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Abstract A dynamical predator-prey model with constant prey harvesting,
proportional harvesting in predator has been studied. The square root func-
tional response also has been incorporated in the system to describe the prey
herd behaviour, assuming the average handling time is zero. The existence
and the local stability of equilibria of the system have been discussed. It is
examined that, two types of bifurcation occur in the system. The two types
of bifurcations have been analyzed, and it has been found by analyzing the
saddle-node bifurcation that, there is a maximum sustainable yield. It is ob-
served that if harvesting rate is greater than the maximum sustainable yield,
the prey population abolish from the system and then extinction of the preda-
tor population happen. But if harvesting rate is lesser than the maximum
sustainable yield, the extinction of the prey population can not be possible.
By analyzing the Hopf bifurcation, it is obtained that, there exists an unstable
limit cycle around the interior equilibrium point. Several numerical simulations
are performed to check the results.
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1 Introduction

To describe the interactions between different species in the nature, predator-
prey system is one of the most important and useful models. Lotka (1) and
Voterra (2) separately offered basic models to describe the interaction between
two species and proposed a two dimensional system of ordinary differential
equations. They introduced a functional response and used in their model
which is proportional to the density of predator. Later, many researchers stud-
ied on the classical Lotka-Volterra (1) (2) model and also produced different
types of functional responses, e.g., C.S Holling (3) introduced three types of
functional responses, Crowley-Martin (4), Beddington-DeAngelis (5) (6) of-
fered different functional responses, etc. In the mentioned studies the authors
used these functional responses by assuming that the predator can take any
prey for their food i.e., they considered solitary prey behaviour.

But, in nature some preys live in herd behaviour to fight with the predators
for their benefits. For that type of herd behaviour, the above mentioned func-
tional responses are not appropriate to describe the interaction. To investigate
the model with that type of prey herd behaviour, a model with a new func-
tional response was proposed by Ajraldi et al.(7) and the author states that, it
is more appropriate to model the functional response for prey herd behaviour
as a square root function of prey density. Later, Braza in his paper(8) intro-
duced a new functional response considering the square root of prey density
in the Holling Type II functional response (3) and assuming the average han-
dling time is zero he proposed a model with this functional response. Further
many researchers studied that model to investigate the interaction between
predator and prey with the functional response (9) (10) (11) (12) (13) (14). In
this paper, this type of functional response has been included in the model.

Nowadays, people are very much interested to harvest the species for eco-
nomic interest which very much affects on the dynamics of any ecological or
biological system. For example, we can see in any marine ecosystem people
are harvesting fishes for their economic interest which affects on the dynam-
ics of a marine ecosystem. To tackle that type of situation, many researchers
worked on a predator-prey system with harvesting effects (15) (16) (17) (18).
Basically researchers used three types of harvesting and the classification is
constant harvesting (19), proportional harvesting (20) and non-linear harvest-
ing (21). In this paper we consider harvested predator and prey population.
Prey populations are harvested by constant rate and predator populations are
harvested by proportional rate. The main aim of the paper is to investigate the
dynamical behaviour of a predator prey system with constant harvesting in
prey, proportional harvesting in predator and also with square root functional
response assuming average handling time is zero. The organization of the rest
of the paper in this way:

In Sec.2 we formulate a mathematical model with constant harvesting in
prey, proportional harvesting in predator and also with square root functional
response assuming average handling time is zero. The condition for existence
of equilibria and their local stability of system (3) have been discussed in Sec.3.
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In Sec.4 two types of bifurcations of the system (3) have been analyzed. Sec.5
includes numerical examples. Finally, Sec.6 contains the conclusion.

2 Mathematical Model Formulation

The basic predator-prey model with the square root functional response (8),
constant harvesting in prey and proportional harvesting in predator is as fol-
lows:











dx(t)

dt
= rx(1− x

N
)− α

√
xy − h,

dy(t)

dt
= −βy +mα

√
xy − Eqy.

(1)

Where the prey population denoted by x and the predator population de-
noted by y, r is the growth rate of prey, m is the biomass conversion rate, α
denotes the predator’s search efficiency for prey. N is the environment carry-
ing capacity, h is the constant prey harvesting and β is the predator’s natural
death rate in the prey free situation and Eq is harvesting effort. For the dy-
namic analysis of the model, the variables and the parameters are scaled as,

x̄ =
x

N
, ȳ =

αy

r
√
N

, t̄ = rt, c =
mα

√
N

r
, d =

β

r
,E = Eq

√
N

α
Then the system (1) becomes:











dx̄(t)

dt
= x̄(1− x̄)−

√
x̄ȳ − h,

dȳ(t)

dt
= −dȳ + c

√
x̄ȳ − Eȳ.

(2)

Excluding the bars of the system (2) we formulate the following system:











dx(t)

dt
= x(1− x)−

√
xy − h,

dy(t)

dt
= −dy + c

√
xy − Ey.

(3)

Where c, d, h, E all are positive.

3 Existence and stability of equilibria

3.1 Existence of equilibria

The system (3) has been defined on the following set considering biological
background:
Γ = {(x, y) ∈ R

2;x ≥ 0, y ≥ 0}.
To identify the equilibrium points of the system (3), the following system has
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been solved:

{

x(1− x)−
√
xy − h = 0,

−dy + c
√
xy − Ey = 0.

(4)

The above system has three equilibrium points and we get the following the-
orems regarding their existence.
Note that:















x1 =
1 +

√
1− 4h

2
, x2 =

1−
√
1− 4h

2
,

x∗ =

(

d+ E

c

)2

, y∗ =
√
x∗(1− x∗)−

h√
x∗

(5)

Theorem 1 [(i)]

When 0 < 4h < 1, the system (3) has two axial equilibrium points Ei =
(xi, 0), (i = 1, 2), which are different.

1.2. When 4h = 1, two equilibria collide and produce a unique axial equilibrium

point E0 = (x0, 0) =

(

1

2
, 0

)

.

3. When
√
x∗(1 − x∗) −

h√
x∗

> 0, then the equilibrium point of the system

(3) exists uniquely which is denoted by E∗ = (x∗, y∗).

Proof. If 4h > 1, then
dx(t)

dt
= x(1−x)−√

xy−h < 0 in Γ . This implies that

prey population will go extinct and then extinction of predator population
will happens. It is obvious that in Γ the system (3) has no equilibria. Now
for predator free (i.e., y=0) equilibrium points we have solved the following
quadratic equation:

x2 − x+ h = 0. (6)

Two different roots x1, x2 of the equation (6) are mentioned in (6) are positive
when 4h < 1 for positiveness of the equilibrium points. And if 4h = 1, two

equilibria collide and the unique value is
1

2
. For interior equilibrium point

we solve the system (4). From second equation of the system (4) we get,
√
x∗ =

(

d+ E

c

)

, and after putting the value of x∗ from first equation of the

system (4) we get, y∗ =
√
x∗(1− x∗)−

h√
x∗

> 0. �

3.2 Stability of equilibria

This subsection includes the dynamic analysis of the system (3) around the
equilibrium points. The following matrix J is the Jacobian matrix of the system
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(3):

J =







−2x− y

2
√
x
+ 1 −√

x

cy

2
√
x

c
√
x− (d+ E)






. (7)

Now, the local stability of the system (3) are analyzed in the neighbourhood
of E1 and E2. And regarding this we have the following theorems.

Theorem 2 When 4h < 1 the system (3) has two different equilibria E1 and
E2.

[(i)]If c
√
x1 > (d + E), then E1 is hyperbolic saddle. If c

√
x1 < (d + E),

then E1 is stable.

Proof. It can be seen that from Theorem (1) that, the system (3) has two
different equilibria E1 and E2. Now the following matrix J(E1) is the Jacobian
matrix at E1 of the system (3)

J(E1) =

(

1− 2x1 −√
x1

0 c
√
x1 − (d+ E)

)

. (8)

The eigenvalues λ1, λ2 of the Jacobian matrix J(E1) are as follows:
λ1 = 1− 2x1 = −

√
1− 4h < 0, since 4h < 1,

λ2 = c
√
x1 − (d+ E) > 0, if c

√
x1 > (d+ E). Hence, E1 is hyperbolic saddle.

Now, if c
√
x1 < (d+ E), then λ2 = c

√
x1 − (d+ E) < 0. Hence, E1 is stable.

�

1.2. Theorem 3 When 4h < 1 the system (3) has two different equilibria E1 and
E2.

[(i)]If c
√
x2 > (d+E), then E2 is unstable. If c

√
x1 < (d+E), then E2 is

hyperbolic saddle.

Proof. From Theorem (1) it can be observed that, the system (3) has two
different equilibria E1 and E2. The following matrix J(E2) is the Jacobian
matrix at E2 of the system (3)

J(E2) =

(

1− 2x2 −√
x2

0 c
√
x2 − (d+ E)

)

. (9)

The eigenvalues µ1, µ2 of the Jacobian matrix J(E2) are as follows:
µ1 = 1− 2x2 =

√
1− 4h > 0, since 4h < 1,

µ2 = c
√
x2 − (d+ E) > 0, if c

√
x2 > (d+ E). Hence, E2 is unstable.

If c
√
x2 < (d + E), then µ2 = c

√
x2 − (d + E) < 0. Hence, E1 is hyperbolic

saddle.
Now, the local stability of the unique interior equilibrium point E∗ are analyzed
and the following theorem is obtained.

1.2. Theorem 4 When
√
x∗(1− x∗)−

h√
x∗

> 0, then there exists a unique equi-

librium point E∗ = (x∗, y∗) of the system (3).
[(i)]If h = h1, then E∗ is center. E∗ is source at h > h1 > 0. E∗ is sink at
h < h1.
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Note: h1 = 3x2

∗
− x∗

Proof. Theorem (1) shows that, when
√
x∗(1 − x∗) −

h√
x∗

> 0, then there

exists a unique interior equilibrium point E∗ = (x∗, y∗) of the system (3). The
following matrix J(E∗) is the Jacobian matrix at E∗ of the system (3)

J(E∗) =







1− 2x∗ −
y∗

2
√
x∗

−√
x∗

cy∗

2
√
x∗

0






. (10)

Trace(J(E∗)) =− y∗

2
√
x∗

−2x∗+1 and Det(J(E∗)) =
cy∗

2
> 0. Now, Trace(J(E∗))

= − y∗

2
√
x∗

− 2x∗ + 1 = −

√
x∗(1− x∗)−

h√
x∗

2
√
x∗

+ 1 − 2x∗ =
−(3x2

∗
− x∗) + h

2x∗

.

Taking h1 = 3x2

∗
− x∗, we get, Trace(J(E∗))=

−h1 + h

2x∗

.

Now, E∗ is center when h = h1, since the Trace of the Jacobian matrix (10)
is zero at h = h1.
E∗ is source when h > h1 > 0, since the Trace of the Jacobian matrix (10) is
greater than zero at h > h1 > 0.
E∗ is sink when h < h1, since the Trace of the Jacobian matrix (10) is less
than zero at h < h1 �

4 Bifurcation Analysis

Form Theorem (1) and Theorem (4), it can be seen that the system (3) may
exhibits saddle-node and Hopf bifurcation. So, in this section, the conditions
for two different types of bifurcations have been analyzed.

4.1 Saddle-node bifurcation

From Theorem (1), it is observed that two equilibria of the system (3) collide

and produce a unique equilibria point E0 =

(

1

2
, 0

)

. Now, the following matrix

J(E0) is the Jacobian matrix at E0 of the system (3

J(E0) =









0 −
√

1

2

0 c

√

1

2
− (d+ E)









. (11)

Easily it can be seen that the above Jacobian matrix (11) has a zero eigenvalue.
This means that, at E0 the stability analysis of the system (3) is not possible
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Fig. 1: (a) The Phase plane diagram of the system (3) when c = 0.2, h =
0.2, d = 0.1, E = 0.05, where E1 is saddle. (b) The Phase plane diagram of the
system (3) when c = 0.2, h = 0.2, d = 0.1, E = 0.1, where E1 is stable. (c) The
Phase plane diagram of the system (3) when c = 0.5, h = 0.2, d = 0.6, E = 0.6,
where E2 is saddle.

by linearization technique. Therefore, the system (3) exhibits a saddle-node
bifurcation in the neighbourhood of E0, as two equilibria collide at the bi-

furcation parameter h =
1

4
. The following theorem describe the saddle-node

bifurcation.

1.2.3. Theorem 5 A saddle-node bifurcation occurs in the system (3) around E0 at

the bifurcation point h =
1

2
, when 4h = 1.

Proof.As J(E0) contains a zero eigenvalue, according to Sotomayor’s theorem(22)

the necessary condition for saddle-node bifurcation around E0 at h =
1

4
sat-

isfies. We consider U, V as the eigenvectors of the matrix J(E0) and J(E0)
T

corresponding to the zero eigenvalues, respectively.
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Fig. 2: (a) Phase plot of the system (3) for c = 1, h = 0.0288 = h1, d = E = 0.3,
where E∗ is center. (b) Phase plot of the system (3) for c = 1, h = 0.0400 >

h1, d = E = 0.3, where E∗ is source.
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Fig. 3: (a) Phase plot of the system (3) for c = 1, h = 0.0288 = h1, d = E = 0.3,
where E∗ is sink. (b) The diagram for saddle-node bifurcation of system (3)
at h = 0 : 4225: Stable equilibrium points are represented by the solid blue
curve and unstable equilibrium points are represented by green dashed curve.

U =

(

U1

U2

)

=

(

1
0

)

, W =

(

V1

V2

)

=









c

√

1

2
− (d+ E)
√

1

2









.

Now, we can get gh(E0, h) =

(

−1
0

)

at h =
1

4
,

D2gh(E0, h)(U,U) =

(

−2
0

)

. It is obvious that, U and V satisfy the transver-

sality conditions:
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V T gh(E0, h) = (d+ E)− c

√

1

2
6= 0,

V TD2gh(E0, h) = 2[(d+E)− c

√

1

2
] 6= 0, for saddle-node bifurcation existence

in the system (3) at the bifurcation parameter h (22). Biologically we can con-

clude that, there is a maximum sustainable yield hMSY =
1

4
and if h > hMSY ,

the prey population will go extinct and it will causes the extinction of predator

population. But if 0 < h <
1

4
, the prey population do not go extinct. �

4.2 Hopf bifurcation

Theorem (1) shows that, Hopf bifurcation may occur in the system (3). Now

we get
d

dh
Trace(J(E∗))=

1

2x∗

6= 0 which implies that the transversality con-

dition satisfies for occurring Hopf bifurcation. Hence, Hopf bifurcation occur
in the system (3) around E∗ at h = h1 (22). Now, the equilibrium point E∗

is translated to origin to find the Hopf bifurcation direction. Using the trans-
formation (X,Y ) = (x− x∗, y − y∗) and expanding the system (3) in a power
series around origin, we get
dX

dt
= a10X+a01Y +a11XY +a20X

2+a02Y
2+a21X

2Y +a12XY 2+a30X
3+

a03Y
3 + P (X,Y )

dY

dt
= b10X + b01Y + b11XY + b20X

2 + b02Y
2 + b21X

2Y + b12XY 2 + b30X
3 +

b03Y
3 +Q(X,Y ),

where P (X,Y ) and Q(X,Y ) are minimum four order smooth functions of X,
Y and

a10 = 0, a01 = −√
x∗, a11 = − 1√

x∗

, a20 = −2 +
y∗

4x
3

2

∗

, a02 = a12 = a03 =

0, a21 =
1

4x
3

2

∗

, a30 = − 3y∗

8x
5

2

∗

.

b01 = b03 = b12 = 0, b10 =
cy∗

2
√
x∗

, b11 =
c√
x∗

, b20 = − cy∗

4x
3

2

∗

, b21 = − c

4x
3

2

∗

, b30 =

3cy∗

8x
5

2

∗

.

Now, we calculate first Lypunov number(22):

l = − 3π

2a01∆
3

2

N =
3π

2
√
x∗∆

3

2

N

where∆ =
(d+ E)y∗
2
√
x∗

> 0, andN =
cy∗

4
√
x∗

( y∗

2x
3

2

∗

+
c√
x∗

)

+
cy∗

2

(

c2 +
y∗

4x
5

2

∗

+
9y∗
8x2

∗

+
c

4x∗

)

>

0. Therefore, from the above expression of ∆ and N it can be conclude that
l > 0, that means the Hopf bifurcation is sub-critical at h = h1. And a unstable
limit cycle present in the system (3) around E∗ (22). �
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Fig. 4: (a) Time series at h = 0.0288 = h1. (b) Time series at h = 0.0400 > h1.
(c) Time series at h = 0.0195 < h1.

5 Numerical Examples

Some numerical examples to verify the analytical results have been discussed
in this section.

– For c = 0.2, h = 0.2, d = 0.1, E = 0.05, the eigenvalues of J(E1) are
λ1 = −0.4472 < 0, λ2 = 0.0201 > 0, E1 = (0.7236, 0) is saddle (Figure 1a).

– For c = 0.2, h = 0.2, d = 0.1, E = 0.1, the eigenvalues of J(E1) are λ1 =
−0.4472 < 0, λ2 = −0.0299 < 0, E1 = (0.7236, 0) is stable (Figure 1b).

– For c = 0.5, h = 0.2, d = 0.05, E = 0.05, the eigenvalues of J(E2) are
µ1 = 0.4472 > 0, µ2 = 0.0051 > 0, E2 = (0.2764, 0) is unstable. For c =
0.5, h = 0.2, d = 0.6, E = 0.6, the eigenvalues of J(E2) are µ1 = 0.4472 >

0, µ2 = −0.1.0949 < 0, E1 = (0.2764, 0) is saddle (Figure 1c).
– For c = 1, h = 0.0288 = h1, d = E = 0.3, the Trace of J(E2) is zero.

E∗ = (0.3600, 0.3360) is center (Figure 2a).
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– For c = 1, h = 0.0400 > h1, d = E = 0.3, the Trace of J(E2) is 0.0156 > 0.
E∗ = (0.3600, 0.3173) is source (Figure 2b).

– For c = 1, h = 0.0195 < h1, d = E = 0.3, the Trace of J(E2) is −0.0129 <

0. E∗ = (0.3600, 0.3515) is sink (Figure 3a).

– The system (3) exhibit saddle-node bifurcation for c = 0.2, h =
1

4
=

0.25, d = 0.1, E = 0.05 (Figure 3b).

6 Conclusions

A dynamical predator-prey model with the square root functional response to
describe the prey herd behaviour assuming the average handling time is zero
has been studied. Also we have incorporated constant prey harvesting, pro-
portional harvesting in predator in the model. Conditions for the existence of
the equilibria of the system (3) has been discussed. The local stability of two
different predator free equilibria and a unique equilibrium point the system
(3) has been analyzed. It has been observed that, two types of bifurcations oc-
cur. The saddle-node and Hopf bifurcation has been analyzed and it has been

found that, there is a maximum sustainable yield hMSY =
1

4
. At h > hMSY ,

the prey population will go extinct and it will be the cause for extinction of

the predator population. But if 0 < h <
1

4
, the prey population do not go

extinct. An unstable limit cycle exists around the interior equilibrium point.
It has been examined that if harvesting rate is chosen at h ≤ h1, both popu-
lation will coexist and will maintained ecological balance. The calculation of
first Lypunov number cleared that the Hopf bifurcation is super-critical. To
enhance a good knowledge about the interaction between two species prey and
predator, the results of this paper may help.
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Figures

Figure 1

(a) The Phase plane diagram of the system (3) when c = 0:2; h = 0:2; d = 0:1;E = 0:05, where E1 is saddle.
(b) The Phase plane diagram of the system (3) when c = 0:2; h = 0:2; d = 0:1;E = 0:1, where E1 is stable.
(c) The Phase plane diagram of the system (3) when c = 0:5; h = 0:2; d = 0:6;E = 0:6, where E2 is saddle.



Figure 2

(a) Phase plot of the system (3) for c = 1; h = 0:0288 = h1; d = E = 0:3, where E* is center. (b) Phase plot of
the system (3) for c = 1; h = 0:0400 > h1; d = E = 0:3, where E* is source.

Figure 3

(a) Phase plot of the system (3) for c = 1; h = 0:0288 = h1; d = E = 0:3, where E* is sink. (b) The diagram
for saddle-node bifurcation of system (3) at h = 0 : 4225: Stable equilibrium points are represented by the
solid blue curve and unstable equilibrium points are represented by green dashed curve.



Figure 4

(a) Time series at h = 0:0288 = h1. (b) Time series at h = 0:0400 > h1. (c) Time series at h = 0:0195 < h1.
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