[1] Bi L, Shafi SP, Da'as EH, Traversa E. Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes. Small. 2018;14:e1801231.
[2] Lei L, Tao Z, Wang X, Lemmon JP, Chen F. Intermediate-temperature solid oxide electrolysis cells with thin proton-conducting electrolyte and a robust air electrode. Journal of Materials Chemistry A. 2017;5:22945-51.
[3] Ma J, Tao Z, Kou H, Fronzi M, Bi L. Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs. Ceramics International. 2020;46:4000-5.
[4] Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev. 2014;43:8255-70.
[5] Zuo C, Zha S, Liu M, Hatano M, Uchiyama M. Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Advanced Materials. 2006;18:3318-20.
[6] Fabbri E, Pergolesi D, Traversa E. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. 2010;11: 044301-09..
[7] Fabbri E, Licoccia S, Traversa E, Wachsman ED. Composite Cathodes for Proton Conducting Electrolytes. 2009;9:128-38.
[8] Zhao F, Wang Z, Liu M, Zhang L, Xia C, Chen F. Novel nano-network cathodes for solid oxide fuel cells. Journal of Power Sources. 2008;185:13-8.
[9] Liu W, Kou H, Wang X, Bi L, Zhao XS. Improving the performance of the Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for proton-conducting SOFCs by microwave sintering. Ceramics International. 2019;45:20994-8.
[10] Li G, Zhang Y, Ling Y, He B, Xu J, Zhao L. Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells. International Journal of Hydrogen Energy. 2016;41:5074-83.
[11] Zhao L, Shen J, He B, Chen F, Xia C. Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy. 2011;36:3658-65.
[12] Zhu M, Cai Z, Xia T, Li Q, Huo L, Zhao H. Cobalt-free perovskite BaFe0.85Cu0.15O3-δ cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy. 2016;41:4784-91.
[13] Taguchi H, Chiba R, Komatsu T, Orui H, Watanabe K, Hayashi K. LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2. Journal of Power Sources. 2013;241:768-75.
[14] Hou J, Qian J, Bi L, Gong Z, Peng R, Liu W. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A. 2015;3:2207-15.
[15] Tang H, Gong Z, Wu Y, Jin Z, Liu W. Electrochemical performance of nanostructured LNF infiltrated onto LNO cathode for BaZr0.1Ce0.7Y0.2O3−δ–based solid oxide fuel cell. International Journal of Hydrogen Energy. 2018;43:19749-56.
[16] Hou J, Zhu Z, Qian J, Liu W. A new cobalt-free proton-blocking composite cathode La2NiO4+δ–LaNi0.6Fe0.4O3−δ for BaZr0.1Ce0.7Y0.2O3−δ–based solid oxide fuel cells. Journal of Power Sources. 2014;264:67-75.
[17] Sun W, Fang S, Yan L, Liu W. Proton-Blocking Composite Cathode for Proton-Conducting Solid Oxide Fuel Cell. Journal of The Electrochemical Society. 2011;158:B1432.
[18] Peng R, Wu T, Liu W, Liu X, Meng G. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. Journal of Materials Chemistry. 2010;20:6218-25.
[19] Huang B, Zhu X-j, Lv Y, Liu H. High-performance Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3−δ cathodes for intermediate temperature solid oxide fuel cell. Journal of Power Sources. 2012;209:209-19.
[20] Tao Z, Bi L, Yan L, Sun W, Zhu Z, Peng R, et al. A novel single phase cathode material for a proton-conducting SOFC. Electrochemistry Communications. 2009;11:688-90.
[21] Lei L, Tao Z, Hong T, Wang X, Chen F. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells. Journal of Power Sources. 2018;389:1-7.
[22] Zhao K, Xu Q, Huang D-P, Chen M, Kim B-HJJoSSE. Electrochemical evaluation of La2NiO4+δ-based composite electrodes screen-printed on Ce0.8Sm0.2O1.9 electrolyte. 2012;16:2797-804.
[23] Shi N, Su F, Huan D, Xie Y, Lin J, Tan W, et al. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. Journal of Materials Chemistry A. 2017;5:19664-71.
[24] Zhang Y, Chen Y, Yan M, Chen F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. Journal of Power Sources. 2015;283:464-77.
[25] Wang X, Ma Z, Zhang T, Kang J, Ou X, Feng P, et al. Charge-Transfer Modeling and Polarization DRT Analysis of Proton Ceramics Fuel Cells Based on Mixed Conductive Electrolyte with the Modified Anode–Electrolyte Interface. ACS Applied Materials & Interfaces. 2018;10:35047-59.