A theoretical model of sawing granite by means of a diamond wire saw, composed of a multitude of diamond-impregnated beads mounted onto a steel rope, is presented. The wire sawing process has been contrasted with circular sawing with respect to diamond loading conditions. The analytical treatments have been supported by industrial quantitative assessments and qualitative observations. The evaluation of cutting forces as well as identification of system characteristics affecting wire vibration and wire rotation are instrumental in both machine design and tool formulation. This knowledge is also useful to diagnose and prevent problems inherent in diamond wire sawing of granite, such as the high incidence of wire breakage, unsatisfactory tool life and cutting capability, eccentric bead wear, etc.