grid, and the simplex108

4

containing the point is divided into smaller simplices that are appended to the list of existing109

simplices. Thus, in each period, constructing the grid requires to maintain a complete list110

of simplices that spans the whole reservoir level space. Because the number of simplices111

increases fast with the grid size and with the dimension of the state space, this method112

becomes impractical for models with many reservoirs.113

This work is essentially a revisit of the sampling approach presented in [63, 64, 65], in114

which, in each period, we avoid making a list of simplices and randomly sample the reservoir115

level space to select grid points at which the value function is approximated. We resort116

to linear programming to identify the simplex containing a candidate grid point and to117

obtain a local error bound on the approximation of the Bellman function. Then, the global118

error bound is estimated using a statistical model. This is motivated by the computational119

burden of the simplicial scheme, induced by the exponential growth of the number of created120

simplices, which limits applications to dimensions lower than ten, based on our empirical121

observations.122

The remainder of the paper is organized as follows. We provide a detailed description123

of the problem under analysis in Section 2. Next, we discuss a simplicial approximate124

stochastic dynamic programming (ASDP) scheme for the problem in Section 3, followed by125

a hybrid Monte Carlo simplicial ASDP proposal in Section 4. Results of extensive numerical126

experiments are reported in Section 5. The paper ends with concluding remarks in Section127

6.128

2 Reservoir optimization problem129

A hydropower system often comprises power plants that may or may not be associated130

with reservoirs. Reservoir optimization problems are typically divided into long-, mid-, and131

short-term, depending on, among other factors, the length of the planning horizon [51]. In132

a mid-term problem, which is of interest to us, the time span is typically between one and133

Ąve years [58], divided into daily, weekly, or monthly time steps [65].134

In this work, we consider a mid-term reservoir optimization problem over a Ąnite horizon135

of T periods. At each period t, the operator of the system wants to Ąnd the release, ut, and136

5

storage, st, decisions that maximize the expected total energy production. Without loss of137

generality, we assume each plant to be associated with a reservoir, and the random natural138

inĆows to the reservoirs are denoted q̃t.139

At each period t, water released from each reservoir i = 1, · · · , n, is limited by the140

turbine capacity, u, to prevent physical damage. Similarly, due to legal and environmental141

considerations, at each time period, the level of the reservoirs must be kept between lower142

and upper limits, s, and s, respectively.143

In addition, we assume the topology of the system to form an arborescence, i.e., a com-144

bination of reservoirs in series and in parallel. Water released upstream are absorbed by145

the immediate successors (reservoirs) at the same period, and in case of overĆow, excess of146

water from upstream reservoirs, yt, are absorbed by immediate successors or spilled out of147

the system.148

At each period t, the state of the system is governed by the standard mass balance149

equation:150

st = st−1 − But − Cyt + q̃t, (1)

where entries of the square connectivity matrix, Bij, are 1 for i = j, -1 if the water released151

from reservoir j is routed to reservoir i, and 0, otherwise. The elements of the square matrix152

C similarly deĄne the routing of the spilled water.153

As in [63], for each plant i = 1, · · · , n, we assume the production function pit to nonlin-154

early depend on the release and the storage at the beginning of the period.155

A typical multi-period mid-term reservoir optimization problem reads:

max
ut,yt

Eq̃t

[

T
∑

t=1

n
∑

i=1

pit(uit) + VT +1(sT +1)

]

(2)

s.t., for t = 1, . . . , T : (3)

st+1 = st − But − Cyt + q̃t (4)

s ≤ st+1 ≤ s (5)

0 ≤ ut ≤ u (6)

yt ≥ 0, (7)

where, E is the expectation operator, and VT +1(sT +1), assumed to be a concave function,156

6

captures the terminal value of the stored water in the system.157

At each time period t, assume the operator of the system observes the level of the reser-

voirs, the realization qt of the random natural inĆows, q̃t, and decides on the water released,

spilled and stored to Ąnd the best trade-off between utilizing the available water for cur-

rent production needs and leaving it for the future. Under this setting, and by BellmanŠs

principle of optimality, Problem (2)-(7) can be reformulated as a sequence of coordinated

subproblems, moving backward in time, i.e., for t = T, T − 1, . . . , 1,

Vt (st, qt) := max
ut,yt

{

n
∑

i=1

pit(uit) + Vt+1 (st+1, q̃t+1)

}

(8)

s.t. (4) − (7), (9)

where Vt(·), called value function, measures the value of the stored water from period t158

onward, and Vt+1(·) := Eq̃t+1♣qtVt+1 (sT +1, q̃t+1). As in [63, 64, 65], since the terminal value159

function is concave, we observe that if the production functions are concave, the problem is160

convex and the concavity of the value function Vt(st, ·) propagates backwards.161

Proposition 1. If (i) pit(uit) is concave in uit , and (ii) the support of q̃t is discrete and162

finite, then Vt(st, ·) is concave in st.163

Proof. The feasible domain of Problem (8)-(9) is a polyhedron; since VT +1(sT +1, ·) is concave164

in sT +1, by the concavity of the production function, and the linearity property of the165

expectation operator, it follows that VT (sT , ·) is concave in sT . The concavity property then166

follows by backward induction on t, for t = T − 1, · · · , 1.167

Problem(8)-(9) may be nonlinear, in particular due to the nonlinearity of the production168

functions. Indeed, in practice, production functions are often nonconcave (i) due to head169

effects, i.e, the difference between upstream and downstream reservoir levels; and (ii) because170

the power produced by a plant varies nonlinearly with the water release and the number of171

turbines, whose efficiency may decrease beyond a maximum Ćow rate [65]. In industry, this172

issue is often dealt with by approximating production functions with their concave envelopes173

(e.g., [29, 9, 19, 40]).174

7

As in [64, 65], the nonlinearity hurdle is passed using inner generalized linear program-

ming (GLP) on a support grid to obtain a convex approximation of the problem. For each

plant i, assume that the production function is evaluated over a Ąnite grid of reservoir re-

leases Ut := {uk
i |k ∈ Ki}, constructed in a preprocessing step, where Ki is the set of indices

associated with the discrete releases uk
i , i = 1, . . . , n. Similarly, the expected value function

Vt+1(·) is evaluated over a Ąnite set of states Gt := {s
j
t+1|j ∈ Jt}, where Jt is the set of indices

associated with the discrete storage vectors s
j
t+1, possibly obtained by division of simplices

as explained in Section 3. The following GLP is a linear approximation of Problem (8)-(9):

V̂t(st, qt) := max
ut,yt,λ,µ







n
∑

i=1

∑

k∈Ki

pit(u
k
i)λk

i +
∑

j∈Jt

V̂t+1

(

s
j
t+1, ·

)

µj







(10)

s.t. (4) − (7) (11)

uit −
∑

k∈Ki

λk
i uk

i = 0, i = 1, · · · , n (12)

st+1 −
∑

j∈Jt

µjs
j
t+1 = 0 (13)

∑

k∈Ki

λk
i = 1, i = 1, · · · , n (14)

∑

j∈Jt

µj = 1 (15)

λ, µ ≥ 0 (16)

Note that λ and µ are vectors of convex combination coefficients, as expressed in equations175

(12)-(16). Thus, for each power plant i, in each period, the release is interpolated on the176

discrete release values; similarly the next period storage level is interpolated on the storage177

grid.178

Since the calculation of the expected value is not the focus of this work, we assume the179

natural inĆow process to be Ąnite, and serially independent. As a result, in the numerical180

experiments, in each period, we will use Monte Carlo simulation to generate a Ąnite sample181

of natural inĆows, and the expected value of the approximate value function, V̂t+1(·), will182

be estimated by the sample mean of the V̂t+1(st, qt)Šs. Similarly, at each time period, for183

a given state point sk
t , let π

j
t be a vector of optimal dual prices associated with the mass-184

balance constraints (1), for a given observation q
j
t , j = 1, . . . , J . In the sequel, a vector of185

8

subgradient, g
j
t , will be taken as the sample mean of the π

j
t Šs.186

In closing this section, observe that since (i) Problem (10)-(16) is linear and its objective187

maximized; and (ii) st is in the right hand side of the water-balance constraint (4), therefore188

the GLP is a parametric linear program, so that its optimal value function V̂t(st, qt) is a189

piecewise linear concave function of st.190

3 Simplicial approximate stochastic dynamic program-191

ming192

Despite its theoretical elegance, it is well known that dynamic programming is plagued by193

the so-called curse of dimensionality, in the sense that the computational burden of Problem194

(10)-(16) increases exponentially with the dimension, n, of the reservoir level space St, except195

for rare cases (e.g.,unconstrained linear systems with quadratic production functions), for196

which analytical solutions can be derived easily. As a result, the problem cannot be solved197

for all possible reservoir level vectors; thus, we have to resort to some numerical procedure.198

To tackle the curse of dimensionality, in each time period t, we need to select a sample of199

discrete state vectors Gt :=
{

s
j
t ∈ St, j = 1, 2, . . . , m

}

, t = T, T −1, . . . 1. As discussed earlier,200

popular sampling techniques include Monte Carlo simulation [17, 40, 61, 39, 21], quasi-Monte201

Carlo simulation [13, 2, 31], Latin hypercube [25, 31], orthogonal arrays [24, 15].202

The sampling approach presented in [63, 65, 64], that we revisit in this work, exploits the203

concavity property of the value function in each period to iteratively sample the state space204

based on the curvature of the value function, which is estimated by the difference between205

an upper and a lower bounds. This is the focus of the next two subsections.206

3.1 Simplicial sampling of the reservoir level space207

Our state space is deĄned by the level of the reservoirs, which is conĄned within the hyper-208

rectangle St := {st ∈ IRn | s ≤ st ≤ s}, as deĄned by the box constraint (5). As a result, the209

state space is continuous, and as aforementioned, the approximate value function (10)-(16)210

cannot be evaluated for all possible pairs (st, qt). Therefore, we have to resort to some form211

9

of discretization or sampling of the state space St.212

Under a simplicial approximate stochastic dynamic scheme, the set St is iteratively par-213

titioned into smaller convex subsets, called simplices, and the approximate value function214

(10)-(16) is evaluated at their vertices, or extreme points.215

Simplicial partitioning of convex sets is widespread in the global optimization literature216

(e.g., [27, 66, 46, 45, 32, 56, 7]), and less popular in the Ąeld of dynamic programming (e.g.,217

[65, 64, 63, 30, 60, 54]). Perhaps simplicial partitioning has received a lot of attention in218

global optimization as a simplex is an n-dimensional polyhedron with “the minimal number219

of verticesŤ, at which the function is evaluated [45]. More formally,220

Definition 1. Let S be some set in the Euclidean space IRn, its affine envelope is the set of221

all affine combinations of points in S, or equivalently the smallest affine set that contains S,222

i.e., the set aff S :=
{

∑k
i=1 λix

i | xi ∈ S, i = 1, . . . , k,
∑k

i=1 λi = 1
}

; its convex envelope is223

the set of all convex combinations of points in S, or equivalently, the smallest convex set that224

contains S, i.e., the set conv S :=
{

∑k
i=1 λix

i | xi ∈ S, λi ≥ 0, i = 1, . . . , k,
∑k

i=1 λi = 1
}

.225

Furthermore,226

Definition 2. A closed convex set B ∈ IRn is called a simplex if it is the convex envelope of227

n + 1 affinely independent points s1, s2, . . . , sn+1 in IRn, i.e., B := conv {s1, . . . , sn+1} :=228

{

∑n+1
i=1 λis

i | λi ≥ 0, i = 1, . . . , n + 1,
∑n+1

i=1 λi = 1
}

.229

As examples, a one-dimensional simplex is a line segment, a two-dimensional simplex a230

triangle, and a three-dimensional simplex a tetrahedron.231

Partitioning the hyperrectangular state set St into simplices entails two steps, namely, (i)232

its initial partitioning into simplices; and (ii) the iterative subdivision of existing simplices233

until a prescribed criterion is met. The popular Kuhn triangulation, implemented in this234

work for our benchmark method, partitions St into n! initial simplices [37, 41]. By a simple235

change of scale, each point st ∈ St can be mapped to a point 0 ≤ xt ≤ e; e being an n-vector236

Ąlled with 1Šs. Then each simplex in the Kuhn triangulation corresponds to one possible237

permutation, p, of the indices (1, · · · , n) of the dimension of xt, and is given by the set of238

points xt whose coordinates satisfy the inequalities 0 ≤ x
p(1)
t ≤ x

p(2)
t ≤ . . . ≤ x

p(n)
t ≤ 1 [20].239

10

A less expensive strategy, called Delaunay triangulation, partitions a hyperrectangle into240

at most O(N ⌈ n
2

⌉) simplices, where N = 2n [66]. In [63, 64], starting with its 1-dimensional241

faces (line segments), k-dimensional faces of the hyperrectangle are iteratively lifted into242

k + 1-dimensional simplices until the hyperrectangle is partitioned into n-dimensional sim-243

plices. The complexity of this proposal is more than exponential in the dimension n of the244

hyperrectangle.245

If either the Kuhn or the Delaunay triangulation is used, the initial step generates a grid246

of 2n points, i.e., the vertices of the hyperrectangle, at which the approximate value function247

(10)-(16) is evaluated. If one wants to densify the initial grid in the hope of improving248

the approximation, the initial simplices can iteratively be subdivided into smaller ones. A249

popular technique used in global optimization consists in bisecting edges of simplices based on250

their diameter or local Lipschitz lower bounds (e.g., [66, 46]). Another population strategy,251

called radial or ω−subdivision [66], consists in choosing a point in some d−dimensional252

subset of a simplex B, d = 1, . . . , n − 1, called a face of B, and creating subsimplices around253

this point (e.g., [32, 56, 7, 63, 64, 65]).254

More speciĄcally, let B ⊂ IRn be an n-dimensional simplex generated by the n+1 affinely255

independent points {s1, s2, . . . , sn+1}, and denote SB := [s1, s2, . . . , sn+1] ∈ IRn×(n+1) the full256

row rank associated matrix. It follows from DeĄnition 2 that a point s lives in B if and only257

if the system258






SB

e⊤





λ =







s

1





 , λ ≥ 0, (17)

has a unique solution λ ∈ IRn+1. In addition, let B(s) be a subset of {1, . . . , n+1} such that259

in eq. (17), λj > 0, j ∈ B(s). Let SB(s)j be the n × (n + 1) matrix obtained by replacing the260

jth column of SB, j ∈ B(s), with the point s, which we assume is not a vertex of the simplex.261

Clearly, the columns of SB(s)j are affinely independent; as a result, their convex envelope262

deĄnes a simplex. This way, B is subdivided into d simplices, d being the cardinality of B(s).263

Illustrative examples of simplicial subdivision are provided in Figure 1. In case (i), the264

division point C is located in the relative interior of the simplex [A, B], which is subdivided265

into two simplices, namely [A, C] and [C, B]. In case (ii), the division point, v, lies in the266

relative interior of the simplex [x, y, z]; the latter is partitioned into three simplices. Lastly,267

11

the simplex [x′, y′, z′] is partioned into two simplices, since the division point v′ is located on268

the line segment [x′, y′].

A B C

v

z y

x

(i)
(ii)

(iii)

x'

y'

z'

v'

Figure 1: Illustrative examples of simplicial subdivision.

269

3.2 Simplicial piecewise linear approximation of the value function270

In any period t, assume at some iteration of the simplicial algorithm, the state space St has271

been partitioned into simplices, and the expected value function has been evaluated at the272

extreme points sk
t ∈ St, k = 1, . . . , K, fk := V̂t(s

k
t , q̃t). (In the sequel, we drop the time273

index t for ease of notation.) Then, for any point s ∈ S, the expected value function can be274

approximated by the following linear program, which by the concavity of the approximate275

value function yields a lower bound, BL(s):276

BL(s) := max
∑

k=1,...,K

λkfk s.t. s =
∑

k=1,...,K

λksk,
∑

k=1,...,K

λk = 1, and λk ≥ 0 ∀k. (18)

Let B(s) be the set of indices of the nonzero components λk in a basic optimal solution277

of the linear program (18); B(s) contains at most n + 1 elements so that the point s can278

be expressed as a convex combination of at most n + 1 vertices, and the set of all convex279

combinations of these vertices is a simplex. Also, if vectors of subgradients gk, k ∈ B(s), are280

known at the grid points sk, then the expected value function is bounded above by:281

BU(s) := min
k∈B(s)

fk + gk⊤
(s − sk). (19)

12

Then BL(s) ≤ f(s) ≤ BU(s) so that BU(s)−BL(s) is an upper bound on the approximation282

error at the point s using the support vertices s1, . . . , sK . It is also pointed out in [63] that283

the largest error bound on the simplex with vertex set B is given by the linear program:284

EB := max
s,ϕ,λk,k∈B

ϕ −
∑

k∈B

λkfk

s.t. s =
∑

k∈B

λksk,
∑

k∈B

λk = 1, λk ≥ 0 and ϕ ≤ fk + gk⊤
(s − sk), ∀k ∈ B. (20)

If the error bound EB exceeds a certain criterion, then an optimal point s∗
B of (20) would285

be a candidate vertex for being added to the set of vertices as sK+1 := s∗
B. Similarly, if286

there exists some analytical expression for the function f(s) := V̂t(st, qt), the largest actual287

approximation error on a simplex with vertices in B can be found through the nonlinear288

program:289

EB := max
s,λk,k∈B

f(s) −
∑

k∈B

λkfk s.t. s =
∑

k∈B

λksk,
∑

k∈B

λk = 1 and λ ≥ 0. (21)

In the approach of [63, 64, 65], an initial set of vertices is Ąrst chosen, for example the290

2n vertices of the hyperrectangle S plus one interior point s(2n+1). Next an initial set of291

simplices is explicitly enumerated that spans these vertices. Then the linear program (20) is292

solved for every simplex in the set and the next vertex to be added is selected as the optimal293

solution s∗
B for the simplex B with the largest error bound EB. Such a point s∗

B is called a294

division point and the list of simplices is correspondingly updated by deleting the simplex295

with vertex set B from the list and adding to the list the new simplices created by dividing B.296

Iterating this way until a termination criterion is satisĄed, the method of [63, 64, 65] stops297

with a list of, say, K vertices s1, . . . , sK at which the approximate value function and its298

expectation are evaluated, together with a potentially very large list of associated simplices.299

The advantage of this scheme is that it provides a monotonic error bound sequence on300

the approximation error. However, its AchilleŠs heel is the exhaustive examination of the list301

of created simplices that is kept in memory in each time period, and the slow convergence.302

Depending on the size of such a list, this might be very expensive in terms of memory usage;303

this is the focus of the next subsection.304

13

3.3 Complexity and convergence analysis305

A detailed complexity analysis of general operations on simplices (not the simplicial approx-306

imation itself) is provided in [65]. In particular, at each iteration k of the procedure, assume307

we have a list of rk active simplices, Ąnding the simplex with the worst approximation error308

requires O(rk) operations.309

Now, assume we want to partition the hypercube S into simplices until a desired error310

bound, E0, is attained. Therefore, our goal is to Ąnd a full-dimensional simplex B ⊂ S311

generated by the columns of a full row rank matrix SB ∈ IRn×(n+1), such that the optimal312

value of (20) is EB ≤ E0. Toward this end, we Ąrst decompose the hypercube S into initial313

simplices, and for each created simplex solve (20) to Ąnd the largest error bound as well314

as the divisison point s. Then, the initial simplex with the largest error is divided at the315

corresponding division point using the radial ω−subdivision strategy. We repeat the same316

process until the threshold E0 is met.317

Proposition 2. Let Vol(S) be the volume of the hyperrectangle S, the number of simplices318

required to achieve the error bound E0 is of the order O
(

Vol(S)n!

(n+1)E
n/2

0

)

.319

A proof of this proposition is provided in Appendix A.320

Furthermore,321

Proposition 3. Assume at each iteration of the simplicial scheme, the ω-subdivision of322

simplex is used, the simplicial algorithm will converge to the desired error bound E0 in a323

finite number of steps, which is proportional to an exponential factor.324

Proof. Under the ω-subdivision strategy, at each iteration k of the simplicial partitioning325

scheme, the number of created simplices (subdivision of the simplex with the highest error326

bound), Nk, is 2 ≤ Nk ≤ n + 1. In addition, assume K iterations (simplex subdivisions) are327

performed, and N simplices created, then we have 2K ≤ KNk ≤ K(n + 1), i.e., K ≥ N
n+1

≥328

2K
n+1

. It follows from (32) that K is of the order O
(

Vol(S)n!

E
n/2

0

)

, which concludes the proof.329

Let us numerically illustrate Proposition (3). First, let us consider hypothetical quadratic330

expected value functions, of the form V(s) = −1
2
s⊤As + b⊤s, where the matrices A and331

vectors b are randomly generated.332

14

Let us consider relative error bounds E
′
0, as the ratio of a simplex error bound to the333

maximal error over the initial simplices. For each considered state dimension and relative334

error threshold indicated in the results reported in Figure 2, Ąve replications of the simplicial335

decomposition algorithm are performed.336

Figure 2 depicts the natural logarithm of the average total number of created simplices337

(N), grid points (G), iterations (K), which also is the additional simplices created (in addi-338

tion to the initial ones), and the CPU time (t), for different error thresholds and state space339

dimensions. These results conĄrm that the computational burden to achieve a Ąxed error340

bound increases more than exponentially with the dimension, n, of the hyperrectangles.341

1 2 3 4 5

n

-6

-4

-2

0

2

4

6

1 2 3 4 5

n

-6

-4

-2

0

2

4

6

8

1 2 3 4 5

n

-5

0

5

10

1 2 3 4 5

n

-10

-5

0

5

10

Figure 2: Graphical illustration of the simplicial approximation complexity for quadratic

functions.

15

Let us repeat the same tests on hypothetical Cobb-Douglas expected value functions of342

the form343

V(s) =
n
∏

i=1

sαi
i (αi ≥ 0 and

n
∑

i=1

αi ≤ 1). (22)

As for the quadratic functions, for each error threshold and each state space dimension, the344

simplicial procedure is carried out to construct grid points to approximate the functions,345

and Ąve replications are performed. The same statistics are calculated as above. Samples346

of results reported in Figure 3 also conĄrm that the complexity of the simplicial scheme is347

exponential in the state space dimension.

1 2 3 4 5

n

-6

-4

-2

0

2

4

6

8

1 2 3 4 5

n

-5

0

5

10

1 2 3 4 5

n

-5

0

5

10

1 2 3 4 5

n

-5

0

5

10

Figure 3: Graphical illustration of the simplicial approximation complexity for concave Cobb-

Douglas functions.

348

In closing,349

Proposition 4. The convergence rate of the simplicial algorithm is at best linear.350

16

Proof. Since at each iteration the simplex with maximal error bound EB is divided, the351

simplicial algorithm generates a non-increasing sequence {EBk}, such that, by Proposition352

(3), lim
k→∞

EBk = 0. Indeed, at any iteration of the algorithm, assume simplex B ⊂ S,353

generated by the matrix SB, is divided; consider any resulting subsimplex Bc with generating354

matrix SB
c. Matrices SB and SB

c differ only by one column. The only column of SB
c that355

is not in SB is the division point, s∗
B, of the parent simplex B, and is a convex combination356

of the columns of SB.357

Now, given that the approximate value function (10)-(16) and its expectation are concave,358

we have
∑

k∈B λ∗
kV̂(sk, ·) ≤ V̂(s∗

B, ·), where λ∗ is the optimal λ from Problem (20), and359

the skŠs are the vertices of the parent simplex B, or the columns of matrix SB. Thus,360

we always have
∑

k∈B λ∗
kV̂(sk, ·) ≤ ∑

j∈Bc λjV̂(sj, ·) 0 ≤ λj ≤ 1, where the sjŠs (one of361

them being the optimal division point s∗
B) are the extreme points of the subsimplex Bc.362

Similarly, due to the concavity of the function, V̂(s∗
B, ·) ≤ mink∈B{fk + gk⊤

(s∗
B − sj)} (the363

extrapolation of the function at sB). It is also clear that minj∈Bc{f j + gk⊤
(sc − sj), sc ∈364

Bc} ≤ mink∈B{fk + gk⊤
(s − sk)}, s ∈ B.365

Therefore, due to the concavity of the approximate value function, we always have EBc ≤366

EB, where EBc and EB are the maximal error bound on the function over subsimplex Bc and367

parent simplex B, respectively. As a result, the error sequence {EBk} is non-increasing, and368

lim
k→∞

EBk+1

EBk
≤ 1; and the proof is complete.369

Figure (4) illustrates the convergence of the simplicial algorithm on the approximation370

of value functions for four midterm reservoir problems. We consider a 10-period planning371

horizon, and the parameters of the problems are generated as described in the numerical372

experiment section. For each case, we generate Ąve replications. The grid sizes are Ąxed at373

100n + 2n. The evolution of the average relative error (ratio of the error at each iteration to374

that of the Ąrst iteration) for the Ąrst period is depicted in Figure (4).375

As stated in the proof of Proposition (4), we see that the sequence of the approximation376

error is non-increasing. For the four-dimensional problems, at the last iteration, the initial377

error is reduced to approximately 20%, and around 75% for the six-dimensional problems,378

suggesting that denser grid sizes are needed to obtain a similar precision as for the four-379

dimensional problems.380

17

(a) 4-dimensional value function (b) 5-dimensional value function

(c) 6-dimensional value function
(d) 7-dimensional value function

Figure 4: Illustration of the convergence of the simplex algorithm.

In general, the approximation error decreases relatively fast over the Ąrst few iterations,381

then slows down dramatically. This is due to the fact that, as the active simplices (not yet382

divided) become smaller, the local curvature of the function does not vary signiĄcantly, as a383

result, the approximation error is relatively the same on the existing simplices.384

An apparent disadvantage, especially for state space dimensions greater than or equal385

to ten, is the extra computational burden associated with a potentially very large list of386

simplices as well as the complete, uniform exploration of the whole state space which may387

not be required in practical applications where more localized approximations would be388

adequate.389

Therefore in this paper we seek to explore other ways of constructing grid points to eval-390

uate the approximate value function and its expectation in each period without enumerating391

18

an exhaustive list of associated simplices in the hope to alleviate the inherent exponential392

complexity of the simplicial approach, which is illustrated in the next subsections.393

4 Hybrid simplicial approximate dynamic programming394

We now examine some randomized approaches for selecting new grid points at which to395

evaluate the approximate value function (10)-(16) in each period t that avoid making a large396

list of active simplices. With these approaches, it is not possible to identify a division point397

of largest error bound, so there is a need for statistical estimation of the approximation error,398

and other heuristics must be called upon for selecting a new grid point at each iteration.399

We Ąrst describe three such heuristics and next we discuss statistical estimation of the400

approximation error.401

4.1 Randomized simplex-based sampling of the reservoir level space402

Monte Carlo (MC). Instead of using a regular grid of equally spaced vertices, one simple403

and very crude approach is to use a sequence of pseudo-random vertices. In each period404

t, let vk be a sequence of n-vectors of independent variates, uniformly distributed in [0, 1].405

Again, we drop the time period index t for ease of notation. Starting with the initial set of406

2n extreme points of the hyperrectangle S, the i-th component of the kth random vertex is407

given by s
(2n+k)
i = si + (si − si)v

k
i , for i = 1, . . . , n.408

This naïve random sequence of approximation nodes can be considered neutral with409

respect to the approximation error in the sense that the choice of the next vertex to enter410

the support set is not based on an error criterion such as the division point of a simplex with411

largest error bound in eq. (20). Therefore one would expect that a numerical comparison of412

this naïve scheme with the previous method would show a signiĄcant difference in accuracy.413

MC simplicial. This method is a combination of the simplicial and the Monte Carlo414

schemes. In period t, suppose the approximate value function has been evaluated at K415

points. We then generate a random point ŝ uniformly in S as before (ŝi = si + (si − si)vi),416

solve eq. (18) to Ąnd the vertex set B(ŝ) of the simplex containing ŝ and solve eq. (20) to417

obtain the division point s∗
B that has the largest error bound in that simplex. Lastly, we418

19

choose that division point as the new vertex sK+1 = s∗
B. This procedure is repeated until419

the size of the grid reaches a desired target.420

Batch MC simplicial. As in the MC simplicial method, in period t, suppose at a given421

iteration there are K vertices in the grid, with K ≥ n + 1. Next, we generate a sample of m422

random points ŝ1, . . . , ŝm uniformly in S. For each random point ŝj in the sample, eq. (18)423

is solved to Ąnd the vertex set Bj of the simplex that contains ŝj, and eq. (20) to obtain the424

division point s∗
Bj that has the largest error bound EBj in that simplex. Then the new vertex425

is chosen as the division point of the simplex with the largest error bound in the sample, so426

sK+1 = s∗
Bj∗ where j∗ = arg maxj=1,...,m EBj . This way, by evaluating a small number m of427

simplices, we have good chances of choosing a candidate with a relatively large error bound,428

but without having to maintain a large list of simplices as in the previous papers.429

By keeping one candidate out of m at each iteration, the best we can hope for is that430

the selected vertices would belong to the top (1/m)th among the sampled candidates. But431

there is a probability (1−1/m)m that the selected vertex is not in the top (1/m)th, and also432

some probability that the sample has more than one candidate in the top (1/m)th, so that433

good candidates are discarded in some iterations. With m = 3, these probabilities are 8/27434

(select bad vertex) and 7/27 (discard good vertex). While this seems better than the MC435

and the MC simplicial methods, where all vertices are selected (good and bad), we can try436

to improve the selection process by putting some candidate vertices in a waiting line instead437

of discarding them right away.438

Batch MC simplicial with queue. As in the batch MC simplicial method, but now,439

we keep a list, of at most r recently explored simplices, which have been queued from previous440

iterations instead of being discarded. Initially, the queue is empty. In a typical iteration,441

m new candidates are sampled as in the batch MC simplicial method, which are combined442

into a pool with the (at most) r candidates from the queue. The new vertex is chosen as443

the division point of the simplex with the largest error bound in the pooled candidate list.444

The next r candidates with largest error bounds are held in the queue, and the remaining445

candidates with the smallest error bounds are discarded.446

Parameters for this would need to be experimented if this turns out to be a tempting447

avenue. The computational effort is similar to the batch MC simplicial method but it is448

20

Figure 5: Illustration of the convergence of the hybrid simplicial methods on the approxi-

mation of the Ąrst period value function for one of the 4-reservoir literature test problems

described in Subsection (5.3).

hoped that the batch MC simplicial with queue would have smaller approximation error449

than the batch MC simplicial.450

The above methods attempt to replace an exhaustive list of simplices with a shorter451

list from which a division point is chosen with the largest error bound at each step. It is452

hoped that the use of a truncated candidate list will be compensated by the large number453

of sampled points and simplices over a large number of steps. However, in the absence of454

an exhaustive list of simplices, there is no uniform upper bound on the approximation error.455

Also, as it is illustrated in Figure 5, in contrast to the simplicial scheme, there is no guarantee456

about the monotonicity of the sequence of generated approximation errors. Thus, the next457

section will discuss the statistical estimation of error.458

An illustrative comparison between the original and the hybrid simplicial methods is459

provided in Appendix B.460

21

4.2 Statistical estimation of the approximation error461

Under the concavity of the expected value function V̂t(st, ·), the approximation error is the462

difference between the function and its piecewise linear approximation. At any point st ∈ St,463

the approximation error is V̂t(st, ·) − BL(st), where BL(st) solves eq. (18). Then eq. (19)464

implies the approximation error is bounded by BU(st) − BL(st). At all points in simplex465

B that contains st, the approximation error is bounded by EB of eq. (20), while the largest466

error in the simplex is EB of eq. (21). Here we are interested in the estimation of the largest467

actual error maxst∈St{V̂t(st, ·) − BL(st)} or the largest error bound maxB EB. In both cases,468

we will use a random sample of m points ŝ1, . . . , ŝm ∈ S.469

Since function V̂t(st, ·) is Ąnite and concave everywhere on St, by construction, the ap-470

proximation error is also a well-behaved function; it is equal to zero at the support nodes471

and varies smoothly on the simplices. Therefore, when sampling the state space uniformly,472

it might be reasonable to assume that the corresponding distribution of the approximation473

error is also well-behaved. However, since we do not know the theoretical distribution, Ąrst,474

we conduct an empirical investigation. Toward this end, we generate samples of grid points475

with the different randomized methods - except for the pure Monte Carlo and the simplicial476

methods, and calculate the true approximation errors for random sample points. Examples477

of empirical distributions are illustrated in Figure 6. The true empirical distribution seems478

to be bounded by a uniform distribution, or a left triangular distribution with mode at the479

minimum value, or a right triangular distribution with mode at the maximum value.

Figure 6: Examples of empirical distributions of the approximation errors.

480

22

Therefore, we propose to use, as statistical models, three simple distributions on (0, b):481

the right-angled triangular with mode at right TR(0, b), the uniform U(0, b), and the right-482

angled triangular with mode at left TL(0, b).483

If a random variable X has a uniform distribution on the interval [0, b], then it is well484

known, see e.g. [26], that the maximum likelihood estimator (MLE) of the parameter b is the485

largest observation in the sample. So with sample size m and observed values x1, . . . , xm,486

the MLE of b is x(m) = maxi=1,...,m xi. Estimators of the limit parameters of a right-angled487

triangular distribution on the interval [a, b], with the mode at the upper limit b, are given in488

[34], where it is shown that the MLE of b is also x(m). However, by arguing as in [36], it is489

easily seen that x(m) is not an MLE of b for a right-angled triangular distribution with the490

mode at the lower limit. The true MLE is provided in Appendix C.491

In addition to the point estimates of parameter b, it is useful to obtain conĄdence intervals.492

For this, it is convenient to deĄne the standardized random variable Y with distribution on493

the unit interval [0, 1]. For a random sample of m observations, we deĄne the largest of them494

by y(m), with the random variable Y(m) representing its sampling distribution. Let Fm(y) be495

the cumulative distribution function of Y(m). Then p = Fm(y) is the cumulative probability496

and y = F −1
m (p), the quantile. Formulas for these are given in Table 1.497

TR(0, b) U(0, b) TL(0, b)

p = Fm(y) y2m ym [1 − (1 − y)2]
m

y = F −1
m (p) p1/2m p1/m 1 −

√

1 − p1/m

Table 1: Formulas for sampling distributions and quantiles.

Formulas for unbiased point estimates, b̂, of parameter b with lower and upper limits of498

conĄdence intervals are given in Table 2 as multipliers of x(m), where499

Am =
m
∏

j=1

j

j + 0.5
, (23)

from adapting equation (6) of [34].500

A numerical example is given in Table 3. For the triangular distribution with mode at501

left TL(0, b), we see that the unbiased estimate and conĄdence interval limits based on the502

23

TR(0, b) U(0, b) TL(0, b)

b̂1−α/2
1

(1−α/2)1/2m
1

(1−α/2)1/m
1

1−
√

1−(1−α/2)1/m

b̂ 2m+1
2m

m+1
m

1
1−Am

b̂α/2
1

(α/2)1/2m
1

(α/2)1/m
1

1−
√

1−(α/2)1/m

Table 2: Formulas for unbiased point estimate b̂ of b and limits of conĄdence interval.

order statistic x(m) are quite large compared to the other distributions. There might be an503

interest here in using an MLE estimate instead, which has small bias and smaller variance504

as pointed out in [36] thus allowing a smaller sample size for estimating the approximation505

error, and therefore fewer computations.506

Symbol TR(0, b) U(0, b) TL(0, b)

m 3 30 3 30 3 30

b̂1−α/2 10.04 10.00 10.08 10.01 11.01 10.30

b̂ 11.67 10.17 13.33 10.33 18.42 11.90

b̂α/2 18.49 10.63 34.20 11.31 62.97 15.16

Table 3: Numerical example for point estimate b̂ of b and conĄdence interval with m = 3

and 30, α = 0.05 and x(m) = 10.

5 Numerical experiments507

Three types of analysis are carried out in the numerical experiments. First, in Subsection 5.1,508

we appraise the sensitivity of the performance of the two Monte Carlo simplicial methods with509

respect to their underlying parameters. Second, in Subsection 5.2 the methods are compared510

on the trade-off between accuracy and computational burden on (i) the approximation of511

concave functions; and (ii) several simulated reservoir optimizations problems. Lastly, in512

Subsection 5.3, we compare the methods on three reservoir optimization problems available513

24

in the literature.514

5.1 Sensitivity of solution performance to parameter values: batch515

MC simplicial and bath MC simplicial with queue methods516

Recall that in the batch MC simplicial method, in each period t, at each iteration, a sample of517

m random points is chosen in the state space, St. Intuitively, this approach is approximately518

m times slower than the MC simplicial scheme, in which one random point is selected at each519

iteration. One natural question is how to determine the appropriate sample size m. Though520

we do not have any theoretical answer to this question, we perform numerical experiments to521

analyze the sensitivity of solution performance on the approximations of Cobb-Douglas type522

functions (in dimension n=3, 6, and 9, respectively), with randomly generated parameters,523

and the approximation of value functions for reservoir management problems (in dimension524

n=3, 4, and 6, respectively).525

We approximate the Cobb-Douglas functions on grids of size 100n, then interpolate the526

values of the functions on other grids (out-of-sample) of size 200n (solving Problem (18))527

and calculate the true approximation errors. For the reservoir management problems, we528

approximate the value functions (in each time period) on grids of size 100n as well, then529

solve the Ąrst period problem for a sample of 200n (s1, q1) state pairs. For each case (Cobb-530

Douglas function approximations and value function approximations), Ąve replications are531

performed for values of m ranging from one to ten. The average results are reported in532

Figure 7. Note that smaller values are better in the upper portion of the Ągure, and the533

opposite in the lower portion of the Ągure. The Ągure displays an “imperfect elbow shapeŤ,534

and seems that values of m between three to Ąve would suffice to obtain good approximation535

performance. The computational burden grows linearly with the parameter m; since we536

strive for a good trade-off between computational burden and accuracy, in the sequel, we537

will Ąx m at 3.538

Similarly, the batch MC simplicial with queue method features two parameters m (same539

as the previous method), and r, the size of the queue of previously generated random points.540

We perform the same experiments as above to assess the sensitivity of solution performance541

25

(a) Interpolation errors of

3-dimensional Cobb-Douglas

functions.

(b) Interpolation errors of

6-dimensional Cobb-Douglas

functions.

(c) Interpolation errors of

9-dimensional Cobb-Douglas

functions.

(d) First period 3-

dimensional value function

values.

(e) First period 4-dimensional

value function values.

(f) First period 6-dimensional

value function values.

Figure 7: Performance of the batch MC simplicial method on different types of problems

and by sample size.

26

with respect to these parameters. We vary the values of m between one and six (based on the542

above observations), and the values of r between one and eight. Overall, the computational543

burden is linear in m, and does not seem to be inĆuenced by the lenght of the queue, r544

(Figure 8); similarly for the performance of the solution (Figure 9). In addition, in Figure 9,545

in most of the cases, for Ąxed value r, we observe an elbow shape at m = 3 (except for the last546

picture), suggesting that m = 3 seems to be a good enough sample size. Extensive numerical547

experiments have demonstrated that this method exhibits similar performance (both in terms548

of computational burden and accuracy) than the batch MC simplicial scheme; thus, results549

for this method will not be reported in the sequel for the sake of brevity.550

5.2 Accuracy vs computational burden551

Here, we focus on the trade-off between accuracy and computation time. Toward this end,552

Ąrst, in Subsection 5.2.1, we compare the performance of the methods on the approximation553

of Cobb-Douglas concave functions of the form (22) for different state dimensions n. Though554

the primary interest of this work is mid-term reservoir management problem, this Ąrst set-555

ting is motivated by the fact that (i) the simplex-based approximations exploit the concavity556

property of the functions to be approximated, in contrast to the pure Monte Carlo (MC)557

scheme; (ii) in the reservoir management context, to handle the nonlinearity of the produc-558

tion functions, we approximate the latter by piecewise concave linear functions (Problem559

(10)-(16)); (iii) similarly, the value functions are approximated by piecewise concave lin-560

ear functions (Problem (10)-(16)). Thus, it is no easy task isolating the sole effects of the561

methods, due to the multiple layers of approximation embedded in the dynamic programs.562

Next, in Subsection 5.2.2, the schemes are gauged on several simulated reservoir man-563

agement problems.564

5.2.1 Approximation of concave functions565

Grid points of size 2n + 100n are generated with each method; then the out-of-sample in-566

terpolation errors - the difference between the true and interpolated values- are calculated567

on randomly generated samples of sizes 200n. In addition, under each method and at each568

27

(a) Interpolation of 6-dimensional

Cobb-Douglas functions.

(b) Interpolation of 10-dimensional

Cobb-Douglas functions.

(c) Approximation of 3-

dimensional first period value

functions.

(d) Approximation of 4-

dimensional first period value

functions.

Figure 8: Average CPU time in seconds of the batch MC simplicial with queue method for

different types of problems and by sample size.

28

(a) Interpolation errors of

2-dimensional Cobb-Douglas

functions.

(b) Interpolation errors of

6-dimensional Cobb-Douglas

functions.

(c) Interpolation errors of 10-

dimensional Cobb-Douglas

functions.

(d) Approximation of 2-

dimensional first period value

functions.

(e) Approximation of 3-

dimensional first period value

functions.

(f) Approximation of 4-

dimensional first period value

functions.

Figure 9: Performance of the batch MC simplicial with queue method on different types of

problems and by sample size.

29

iteration, we record the time in seconds to build the grid (ti), the minimum (Emin), the max-569

imum (Emax), the mean (Eav), and the standard deviation of the interpolation error (Estd).570

We take the simplicial method as our benchmark, and for each method, we calculate relative571

performance measures as the ratio of the corresponding measure to that of the simplicial.572

Furthermore, in additional to the relative computation times (in seconds), we also report573

the absolute times. The results are depicted in Table 4.574

As expected, the pure MC method is the fastest as no additional optimization problem575

is solved except for the approximate dynamic Problems (10)-(16). Also, notice that as576

we conjectured, the batch MC simplicial scheme is about three times slower than its MC577

simplicial counterpart, as in the former, in each iteration, we generate three sample points,578

compared to one in the latter. For 3-dimensional functions, the average CPU time of the579

simplicial method is lower than that of the MC simplicial scheme; for 5-dimensional problems,580

the computation times are comparable. For dimensions equal to eight, the relative average581

CPU time of the MC simplicial method is only 3% that of the simplicial benchmark, which582

becomes practically intractable for 10-dimensional problems.583

Accuracy-wise (average interpolation errors), except for the 3-dimensional problems on584

which it performs better than the pure MC scheme, the simplicial approach features the585

worst performance. The batch MC simplicial is the top performer on all cases, followed by586

its MC simplicial counterpart; however, the difference grows smaller as the dimensions of the587

functions increase, and the MC simplicial scheme still remains about three times faster.588

Furthermore, we test the scalability of the randomized methods on the approximation of589

11- to 15-dimensional Cobb-Dougblas concave functions. As above, we use all the methods,590

but the simplicial one (as it is intractable for such high-dimensional problems) to generate591

sample points of size 2n + 100n; then interpolation errors are calculated on samples of592

size 100n. We also perform Ąve replications with each method and calculate the same593

performance statistics, which are reported in Table 5. In addition to being tractable for594

all the cases, the hybrid methods still outperform the naïve approach (MC) in terms of the595

maximum and average interpolation errors; they also feature lower standard deviations of the596

approximation errors. The batch MC simplicial method still outperforms the MC simplicial597

one, but at the expense of higher computation time.598

30

Relative averages

n Method Abs. CPU time ti Emin Emax Eav Estd

3 Monte Carlo (MC) 0.0053 0.0052 0.5900 16.9683 3.0710 11.0501

3 MC simplicial 2.6148 2.5680 0.5494 6.7624 0.9346 3.3748

3 Batch MC simplicial 7.1774 7.0491 0.7292 1.5631 0.5604 0.9166

3 Simplicial 1.0182 1 1 1 1 1

5 Monte Carlo (MC) 0.0195 0.0032 0.2967 1.9246 0.7857 1.9677

5 MC simplicial 6.8779 1.1196 0.3354 0.9538 0.3653 0.7031

5 Batch MC simplicial 21.8420 3.5556 0.4331 1.0314 0.3080 0.5134

5 Simplicial 6.1430 1 1 1 1 1

8 Monte Carlo (MC) 0.0353 0.0001 0.2867 0.9061 0.5261 1.1074

8 MC simplicial 10.5880 0.0347 0.3358 0.5883 0.3364 0.5819

8 Batch MC simplicial 32.6510 0.1070 0.3689 0.5450 0.3217 0.4596

8 Simplicial 305.2224 1 1 1 1 1

10 Monte Carlo (MC) 0.0891 0.0000 0.3499 0.9094 0.6171 1.2257

10 MC simplicial 22.1880 0.0003 0.4115 0.7349 0.4438 0.7686

10 Batch MC simplicial 66.3756 0.0010 0.5561 0.6184 0.4227 0.5881

10 Simplicial 64,544.1457 1 1 1 1 1

Table 4: Statistics pertaining to interpolation errors of Cobb-Douglas concave functions.

5.2.2 Simulated mid-term reservoir optimization problems599

As in [63], for each plant i = 1, · · · , n, we assume the production function to be of the form600

pit(uit) := βi ((uit + γi)
αi − γαi

i) , βi > 0, γi ≥ 0, 0 ≤ αi ≤ 1 (24)

These production functions are linearized as in (10)-(16). Furthermore, we consider a601

planning horizon of length T=10, and three reservoir conĄgurations in dimension n = 4, 6, 8,602

respectively. The problemsŠ parameters, including bounds on the reservoir and water release603

levels, borrowed from [65], are shown in Table 6.604

For each reservoir conĄguration, problem instances are randomly generated based on the605

31

n Method ti Emin Emax Eav Estd

11 MC 0.344 59.028 412.691 218.829 59.242

11 MC simplicial 58.226 81.156 326.580 181.372 40.439

11 Batch MC simplicial 172.198 89.063 324.405 178.096 34.672

12 MC 0.654 68.220 355.558 199.278 47.175

12 MC simplicial 104.374 81.156 300.623 171.980 32.605

12 Batch MC simplicial 308.748 97.082 285.989 169.595 28.850

13 MC 1.420 82.863 380.341 226.818 48.482

13 MC simplicial 191.568 108.638 329.196 199.129 34.918

13 Batch MC simplicial 583.787 107.968 317.029 197.336 31.458

14 MC 2.649 92.604 392.457 234.484 45.704

14 MC simplicial 350.843 117.821 339.119 209.566 33.505

14 Batch MC simplicial 1,035.349 119.204 323.903 208.207 30.196

15 MC 5.803 101.726 348.771 220.790 37.342

15 MC simplicial 717.993 110.628 312.374 204.199 27.734

15 Batch MC simplicial 2,265.467 127.493 301.875 203.217 26.217

Table 5: Statistics pertaining to interpolation errors of 11- to 15-dimensional Cobb-Douglas

concave functions using the hybrid methods.

experimental framework depicted in Table 6. To mitigate boundary effects, the terminal606

value function, VT +1(sT +1), is chosen as a concave function of the form (22).607

In addition, in each period of the planning horizon, we use each method to generate608

samples of 2n +200n grid points to evaluate the approximate value function (10)-(16). Then,609

we randomly generate a sample of 1, 000n initial reservoir levels and natural inĆows. Next,610

as in [12], the Ąrst period approximate problem is solved with each method for each state611

observation of the sample, and we record the minimum (V1min), the maximum (V1max), the612

average (V1av), and the standard deviation (V1std) of the Ąrst period value function evaluation.613

Five replications are performed for each case, then we calculate the average of each such614

statistic as well as the average time (ti) to build the 10 value functions. As in the above615

32

Parameter Lower limit Upper limit

sit 150 600

s̄it 800 7,000

uit 0 0

ūit 0.05s̄it 1.5s̄it

βi 0.9 1.5

αi 0.7 0.9

γi 125ui 170ui

qit 500 3,000

Table 6: Model parameters borrowed from [65].

comparisons, we take the simplicial scheme as the benchmark method. The results (relative616

measures) are reported in Table 7 as well as the average absolute CPU times (in seconds).617

Again, without any surprise, the pure MC method is the fastest. The average CPU time618

is relatively the same under the simplicial and its MC simplicial variant on the 4-dimensional619

problems; the latter scheme features lower computational burden on the 6- and 8-dimensional620

instances. Both hybrid methods outperform the simplicial scheme on all the other metrics on621

the 6-dimensional problems. The performance of the methods is similar on the 8-dimensional622

problems, however at lower computational burden for the MC variant methods. Indeed, the623

CPU time of the MC method is approximately 2% of that of the simplicial scheme, and 4%624

and 9%, for the MC simplicial and its batch variant, respectively.625

We close this section with an analysis of the sensitivity of the solution accuracy of the626

different methods to the size of the grids. We repeat the above experiments on 4- and627

6-dimensional reservoir problems. The parameters are generated as in Table 6.628

In each period, for each problem, we construct grids of sizes varying between K1 =629

2n + 20n, and K5 = 2n + 100n, in increment of 20n. As before, the Ąrst period value630

functions are solved for 1, 000n randomly generated initial reservoir levels and inĆows, then631

the average is taken. For each grid size Kj, j = 2, . . . , 5, Table 8 depicts the relative average632

value function V j

V j−1

. The results show that the average evaluations of the Ąrst period value633

33

Relative averages

n Method Abs. CPU time ti V1min V1max V1av V1std

4 Monte Carlo (MC) 10.0974 0.2921 1.0001 1.0006 1.0006 0.9996

4 MC simplicial 30.7411 0.8892 1.0012 1.0012 1.0012 0.9979

4 Batch MC simplicial 76.9120 2.2248 1.0012 1.0012 1.0012 0.9977

4 Simplicial 34.5699 1 1 1 1 1

6 MC 105.5044 0.3082 0.9954 1.0021 1.0021 1.0131

6 MC simplicial 228.4980 0.6676 1.0026 1.0023 1.0026 1.0030

6 Batch MC simplicial 475.4854 1.3892 1.0029 1.0023 1.0026 1.0020

6 Simplicial 342.2702 1 1 1 1 1

8 MC 158.9624 0.0161 0.9949 0.9952 0.9951 1.0000

8 MC simplicial 433.8685 0.0439 1.0000 1.0000 1.0000 1.0000

8 Batch MC simplicial 882.3298 0.0893 1.0000 1.0000 1.0000 1.0000

8 Simplicial 9,879.5983 1 1 1 1 1

Table 7: Statistics pertaining to the Ąrst period evaluations of the value functions for three

reservoir conĄgurations (n = 4, 6, 8).

functions are relatively steady.634

5.3 Performance comparisons on three literature reservoir man-635

agement problems636

Our last comparison setting is three literature reservoir optimization problems: two 4-637

dimensional and one 10-dimensional problems. The planning horizons are one year divided638

into monthly time steps. These problems were designed to assess the effectiveness of reservoir639

optimization solution methods. For details about their characteristics, please see [18, 42, 38].640

The main difference between the two 4-dimensional problems is that in one of them (hereafter641

Problem 1), the release decisions are less constrained, and the upper bounds on the reservoirs642

are stationary (do not vary with time), in contrast with the second one (Problem 2).643

In all three problems, the Ąrst period reservoir level (s1) is Ąxed, similarly for the terminal644

34

Grid size

n Method 2n + 20n 2n + 40n 2n + 60n 2n + 80n 2n + 100n

4 MC Ů 1.00017 1.00007 1.00020 1.00022

4 MC simplicial Ů 1.00012 1.00003 0.99999 1.00002

4 Batch MC simplicial Ů 1.00008 1.00002 1.00001 1.00004

4 Simplicial Ů 1.00009 1.00005 1.00006 1.00004

6 MC Ů 1.00001 1.00001 1.00000 1.00000

6 MC simplicial Ů 1.00002 1.00000 1.00000 1.00000

6 Batch MC simplicial Ů 1.00002 1.00000 1.00000 1.00000

6 Simplicial Ů 1.00007 1.00023 0.99999 1.00002

Table 8: Variation rate of the average Ąrst period value functions with the size of the grid

for two reservoir conĄgurations (n = 4, 6).

one (s13). Though these constraints can easily be handled in a multi-period model, this is645

not the case in dynamic programming-like methods, as in period t = 12, the algorithms646

can pick a reservoir level that violates the terminal value constraints on the reservoir levels.647

Similarly, in any period t, the bounds may also be violated. We mitigate this issue by648

introducing linearized penalty functions in the objective functions. We calibrate the penalty649

coefficients through trial-and-errors, until we obtain solutions that meet all the constraints650

(solving the value functions forward in time as explained below).651

We build the value functions moving backward in time. Then, starting from the initial652

reservoir level, we solve the value functions forward in time, using the previous period subop-653

timal reservoir level as initial value. In each time period, we calculate the suboptimal current654

period objective value (say the current period suboptimal production in our context). Thus,655

the suboptimal value of the problem is the sum of such suboptimal objective values.656

Under each method, we use different grid sizes to build the value functions, as illustrated657

in Tables 9-14. Under the simplicial method, each problem is solved once (one backward658

and one forward steps), as the problems are deterministic and the simplicial method is also659

a deterministic algorithm. Under the hybrid methods, we perform Ąve replications, and660

35

calculate the averages (solution times and suboptimal values).661

Tables 9, 11, and 13 report the optimality gaps (difference between the known optimal662

values and the suboptimal ones obtained with the methods) for each grid size and each663

method. No results are reported for the simplicial method for the largest problem (10-664

dimensional), which proved intractable for this method (we stopped the algorithm after665

several hours spent in the last period recursion).666

The optimality gaps decreases as the grid size increases, regardless of the method. Over-667

all, the batch MC simplicial scheme consistently exhibits the lowest optimality gaps, followed668

by the MC simplicial method, though the latter is outperformed by the simplicial approach669

on the two 4-dimensional problems for the two largest grid sizes. The pure MC method670

consistently features the highest optimality gaps. The associated CPU times (in seconds)671

are reported in Tables 10, 12, 14, respectively.

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 1.34% 0.88% 0.67% 0.56% 0.46% 0.40%

Simplicial MC 0.73% 0.49% 0.38% 0.27% 0.26% 0.18%

Batch simpli-

cial MC
0.52% 0.31% 0.19% 0.19% 0.15% 0.11%

Simplicial 1.24% 0.55% 0.53% 0.36% 0.20% 0.15%

Table 9: Optimality gap of the Ąrst four-reservoir problem (Problem 1) described in [18, 42]

across the tested methods for different grid size.

672

6 Conclusions673

This work has revisited a simplicial approximate stochastic dynamic programming scheme674

presented in [63, 64, 65] for the mid-term sub-optimal operations of multi-period multi-675

reservoir systems. This iterative method relies on the exhaustive examination of a list of676

created simplices, whose vertices deĄne grid points at which the value functions are evalu-677

36

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 0.6255 1.4599 4.2737 8.7034 21.3315 97.0282

Simplicial MC 32.6700 51.0181 196.8790 293.7830 487.9010 1,411.0400

Batch simpli-

cial MC
52.9183 102.4470 225.4920 369.6240 1324.6700 3,024.9700

Simplicial 7.8186 17.4825 64.3685 156.5440 338.2210 1,082.5300

Table 10: CPU time in seconds to approximate the value functions for the Ąrst four-reservoir

problem (Problem 1) reported in [18, 42] for different grid size across the tested methods.

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 2.86% 2.16% 1.81% 1.75% 1.35% 1.09%

MC simplicial 1.55% 1.21% 0.80% 0.69% 0.52% 0.33%

Batch MC sim-

plicial
1.04% 0.61% 0.40% 0.28% 0.25% 0.19%

Simplicial 1.97% 1.73% 0.89% 0.84% 0.48% 0.28%

Table 11: Optimality gap of the second four-reservoir problem (Problem 2) described in

[18, 42, 38] across the tested methods for different grid size.

ated at each period. The scheme is limited by the computational burden of partitioning a678

hypercube into simplices.679

We have proposed two hybrid methods that combine random sampling strategies with680

the approach proposed in [63, 64, 65] to locally estimate the approximation error. Simula-681

tion results of randomly generated and three literature mid-term reservoir management test682

problems showed that, compared to the simplicial methods, the hybrid methods seem to683

offer a good trade-off between solution time and accuracy, in particular when the state space684

dimension is greater than nine. Approximation of functions of dimension up to 15 within685

reasonable computation time illustrated the potential scalability of the proposed randomized686

37

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 0.6298 1.3913 3.8732 7.7293 18.9845 137.1070

MC simplicial 16.7826 35.4257 87.7464 136.9160 274.4680 1,118.660

Batch MC sim-

plicial
48.6417 102.1330 225.0250 370.3550 725.1740 2,259.890

Simplicial 7.9736 17.7167 81.9990 110.7210 165.5750 954.704

Table 12: CPU time in seconds to approximate the value functions for the second four-

reservoir problem (Problem 2) reported in [18, 42, 38] for different grid size across the tested

methods.

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 3.15% 3.07% 3.00% 2.73% 2.39% 2.39%

MC simplicial 3.99% 3.21% 2.45% 2.14% 2.20% 1.61%

Batch MC sim-

plicial
4.24% 3.31% 2.73% 2.59% 1.79% 1.31%

Simplicial n/a n/a n/a n/a n/a n/a

Table 13: Optimality gap of the ten-reservoir problem described in [18, 42, 38] across the

tested methods for different grid size.

methods, which might further be leveraged through parallelization.687

Appendices688

A Proof of proposition689

Proof of Proposition 2. We will derive our complexity results in two steps. First, we will690

show that the error bound on a simplex B can be approximated by a quadratic function of691

38

Grid size

Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 25.401 59.020 124.719 141.087 332.738 1,993.690

MC simplicial 132.705 531.597 745.877 1,135.720 2,603.180 8,319.800

Batch MC sim-

plicial
311.661 667.861 1,899.350 4,107.330 6,143.250 27,818.900

Simplicial n/a n/a n/a n/a n/a n/a

Table 14: CPU time in seconds to approximate the value functions for the ten-reservoir

problem reported in [18, 42, 38] for different grid size across the tested methods.

the function values at its vertices. This result will be used next to show that the number of692

simplices required to obtain the desired threshold on the approximation error is proportional693

to an exponential factor.694

In (20), let us collect the evaluations of the function at the vertices of simplex B in695

the vector fB := (f 1, . . . , fn+1)
⊤; similarly, let us deĄne the vector λB := (λ1, . . . , λn+1)

⊤.696

Substituting s with its expression in the inequalities, and rearranging terms, we see that697

(20) is the same as:698

EB := maxϕ,λB
ϕ − f⊤

B λB

s.t. ϕ − g1⊤
SBλB ≤ f 1 − g1⊤

s1,
...

...
...

ϕ − gn+1⊤
SBλB ≤ fn+1 − gn+1⊤

sn+1

e⊤λB = 1, λB ≥ 0.

(25)

For simplicity, let us relax the non-negativity constraints on λB, allowing the division point699

to be located outside the simplex, and thus overestimating the error bound EB. The relaxed700

problem can be re-written in compact form as:701

E
′
B := maxϕ,λB

ϕ − f⊤
B λB

s.t. −GBSBλB + eϕ ≤ fB − dS⊤
B , e⊤λB = 1.

(26)

where GB := (g1, . . . , gn+1)
⊤, and d is an (n + 1) × (n + 1) block diagonal matrix Ąlled with702

the giŠs, i = 1, . . . , n + 1, on the main diagonal, and with an n-dimensional zero-vector in703

39

each off-diagonal position. Furthermore, assuming that at optimality all the inequalities of704

(26) are binding, with the only risk of underestimating the error bound, we have the solution:705







λB

ϕ





 =







A e

e⊤ 0







−1





fB − h

1





 , (27)

where A := −GBSB, and h := dS⊤
B .706

It is easy to see that







A e

e⊤ 0







−1

=







A−1 − cA−1eeT A−1 cA−1e

ce⊤A−1 −c





 , where the constant c :=707

e⊤A−1e. We then have:708

E
′
B := ϕ − f⊤

B λB =







−fB

1







⊤ 





A−1 − cA−1eeT A−1 cA−1e

ce⊤A−1 −c













fB − h

1





 . (28)

In (28), let B := A−1 − cA−1eeT A−1, an (n + 1) × (n + 1) matrix, b := cA−1e, an709

n + 1-dimensional column vector, and β⊤ := ce⊤A−1, an n + 1-dimensional row vector.710

With some algebra, if follows from (28) that:711

E
′
B := −f⊤

B BfB +
(

(Bh)⊤ + β + b⊤
)

fB − βh − c. (29)

Thus, we see in (29) that the error on simplex B is a quadratic function of fB ∈ IRn+1.712

Now, we need to Ąnd the number of required simplices to guarantee that E
′
B ≤ E0.713

Though this answer is not straightforward, we argue that this number may depend upon714

the dimension n of the state space and the size of the generated simplices. Let B(1) be a715

unit-volume simplex in IRn, and denote SB(1) the matrix formed by its vertices. In addition,716

assume this simplex may be scaled by a factor κ to a higher volume simplex B(κ), i.e.,717

B(κ) ∼ κB(1).718

Similarly, assume the matrix of the vertices of B(1) may be scaled by the same factor κ719

to the matrix of B(κ), i.e., SB(κ) ∼ κSB(1). Therefore, we can take as an estimate of the720

required number of simplices, Nn(E0), the ratio of the volume of the hyperrectange S to the721

volume of a simplex B(κ), such that the error on that simplex does not exceed the desired722

threshold, i.e.,723

Nn(E0) =: max
κ

{

Vol(S)

Vol(B(κ))
| E

′
B(κ) ≤ E0

}

. (30)

40

Lastly, ignoring the lower order terms in (29), we see that the error bound is a quadratic724

function of κ, such that E
′
B (κ) ∼ k1κ

2, where k1 is a proportionality constant. As a result,725

to guarantee the desired error threshold E0, we must have k1κ
2 ≤ E0, or726

κ ≤

√

√

√

√

E0

k1

. (31)

The volume of a simplex B(κ) being Vol(B(κ)) = 1
n!

∣

∣

∣

∣

∣

∣

∣

κSB(1)

e⊤

∣

∣

∣

∣

∣

∣

∣

= κn

n!

∣

∣

∣

∣

∣

∣

∣

SB(1)

e⊤

∣

∣

∣

∣

∣

∣

∣

:= k2
κn

n!
, it727

follows from the inequality (31) that to guarantee the prescribed error bound, E0, the volume728

Vol(B(κ)) should be of the order k2

n!

(

E0

k1

)n/2
. Thus, the total number of such simplices should729

be:730

NB :=
Vol(S)

Vol(B(κ))
= Vol(S)

n!

k2

(

k1

E0

)n/2

, (32)

which is of the order O
(

Vol(S)n!

(n+1)E
n/2

0

)

.731

B Comparison of the original and hybrid simplicial732

methods733

To summarize, we make a brief comparison between the original and hybrid simplicial meth-734

ods. Conceptually, the original simplicial method makes an initial list of simplices using735

the extreme points of the state set as vertices, for instance via KuhnŠs triangulation. The736

function to be approximated is evaluated at the vertices, and corresponding subgradients737

are calculated. For each simplex in the list, an error bound is obtained by solving eq. (20)738

which also returns a division point. Then new vertices are iteratively added by selecting739

the simplex with largest error bound in the current list, adding its division point as a new740

vertex where the function and subgradient are evaluated, deleting the simplex from the list,741

replacing it with the new simplices obtained following its division, and evaluating the error742

bounds and division points of the new simplices, and so on. Once a sufficiently large list of743

simplices has been obtained, it provides a partition of the state set S. The value function,744

call it f(s) for simplicity, at any given point s ∈ S is approximated by Ąnding a simplex in745

the list containing the point s and interpolating the (known) function values at its vertices.746

41

By contrast, the hybrid methods iteratively build a list of vertices but do not make an747

explicit list of simplices. This way, the value function f(s) is approximated at any point748

s ∈ S by solving the linear program (18) whose optimal basis identiĄes a set of vertices749

that deĄne a simplex containing the point s. Since the linear program selects the largest750

interpolated value among all feasible simplices (not necessary full-dimensional) containing751

the point s, it may provide a better approximation of f(s) than the original simplicial752

method in which there is only one full-dimensional simplex containing the point s. The list753

of vertices is obtained iteratively by sampling a point ŝ at random in the state set S, using754

eq. (18) to identify an optimal simplex containing the point ŝ, then using eq. (20) to Ąnd an755

error bound and a division point for this simplex, and adding this division point as a new756

vertex in the list, and so on.757

In the original simplicial method, by construction the largest error bound in the list of758

simplices provides an upper bound on the approximation error for all points s ∈ S although759

it might be somewhat overestimated. In the hybrid methods, the error bounds are tighter,760

since, as aforementioned, the largest interpolated value is taken among all feasible simplices.761

To illustrate these ideas, Let us consider the 2-dimensional concave quadratic function:762

f(s1, s2) = 9s1 + 15s2 − 2s2
1 − 5s1s2 − (9/2)s2

2.

The state set S is the unit square whose vertices are given counterclockwise in Table 15 with763

their coordinates and function values:764

Vertices A B C D Sample x̂

s1 0 1 1 0 0.6

s2 0 0 1 1 0.9

f(s1, s2) 0 7 12.5 10.5 11.835
A B

CD

s

s

s

s

00 10

1101

✲
x1

✻x2

s

x̂
��✒

Table 15: Data for quadratic example in two dimensions.

Suppose a Kuhn triangulation was used to partition S into the two simplices ABC := ❅765

and ACD := � . Then eq. (20) would yield an error bound of 3.6964 in both cases with766

a division point at s1 = s2 = 0.6786 for ABC and at s1 = s2 = 0.3214 for ACD. So the767

42

original simplicial method would divide one of the two simplices ABC or ACD at its division768

point.769

By comparison, the MC simplicial method would Ąrst sample a point ŝ ∈ S at random770

and then would use eq. (18) to Ąnd a simplex over which the interpolation of the function is771

the largest at that point ŝ. Unlike the original method in which only the simplices already772

in the list would be considered, in the MC simplicial scheme all possible simplices would be773

taken into account. For example, suppose the coordinates of the sampled point ŝ happened774

to be ŝ1 = 0.6 and ŝ2 = 0.9, the supporting simplex found by eq. (18) would be BCD :=

❅

775

with an interpolated value of 11.15. Next, eq. (20) applied to simplex BCD would Ąnd an776

error bound of 1.8 with a division point at coordinates s1 = 1 and s2 = 0.6.777

We notice that if the sampled point ŝ had been interpolated with simplex ACD from the778

list, instead of BCD, its interpolated value would have been smaller, i.e., 10.65 instead of779

11.15.780

C MLE estimation of the upper limit of TL(0,b)781

AAdapting the approach of [36], it is possible to Ąnd a MLE for parameter b by solving a782

nonlinear equation. If a random variable X has a right-angle triangular distribution on the783

interval [0, b] with mode at the origin, then its density function is784

g(x) =















2(b−x)
b2 if 0 ≤ x ≤ b,

0 else,

so the likelihood function for an observed sample x is785

L(x|b) =
2m∏m

i=1(b − xi)

b2m

Then with ln L(x|b) the Ąrst-order optimality condition for the MLE of parameter b is the786

nonlinear equation787

m
∑

i=1

1

b − xi

− 2m

b
= 0, (33)

which needs to be solved numerically, except in special cases.788

43

Proposition 5. Let b∗ be the unique solution of eq. (33) and let x(m) = maxi=1,...,m xi. Then789

m + 1

m
× x(m) ≤ b∗ ≤ 2x(m). (34)

Proof. When x(m) > 0, the bounds in eq. (34) are attained in the extreme cases with x1 =790

. . . = xm−1 = 0 for the lower bound, and x1 = . . . = xm = x(m) for the upper bound. In the791

limiting case when all observations are 0, i.e. x(m) = 0, then eq. (34) implies that b̂ = 0 (the792

unbiased point estimate of b) which is expected since the density function goes to ∞ when793

b → 0. In order to show that b∗ is between the bounds for any sample x, we argue that b∗
794

increases when any observation xi increases without changing x(m). To do this, we rewrite795

eq. (33) as796

G(x, b) =
m
∑

i=1

1

1 − xi/b
− 2m = 0. (35)

We see in eq. (35) that the function G(x, b) is increasing with xi and that it is decreasing797

with b. If G(x, b) = 0 for given x and b, then having x′
i = xi +ϵ, say, implies that G(x′, b) > 0798

so we must have b′ < b in order for G(x′, b′) = 0. This monotonicity property of b∗ thus799

implies that for any sample x there must be an increasing trajectory from the lower bound800

to the upper bound that goes through x.801

The bounds provided by Proposition 5 can be used for initializing a search algorithm for802

solving eq. (33). They also imply that the MLE is strictly larger than x(m). However it is not803

obvious what is the expected value of b∗ in general, although in the special case with m = 1804

it is equal to 2b/3. Monte Carlo simulations indicate that b∗ has a smaller variance than b̂805

so that, even for small samples, the mean square error of b∗ is slightly smaller than that of806

b̂. But in practice the unbiased estimator b̂ seems attractive due to its ease of computation.807

However, the MLE computation might be justiĄed when it saves the effort of obtaining a808

larger sample.809

References810

[1] Asmadi Ahmad, Ahmed El-ShaĄe, Siti Fatin Mohd Razali, and Zawawi Samba Mo-811

hamad. Reservoir optimization in water resources: a review. Water Resources Manage-812

ment, 28:3391Ű3405, 2014.813

44

[2] A Alessandri, C Cervellera, D Maccio, and M Sanguineti. Optimization based on quasi-814

Monte Carlo sampling to design state estimators for non-linear systems. Optimization,815

59(7):963Ű984, 2010.816

[3] Mohammad Abdullah Abid Almubaidin, Ali Najah Ahmed, Lariyah Bte Mohd Sidek,817

and Ahmed ElshaĄe. Using metaheuristics algorithms (mhas) to optimize water supply818

operation in reservoirs: a review. Archives of Computational Methods in Engineering,819

29(6):3677Ű3711, 2022.820

[4] Abdus Samad Azad, Md Shokor A Rahaman, Junzo Watada, Pandian Vasant, and Jose821

Antonio Gamez Vintaned. Optimization of the hydropower energy generation using822

meta-heuristic approaches: A review. Energy Reports, 6:2230Ű2248, 2020.823

[5] Behrang Beiranvand and Parisa-Sadat Ashofteh. A systematic review of optimization824

of dams reservoir operation using the meta-heuristic algorithms. Water Resources Man-825

agement, pages 1Ű70, 2023.826

[6] Richard Bellman. Dynamic programming. Princeton University Press, Princeton, NJ,827

USA, 1958.828

[7] Immanuel M Bomze and Gabriele Eichfelder. Copositivity detection by difference-of-829

convex decomposition and ω-subdivision. Mathematical Programming, 138(1):365Ű400,830

2013.831

[8] BH Brito, EC Finardi, and FYK Takigawa. Mixed-integer nonseparable piecewise lin-832

ear models for the hydropower production function in the unit commitment problem.833

Electric Power Systems Research, 182:106234, 2020.834

[9] P-L Carpentier, Michel Gendreau, and Fabian Bastin. Long-term management of a835

hydroelectric multireservoir system under uncertainty using the progressive hedging836

algorithm. Water Resources Research, 49(5):2812Ű2827, 2013.837

[10] Pierre-Luc Carpentier, Michel Gendreau, and Fabian Bastin. Managing hydroelectric838

reservoirs over an extended horizon using benders decomposition with a memory loss839

assumption. IEEE Transactions on Power Systems, 30(2):563Ű572, 2014.840

45

[11] Santiago Cerisola, Jesus M Latorre, and Andres Ramos. Stochastic dual dynamic pro-841

gramming applied to nonconvex hydrothermal models. European Journal of Operational842

Research, 218(3):687Ű697, 2012.843

[12] Cristiano Cervellera, Mauro Gaggero, and Danilo Macciò. Lattice point sets for state844

sampling in approximate dynamic programming. Optimal Control Applications and845

Methods, 38(6):1193Ű1207, 2017.846

[13] Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, and Roberto Marcialis. Quasi-847

random sampling for approximate dynamic programming. In The 2013 International848

Joint Conference on Neural Networks (IJCNN), pages 1Ű8. IEEE, 2013.849

[14] Cristiano Cervellera and Marco Muselli. Efficient sampling in approximate dynamic850

programming algorithms. Computational Optimization and Applications, 38(3):417Ű851

443, 2007.852

[15] Victoria CP Chen. Application of orthogonal arrays and mars to inventory forecasting853

stochastic dynamic programs. Computational Statistics & Data Analysis, 30(3):317Ű341,854

1999.855

[16] Victoria CP Chen, David Ruppert, and Christine A Shoemaker. Applying experimental856

design and regression splines to high-dimensional continuous-state stochastic dynamic857

programming. Operations Research, 47(1):38Ű53, 1999.858

[17] Ying Chen, Feng Liu, Jay M Rosenberger, Victoria CP Chen, Asama Kulvanitchaiya-859

nunt, and Yuan Zhou. Efficient approximate dynamic programming based on design860

and analysis of computer experiments for inĄnite-horizon optimization. Computers &861

Operations Research, 124:105032, 2020.862

[18] Ven Te Chow and Gonzalo Cortes-Rivera. Application of dddp in water resources plan-863

ning. Technical report, University of Illinois at Urbana-Champaign. Water Resources864

Center, 1974.865

46

[19] Pascal Côté and Richard Arsenault. Efficient implementation of sampling stochastic dy-866

namic programming algorithm for multireservoir management in the hydropower sector.867

Journal of Water Resources Planning and Management, 145(4):05019005, 2019.868

[20] Scott Davies. Multidimensional triangulation and interpolation for reinforcement learn-869

ing. In Advances in Neural Information Processing Systems, pages 1005Ű1011, 1997.870

[21] Vitor L De Matos, Andy B Philpott, and Erlon C Finardi. Improving the performance871

of stochastic dual dynamic programming. Journal of Computational and Applied Math-872

ematics, 290:196Ű208, 2015.873

[22] Barnaby Dobson, Thorsten Wagener, and Francesca Pianosi. An argument-driven clas-874

siĄcation and comparison of reservoir operation optimization methods. Advances in875

Water Resources, 128:74Ű86, 2019.876

[23] Jitka Dupačová, Nicole Gröwe-Kuska, and Werner Römisch. Scenario reduction in877

stochastic programming. Mathematical Programming, 95:493Ű511, 2003.878

[24] Zhong-kai Feng, Wen-jing Niu, Chun-tian Cheng, and Sheng-li Liao. Hydropower system879

operation optimization by discrete differential dynamic programming based on orthog-880

onal experiment design. Energy, 126:720Ű732, 2017.881

[25] Zhong-kai Feng, Wen-jing Niu, Zhi-qiang Jiang, Hui Qin, and Zhen-guo Song. Monthly882

operation optimization of cascade hydropower reservoirs with dynamic programming883

and Latin hypercube sampling for dimensionality reduction. Water Resources Manage-884

ment, 34(6), 2020.885

[26] Jean D. Gibbons. Estimation of the unknown upper limit of a uniform distribution.886

Sankhya: The Indian Journal of Statistics, Series B (1960-2002), 36(1):29Ű40, 1974.887

[27] Albertas Gimbutas and Antanas Žilinskas. An algorithm of simplicial Lipschitz opti-888

mization with the bi-criteria selection of simplices for the bi-section. Journal of Global889

Optimization, 71(1):115Ű127, 2018.890

47

[28] Raphael EC Gonçalves, Erlon Cristian Finardi, and Edson Luiz da Silva. Applying891

different decomposition schemes using the progressive hedging algorithm to the oper-892

ation planning problem of a hydrothermal system. Electric power Systems Research,893

83(1):19Ű27, 2012.894

[29] Quentin Goor, R Kelman, and Amaury Tilmant. Optimal multipurpose-multireservoir895

operation model with variable productivity of hydropower plants. Journal of Water896

Resources Planning and Management, 137(3):258Ű267, 2011.897

[30] LCGJM Habets, Pieter J Collins, and Jan H van Schuppen. Reachability and con-898

trol synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on899

Automatic Control, 51(6):938Ű948, 2006.900

[31] Tito Homem-de Mello, Vitor L De Matos, and Erlon C Finardi. Sampling strategies and901

stopping criteria for stochastic dual dynamic programming: a case study in long-term902

hydrothermal scheduling. Energy Systems, 2(1):1Ű31, 2011.903

[32] Reiner Horst. An algorithm for nonconvex programming problems. Mathematical Pro-904

gramming, 10(1):312Ű321, 1976.905

[33] Sharon A Johnson, Jery R Stedinger, Christine A Shoemaker, Ying Li, and Jose Alberto906

Tejada-Guibert. Numerical solution of continuous-state dynamic programs using linear907

and spline interpolation. Operations Research, 41(3):484Ű500, 1993.908

[34] Kartlos J Kachiashvili and Alexander L Topchishvili. Parameters estimators of irreg-909

ular right-angled triangular distribution. Model Assisted Statistics and Applications,910

11(2):179Ű184, 2016.911

[35] John W Labadie. Optimal operation of multireservoir systems: State-of-the-art review.912

Journal of Water Resources Planning and Management, 130(2):93Ű111, 2004.913

[36] Bernard F Lamond and Luckny Zéphyr. Note on “Parameters estimators of irregular914

right-angled triangular distributionŤ. Model Assisted Statistics and Applications, 16(4),915

2021. To appear.916

48

[37] Douglas W Moore. Simplical mesh generation with applications. Technical report,917

Cornell University, 1992.918

[38] Mojtaba Moravej and Seyed-Mohammad Hosseini-Moghari. Large scale reservoirs sys-919

tem operation optimization: the interior search algorithm (isa) approach. Water Re-920

sources Management, 30:3389Ű3407, 2016.921

[39] José L Morillo, Juan F Pérez, Luckny Zéphyr, C Lindsay Anderson, and Angela Ca-922

dena. Assessing the impact of wind variability on the long-term operation of a hydro-923

dominated system. In 2017 IEEE PES Innovative Smart Grid Technologies Conference924

Europe (ISGT-Europe), pages 1Ű6. IEEE, 2017.925

[40] José L Morillo, Luckny Zéphyr, Juan F Pérez, C Lindsay Anderson, and Ángela Cadena.926

Risk-averse stochastic dual dynamic programming approach for the operation of a hydro-927

dominated power system in the presence of wind uncertainty. International Journal of928

Electrical Power & Energy Systems, 115:105469, 2020.929

[41] Rémi Munos and Andrew Moore. Variable resolution discretization in optimal control.930

Machine Learning, 49(2-3):291Ű323, 2002.931

[42] Daniel M Murray and Sidney J Yakowitz. Constrained differential dynamic pro-932

gramming and its application to multireservoir control. Water Resources Research,933

15(5):1017Ű1027, 1979.934

[43] Nay Myo Lin, Xin Tian, Martine Rutten, Edo Abraham, José M Maestre, and Nick935

van de Giesen. Multi-objective model predictive control for real-time operation of a936

multi-reservoir system. Water, 12(7):1898, 2020.937

[44] Kristian Nolde, Markus Uhr, and Manfred Morari. Medium term scheduling of a hydro-938

thermal system using stochastic model predictive control. Automatica, 44(6):1585Ű1594,939

2008.940

[45] Remigijus Paulavičius and Julius Žilinskas. Global optimization using the branch-and-941

bound algorithm with a combination of Lipschitz bounds over simplices. Technological942

and Economic Development of Economy, 15(2):310Ű325, 2009.943

49

[46] Remigijus Paulavičius and Julius Žilinskas. Simplicial Global Optimization. Springer,944

2014.945

[47] Mario VF Pereira. Optimal stochastic operations scheduling of large hydroelectric sys-946

tems. International Journal of Electrical Power & Energy Systems, 11(3):161Ű169, 1989.947

[48] Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization applied948

to energy planning. Mathematical programming, 52(1):359Ű375, 1991.949

[49] MVF Pereira and LMVG Pinto. Stochastic optimization of a multireservoir hydroelectric950

system: A decomposition approach. Water resources research, 21(6):779Ű792, 1985.951

[50] Deepti Rani and Maria Madalena Moreira. SimulationŰoptimization modeling: a survey952

and potential application in reservoir systems operation. Water Resources Management,953

24:1107Ű1138, 2010.954

[51] Luciano Raso and Pierre Olivier Malaterre. Combining short-term and long-term reser-955

voir operation using inĄnite horizon model predictive control. Journal of Irrigation and956

Drainage Engineering, 143(3):B4016002, 2017.957

[52] Steffen Rebennack. Combining sampling-based and scenario-based nested benders de-958

composition methods: application to stochastic dual dynamic programming. Mathe-959

matical Programming, 156:343Ű389, 2016.960

[53] Andrzej Ruszczyński and Alexander Shapiro. Stochastic programming models. Hand-961

books in Operations Research and Management Science, 10:1Ű64, 2003.962

[54] Antonio Sala and Leopoldo Armesto. Adaptive polyhedral meshing for approximate963

dynamic programming in control. Engineering Applications of Artificial Intelligence,964

107:104515, 2022.965

[55] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochas-966

tic programming: modeling and theory. SIAM, 2009.967

[56] Hoang Tuy. Effect of the subdivision strategy on convergence and efficiency of some968

global optimization algorithms. Journal of Global Optimization, 1(1):23Ű36, 1991.969

50

[57] Gökçen Uysal, Dirk Schwanenberg, Rodolfo Alvarado-Montero, and Aynur Şensoy. Short970

term optimal operation of water supply reservoir under Ćood control stress using model971

predictive control. Water Resources Management, 32:583Ű597, 2018.972

[58] Wim van Ackooij, René Henrion, Andris Möller, and Riadh Zorgati. Joint chance con-973

strained programming for hydro reservoir management. Optimization and Engineering,974

15(2):509Ű531, 2014.975

[59] Bin Xu, Ping-An Zhong, Renato C Zambon, Yunfa Zhao, and William W-G Yeh. Sce-976

nario tree reduction in stochastic programming with recourse for hydropower operations.977

Water Resources Research, 51(8):6359Ű6380, 2015.978

[60] Dmitry S Yershov and Steven M LaValle. Simplicial Dijkstra and A* algorithms: From979

graphs to continuous spaces. Advanced Robotics, 26(17):2065Ű2085, 2012.980

[61] Luckny Zéphyr and C Lindsay Anderson. Stochastic dynamic programming approach981

to managing power system uncertainty with distributed storage. Computational Man-982

agement Science, 15(1):87Ű110, 2018.983

[62] Luckny Zéphyr, Pascal Lang, and Bernard F Lamond. Adaptive monitoring of the pro-984

gressive hedging penalty for reservoir systems management. Energy Systems, 5(2):307Ű985

322, 2014.986

[63] Luckny Zéphyr, Pascal Lang, and Bernard F Lamond. Controlled approximation of the987

value function in stochastic dynamic programming for multi-reservoir systems. Compu-988

tational Management Science, 12(4):539Ű557, 2015.989

[64] Luckny Zéphyr, Pascal Lang, Bernard F Lamond, and Pascal Côté. Controlled ap-990

proximation of the stochastic dynamic programming value function for multi-reservoir991

systems. In Computational Management Science, pages 31Ű37. Springer, 2016.992

[65] Luckny Zéphyr, Pascal Lang, Bernard F Lamond, and Pascal Côté. Approximate993

stochastic dynamic programming for hydroelectric production planning. European Jour-994

nal of Operational Research, 262(2):586Ű601, 2017.995

51

[66] A Žilinskas and J Žilinskas. Global optimization based on a statistical model and996

simplicial partitioning. Computers & Mathematics with Applications, 44(7):957Ű967,997

2002.998

52

