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Abstract 49 

Areal rainfall is routinely estimated based on the observed rainfall data using distributed 50 

point rainfall gauges. However, the data collected are sparse and cannot represent the 51 

continuous rainfall distribution (or field) over a large watershed due to the limitations of 52 

weather station networks. Recent improvements in remote-sensing-based rainfall estimation 53 

facilitate more accurate and effective hydrological modeling with a continuous spatial 54 

representation of rainfall over a watershed of interest. In this study, we conducted a 55 

systematic stepwise comparison of the areal rainfalls estimated by a synoptic weather station 56 

and radar station networks throughout South Korea. The bias in the areal rainfalls computed 57 

by the automated synoptic observing system and automatic weather system networks was 58 

analyzed on an hourly basis for the year 2021. The results showed that the bias increased 59 

significantly for hydrological analysis; more importantly, the identified bias exhibited a 60 

magnitude comparable to that of the low flow. This discrepancy could potentially mislead the 61 

overall rainfall-runoff modeling process. Moreover, the areal rainfall estimated by the radar-62 

based approach significantly differed from that estimated by the existing Thiessen Weighting 63 

approach by 4%–100%, indicating that areal rainfalls from a limited number of weather 64 

stations are problematic for hydrologic studies. Our case study demonstrated that the gauging 65 

station density must be within 10 km2 on average for accurate areal rainfall estimation. This 66 

study recommends the use of radar rainfall networks to reduce uncertainties in the 67 

measurement and prediction of areal rainfalls with a limited number of ground weather 68 

station networks. 69 

 70 

Keywords: Areal rainfall, bias, weather station network, radar rainfall, density of weather 71 
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1. Introduction 80 

Areal rainfall, which is the average value of the rainfall distribution over a basin, is an 81 

essential factor in basin-scale hydrological analyses (Kwon et al., 2012; Kwon et al., 2020). 82 

Its accurate estimation is essential for understanding basin hydrology, managing water 83 

resources, and mitigating flood risks. Weather data are acquired through a weather station 84 

network in which one station covers an area with a radius of tens to hundreds of kilometers, 85 

poses significant challenges in accurately capturing the spatial variability of rainfall. The 86 

representative rainfall data of a basin from an irregularly distributed weather station network 87 

can be compiled by estimating the areal rainfall, which is the average rainfall of the basin. 88 

The areal rainfall can be estimated using various geostatistical approaches such as the simple 89 

arithmetic average method, Thiessen polygon method, and kriging interpolation methods by 90 

compensating for the irregular distribution of weather stations (Lima et al., 2021). These 91 

methods highlight the effort to improve the reliability of hydrological analyses, which heavily 92 

depends on the accuracy of areal rainfall estimates (Rakhecha and Singh, 2009; Teegavarapu, 93 

2022). 94 

Areal rainfall has been generally adopted for hydrological analysis because the spatial 95 

distribution of rainfall over a basin cannot be accurately measured with a limited number of 96 

ground stations. In general, the accuracy of areal rainfall is evaluated by analyzing the bias 97 

between estimated areal rainfalls (Chen et al., 2017; Daly et al., 1994; Hijmans et al., 2005; 98 

Kim et al., 2015; Kruizinga and Yperlaan, 1978; Li and Shao, 2010; Liu et al., 2022; Sene, 99 

2013; So et al., 2017; Taesombat and Sriwongsitanon, 2009; Wagner et al., 2012; Xu et al., 100 

2015; Yang et al., 2015; Zhang et al., 2016). However, existing methods have limitations in 101 

terms of model validation since model testing can be conducted only for the observed values 102 

of a weather station network. Moreover, the spatial distribution of rainfall across a watershed 103 

is not readily available, and the pattern is instead assumed to be uniform over the entire 104 



watershed. This issue is likely to intensify as the influence range for each weather station 105 

increases (Bližňák et al., 2022; Gampe and Ludwig, 2017).  106 

Recently, recognizing the limitations of weather station networks in estimating areal rainfall, 107 

studies were conducted to explore the use of continuous rainfall data acquired from radars 108 

and satellites for determining areal rainfall. These studies investigated the performance of 109 

remote-sensing-based models for a target basin and reported that the accurate estimation of 110 

areal rainfall is strongly related to the spatial distribution of the weather station network. 111 

More importantly, the reliable calibration of hydrologic models is highly affected by the 112 

density of the weather station network, with denser networks providing an accurate 113 

representation of the rainfall-runoff process (Cheng et al., 2012; Lebel et al., 1987; Wood et 114 

al., 2000). Previous studies considered the spatio-temporal variability of continuous rainfall 115 

sequences across watersheds (Ahmed et al., 2022; Akgül and Aksu, 2021; Bližňák et al., 116 

2022; Haberlandt, 2007; Malede et al., 2022; Schiemann et al., 2011; Sherman and Johnson, 117 

1993; Valles et al., 2020; Verworn and Haberlandt, 2011). In addition, several studies 118 

revealed that reliable hydrological simulations could be achieved using accurate areal 119 

rainfalls from a dense weather station network considering geographical and orographic 120 

effects. However, these studies were limited to specific basins and could not be applied to 121 

other areas. 122 

Various areal rainfall estimation methods based on weather station networks still have a clear 123 

limitation in that a direct comparison with the true rainfall field is not feasible for ungauged 124 

watersheds. Moreover, the effect of basin size on the estimation of areal rainfall averages 125 

from point rainfall estimates has been theoretically explored by previous studies (Veneziano 126 

and Langousis, 2005; Langousis and Kaleris, 2013). Veneziano and Langousis (2005) proved 127 

the scaling properties of the ARF (areal reduction factor) under the condition that spacetime 128 

rainfall has multifractal scale invariance. Moreover, they explored the bias when estimating 129 



the ARF from sparse rain gauge networks. They showed that the bias in ARF is mainly 130 

induced by estimating areal rainfalls from the rain gauge network due to the saturation of 131 

ARF, leading to 1 as basin size increases. Langousis and Kaleris (2013) developed a 132 

theoretical framework to obtain estimates of spatial rainfall averages and further used them to 133 

effectively calibrate rainfall–runoff models in basins covered by a single rain gauge.  134 

Hwang et al. (2020) assessed spatial interpolation methods for areal rainfall estimations in 135 

small South Korean catchments with limited rain gauges. It found that accuracy decreases 136 

with smaller catchment sizes and fewer gauges, particularly noting the Thiessen method’s 137 

limitations. Although the study provided recommendations for optimizing the placement of 138 

rain gauges in small catchments, the potential biases associated with existing methods in 139 

rainfall-runoff modeling were not explicitly explored. Moreover, the previous study was 140 

based on data from a limited set of five radar stations. Currently, Hybrid Surface Rainfall 141 

(HSR) data sourced from 10 radar stations over South Korea, representing the latest 142 

advancement in radar synthetic rainfall data, is readily available for a more detailed 143 

assessment of how accurate spatial rainfall information impacts areal rainfall estimation. 144 

This study is not intended to directly investigate the ARF and the associated bias from sparse 145 

rain gauge networks. Instead, our focus is to better understand systematic biases in estimating 146 

areal rainfall and represent the required density of the weather station network using radar 147 

rainfall field. Here, we explore an approach for estimating accurate areal rainfall and provide 148 

a systematic procedure for the direct comparison of areal rainfalls for watersheds with a 149 

limited number of weather station networks. The accuracy and reliability of the areal rainfalls 150 

measured by a weather station network were evaluated using radar data. The main objectives 151 

of this study are threefold: first, we explored the systematic biases in estimating areal rainfall; 152 

second, the reliability of the areal rainfall based on the density of the weather station network 153 

was evaluated; and third, the optimum density of the weather station network that produces 154 



the most accurate representation of areal rainfall for a basin was determined. Finally, a 155 

strategy for estimating areal rainfall for hydrological analysis was examined. 156 

 157 

2. Weather Station and Radar Networks 158 

Radar data are suitable for estimating the areal rainfall of a basin because they provide high 159 

spatiotemporal resolution. Radar rainfall estimation biases arise from inaccurate radar 160 

reflectivity measurements and variability in its vertical profile, which affects the Z-R 161 

relationship. (McRoberts and Nielsen-Gammon, 2017; Seo et al., 2015; Berne and Krajewski, 162 

2013; Hall et al., 2015). Efforts to improve accuracy include hybrid scan reflectivity 163 

precipitation estimation techniques (Fulton et al., 1998; O’Bannon, 1997; Zhang et al., 2011; 164 

Kim et al., 2018; Kim et al., 2020). For instance, the Korea Meteorological Administration 165 

(KMA) developed and provided HSR data through a multiple-elevation-based rainfall 166 

estimation approach, which involved three-dimensional data collection using a dual-167 

polarization radar (Fulton et al., 1998; O’Bannon, 1997; Zhang et al., 2011; Nguyen et al., 168 

2021). 169 

In this study, three types of precipitation data enabling the examination of the spatial 170 

precipitation distribution throughout South Korea were selected. These include automated 171 

synoptic observing system (ASOS) data from 96 stations, automatic weather system (AWS) 172 

data from 504 stations, and HSR data which are synthesized radar data from 10 stations. All 173 

of them are simultaneously operated such that a dense network of precipitation data across 174 

South Korea can be acquired on an hourly basis. This study used hourly precipitation data 175 

from the three types of weather stations for the year 2021, as shown in Figure 1 and Table 1. 176 

All the data were transformed into a one-hour temporal scale to obtain the spatial distribution 177 

of hourly precipitation over an entire watershed. KMA provides weather and climate data 178 

through its open meteorological data portal (https://data.kma.go.kr). 179 



[Insert Figure 1 and Table 1] 180 

 181 

Hydrologic unit maps delineate watersheds in terms of size (large, middle, and standard) with 182 

watershed characteristics. These maps are used for collecting and analyzing the data for 183 

managing water resources. These maps are shared between organizations at the local and 184 

national level to improve water use efficiency, planning, and management. In general, 185 

hydrological analysis is carried out on a watershed basis, and the areal rainfall representing 186 

the average rainfall over the target watershed is estimated first. In Korea, hydrologic unit 187 

maps are managed and updated by the Ministry of Environment (MOE). A hydrologic unit 188 

map is composed of 20 large basins (LBSN), 106 middle sized basins (MBSN), and 808 189 

standard basins (SBSN), as shown in Figure 2 and Table 2. 190 

[Insert Figure 2 and Table 2] 191 

 192 

3. Research Methods and Evaluation Metrics 193 

Basin-scale hydrological analysis requires the average rainfall over the entire watershed. 194 

Traditional methods such as the Thiessen Weighting (TW) and inverse distance weighting 195 

(IDW) have been used to estimate areal rainfall using sparse ground station data. In this 196 

study, we focus on the role of spatial continuity for estimating the areal rainfall and the 197 

limitation of existing approaches in accurately determining the areal rainfall. It should be 198 

noted that bias in the precipitation amounts obtained from radar rainfall estimates is not 199 

explicitly explored, and this study investigates the enhancement of ground weather station 200 

networks with spatial information from radar rainfall field data. This study follows a three-201 

step process. In the first step, existing areal rainfall estimation approaches are systematically 202 

compared. Specifically, the areal rainfall measurements from ASOS and AWS are compared 203 

for a given hydrologic unit. The measurement differences are investigated in terms of 204 

amounts and spatial patterns. In the second step, the performance of radar in estimating areal 205 



rainfall is evaluated by replacing the observed precipitation obtained from ASOS or AWS 206 

weather stations with the radar rainfall estimates for the same locations. Although the radar 207 

rainfall field is not expected to be identical to the observed data of the weather station, areal 208 

rainfalls based on radar rainfall estimates can be used to explore the role of the density of the 209 

weather station network. Moreover, the estimated areal rainfalls in this stage are subsequently 210 

used to compare true areal rainfalls based on entire radar rainfall estimates over the basin for 211 

a consistent comparison. In the third step, two types of areal rainfall data, obtained from 212 

pointwise radar rainfall estimates at the same locations of the weather station networks (i.e., 213 

ASOS and AWS) and gridded radar rainfall estimates averaged over the basin, are compared. 214 

Here, the areal rainfalls estimated from the entire grid are used to better understand the 215 

limitations and advantages of estimating the areal rainfall of a basin according to the density 216 

of weather stations in a hydrologic unit. The accurate representation of the areal rainfall could 217 

be achieved through this three-step process. Through this process, the areal rainfall in terms 218 

of the weather station network density and the watershed area is comprehensively analyzed, 219 

and the optimal spatial density of a weather station network for the effective estimation of the 220 

areal rainfall for basin-scale hydrological analysis is investigated. Figure 3 presents the 221 

detailed modeling process employed in our comparative analysis. 222 

[Insert Figure 3] 223 

In this study, the TW method is applied to estimate the area-weighted areal rainfall of a 224 

watershed from weather stations and radar networks. Three types are described by the 225 

following equations. 226 

Type 1: Areal rainfall by the TW method on weather network data (𝑃𝑎,𝑤𝑠𝑛) is expressed as 227 

𝑃𝑎,𝑤𝑠𝑛 = ∑ (𝑃𝑖,𝑤𝑠𝑛×𝐴𝑟𝑒𝑎𝑖)𝑁𝑖𝐴𝑟𝑒𝑎𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑         (1) 228 



where N is the number of weather stations in the watershed and Pi,wsn is the precipitation from 229 

the weather station network observed at station i. 230 

 231 

Type 2: Areal rainfall by the TW method which involves replacing the rainfall amounts with 232 

the radar rainfall estimates (𝑃𝑎,𝑤𝑠𝑛′ ) at the nearest grids to point gauges at the location weather 233 

network is expressed as 234 

𝑃𝑎,𝑤𝑠𝑛′  = ∑ (𝑃𝑖,𝑟𝑤𝑠𝑛×𝐴𝑟𝑒𝑎𝑖)𝑁𝑖𝐴𝑟𝑒𝑎𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 ,        (2) 235 

where N is the number of weather stations in the watershed and Pi,rwsn is the radar rainfall 236 

estimates for the weather station network at station i. 237 

 238 

Type 3: Areal rainfall by the mean radar rainfall (𝑃𝑎,𝑟𝑛) that is assumed to be the true areal 239 

rainfall is calculated as 240 

𝑃𝑎,𝑟𝑛 = ∑ (𝑃𝑗,𝑟𝑛×𝐷𝑟𝑎𝑖𝑛𝑒𝑑_𝐴𝑟𝑒𝑎𝑗)𝑁𝑗 𝐴𝑟𝑒𝑎𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 ,       (3)  241 

where N is the number of grids in the watershed and Pj,rn is the precipitation from the radar 242 

network observed at grid j. 243 

In addition, three different goodness-of-fit (GoF) metrics (Ralph, 1986) are used to evaluate 244 

the similarity of rainfall patterns and areal rainfall. These GoF metrics are the root mean 245 

square error (RMSE), correlation coefficients (CC) and receiver operating characteristic 246 

(ROC) curve, and correlation coefficient between the areal rainfalls. The GoF metrics are 247 

calculated as follows: 248 

𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑎,𝑤𝑠𝑛𝑖 −𝑃𝑎,𝑟𝑛𝑖 )2𝑇𝑖 𝑁 ,        (4) 249 

where 𝑃𝑎,𝑤𝑠𝑛𝑖  and 𝑃𝑎,𝑟𝑛𝑖  represent the areal rainfall estimated by the TW method based on 250 

weather network data and by averaging radar rainfall data at the ith time step, respectively, 251 

while T denotes the length of the time series. 252 



𝐶𝐶 = r𝑥𝑦 = ∑ (𝑃𝑎,𝑤𝑠𝑛𝑖 −𝑃𝑎,𝑤𝑠𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑃𝑎,𝑟𝑛𝑖 −𝑃𝑎,𝑟𝑛̅̅ ̅̅ ̅̅ ̅)𝑇𝑖√∑ (𝑃𝑎,𝑤𝑠𝑛𝑖 −𝑃𝑎,𝑤𝑠𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑇𝑖 ∑ (𝑃𝑎,𝑟𝑛𝑖 −𝑃𝑎,𝑟𝑛̅̅ ̅̅ ̅̅ ̅)2𝑁𝑗 ,      (5) 253 

where r𝑥𝑦 is the correlation coefficients and T is the length of the areal rainfall time series 254 

Consider a two-class prediction problem (binary classification) in which the outcomes are 255 

classified as either positive (p) or negative (n). The number of possible outcomes from a 256 

binary classifier is four. If the outcome from a prediction is p and the actual value is also p, 257 

then the result is called a true positive (TP). If the actual value is n, then the result is called 258 

a false positive (FP). Conversely, a true negative (TN) occurs when both the prediction 259 

outcome and the actual value are n, and a false negative (FN) occurs when the prediction 260 

outcome is n while the actual value is p. Here, the true positive rate (TPR) and the false 261 

positive rate (FPR) are needed (as functions of some classifier parameter) to derive a ROC 262 

curve (Peterson et al., 1954; Wilks, 2006). Specifically, the ROC curve is the plot of the TPR 263 

against the FPR at various threshold settings. The area under the ROC curve (AUC) serves as 264 

a comprehensive metric for assessing the accuracy of forecasts, commonly referred to as the 265 

ROC score. AUC allows for an objective comparison between models. In the ideal scenario, 266 

where forecasts are perfect, the ROC curve will converge to a point at (FPR=0, TPR=1.0), 267 

indicating an AUC of 1.0—the maximum achievable score. Conversely, forecasts exhibiting 268 

little to no predictive skill will achieve a score close to an AUC of 0.5, corresponding to the 269 

area under a diagonal line that represents random-guess level performance. One of the key 270 

advantages of using AUC as a metric is its independence from any specific classification 271 

threshold. This makes it particularly useful for evaluating and comparing models when the 272 

optimal threshold is not known or may vary depending on different operational or business 273 

requirements. The TPR defines how many correct positive results occur among all positive 274 

samples available during the testing period. The FPR defines how many incorrect positive 275 

results occur among all negative samples available during the testing period. Therefore, the 276 

https://en.wikipedia.org/wiki/Binary_classification


FPR and TPR are used to define a ROC space in the x and y axes, respectively. For example, 277 

the best case for the predictive value would yield a point in the upper left corner or coordinate 278 

(0, 1) of the ROC space, representing 100% sensitivity (no FNs) and 100% specificity (no 279 

FPs). 280 TPR = TP𝑃 = 𝑇𝑃𝑇𝑃+𝐹𝑁         (6) 281 

FPR = FP𝑁 = 𝐹𝑃𝐹𝑃+𝑇𝑁         (7) 282 

This study generated the ROC curves for the estimated areal rainfalls collected by the ASOS 283 

and AWS weather station networks. The consistency of the rainfall patterns between the two 284 

areal rainfall sequences for the same watershed was evaluated by assigning 1 for rainfall 285 

detection and 0 for no rainfall detection for given rainfall occurrences in the areal rainfall 286 

time series. 287 

[Insert Figure 4] 288 

 289 

4. Results 290 

4.1 Reliability assessment for areal rainfall using the TW method 291 

Two types of weather station networks (ASOS and AWS) are operated across the South 292 

Korea. The TW method was used to estimate the areal rainfall for hydrologic units based on 293 

data from each type of weather observation network. The estimated areal rainfalls from the 294 

two types of weather station networks were compared. Here, areal rainfalls are solely based 295 

on the observed precipitation obtained from weather station networks to better understand the 296 

role of the spatial distribution of rainfall gauges in accurately estimating areal rainfalls. By 297 

analyzing the ROC curves of the ASOS- and AWS-based areal rainfalls for all basins, the 298 

spatial patterns of the two areal rainfalls were compared to identify similarities and 299 

dissimilarities. Comparisons were made with the complete rainfall sequences, including zero 300 

rainfall. The ROC score is directly estimated by comparing spatial rainfall patterns obtained 301 



from ASOS- and AWS weather station networks. The AWS weather station network is 302 

composed of more than 500 stations, while there are 96 stations for the ASOS weather station 303 

network. Thus, one can expect that the AWS-based areal rainfall measurements can depict 304 

spatial patterns of rainfall fields more accurately. Meanwhile, the ASOS-based area rainfall 305 

estimation can be ineffective for smaller basins such as SBSNs (Hyun et al., 2019); hence, the 306 

dissimilarities in the ROC scores are expected to be higher for the smaller basins than for the 307 

middle and large basins. The results showed that the ROC score lies in the range of 0.8–0.98 308 

for SBSNs, 0.84–0.96 for MBSNs, and 0.89–0.97 for LBSNs. As expected, the similarity of 309 

rainfall patterns between the two areal rainfalls increases with the watershed area. The ROC 310 

scores for SBSNs had a much larger range compared to those for the LBSNs, as seen in 311 

Figure 5.  312 

[Insert Figure 5] 313 

 314 

The RMSE was calculated to quantitively evaluate biases (or differences) in areal amounts 315 

derived from the ASOS and AWS weather station networks over South Korea. The spatial 316 

pattern of the RMSE and their distributions with different basin sizes are illustrated in Figures 317 

6 and 7, respectively. The RMSE (mm/h) was found to be 0.02–0.12 for SBSNs, 0.03–0.09 318 

for MBSNs, and 0.015–0.06 for LBSNs. As expected, the similarity of rainfall patterns 319 

between the two areal rainfalls increases with the watershed area, and the RMSEs of SBSNs 320 

showed a much larger range compared to those of the LBSNs, as seen in Figure 7.  321 

[Insert Figures 6 and 7] 322 

We estimated the RMSE for the rainfall events, excluding the zero rainfalls, in the same 323 

manner as illustrated in Figures 6 and 7. As shown in Figures 8 and 9, the RMSE (mm/h) 324 

range was 0.2–1.12 for SBSNs, 0.22–0.7 for MBSNs, and 0.08–0.45 for LBSNs. The RMSE 325 

for the nonzero rainfall series stood out as being more prominent and increased by six to ten 326 



times compared to the RMSE for the complete time series, which included zero rainfalls. The 327 

spatial pattern of the RMSE (Figure 8) over South Korea was similar to that of the complete 328 

series, while an increasing tendency was also clearly observed in the distribution of the 329 

RMSE with different basin sizes, as displayed in Figure 9. 330 

[Insert Figures 8 and 9] 331 

The Soyang River basin was selected for further research into these biases as crucial for 332 

improving areal rainfall estimates with limited rain gauges. The basin holds significant 333 

importance in the management of water resources within South Korea, supported by the 334 

presence of highly reliable, long-term rainfall, and runoff data. Figure 10 showed the 335 

observed runoff series measured from the Soyang River basin (2,783.26 km2), one of the 336 

MBSNs, together with the average RMSE in m3/s. There are approximately 90 days with 337 

measurements below the black line, indicating a low water flow condition. More specifically, 338 

the RMSE was comparable in magnitude to that of the low flow condition, potentially 339 

misleading the overall rainfall-runoff modeling process. The bias in the estimation process of 340 

areal rainfalls should be reduced by considering the accurate spatial pattern of rainfall 341 

informed by radar networks. 342 

[Insert Figure 10] 343 

 344 

4.2 Understanding biases in the estimation of areal rainfalls  345 

The reliability of areal rainfall measurements is mainly affected by the density of the ASOS 346 

and AWS networks, and we demonstrated a high gauge density is needed to accurately 347 

represent areal rainfalls. A systematic experiment with three different strategies was designed 348 

to explore the accuracy of areal rainfall estimation in terms of the density of gauging stations. 349 

Areal rainfalls are estimated with the radar rainfall networks based on the locations of ASOS 350 

and AWS weather stations. More specifically, the radar-based rainfall measurements for the 351 



locations of ASOS and AWS stations were first extracted, and the TW method was applied 352 

for constructing areal rainfalls. Cross-correlations of the precipitation series over the ASOS 353 

and AWS stations were illustrated in Figures 11(a) and 11(b). The cross-correlations of radar 354 

rainfall estimates obtained for the same locations as the ASOS and AWS weather station 355 

networks were compared in Figures 11(c) and 11(d). As seen in Figure 10, radar rainfall 356 

estimates accurately reproduce spatial dependency across stations obtained from the ASOS 357 

and AWS stations. Therefore, areal rainfalls averaged over entire radar-gridded networks 358 

encompassing target basins are assumed to be the true areal rainfall. Here, bias in radar 359 

rainfall estimates is not considered for the estimation of areal rainfalls, and this study instead 360 

focuses on exploiting spatial patterns of radar-measured rainfall. Further, one can expect 361 

consistent comparisons across three different cases in estimating areal rainfalls. 362 

[Insert Figure 11] 363 

 364 

Figure 12 revealed the difficulties in correctly estimating areal rainfalls with actual rainfall 365 

fields and the limited number of ground gauges based on the TW method. In the figure, a 366 

rainfall distribution exists in the basin, but the areal rainfall in the basin can be zero if rainfall 367 

is not detected by the weather observation network. In contrast, the areal rainfall can be 368 

overestimated if the rainfall distribution is only observed in the limited part of the area with a 369 

larger weighing factor (Kim et al., 2018; Hwang et al., 2020). In this context, biases could be 370 

expanded with extreme weather events (Nguyen et al., 2021; So et al., 2015). 371 

 [Insert Figure 12] 372 

 373 

We further investigated biases in the weighting factor of the TW method by repeatedly 374 

estimating areas covered by actual rainfall fields over time with respect to the Thiessen 375 

polygons in the Soyang River basin (i.e., a MBSN). Figure 13 shows the radar-based TW 376 

weighting factor sequences for six contributing areas with the representative gauging stations 377 



in the Soyang River basin, while the red line is the existing TW weighting factor used to 378 

estimate areal rainfalls. The radar-based TW weighting factor sequences showed a noticeable 379 

change over time in the range of 4%–100% with respect to the existing TW weighting factor. 380 

More importantly, during the non-rainy season, spanning from November to April, the 381 

weighting factors were noticeably distributed from zero to the maximum value, representing 382 

the existing TW factor. Conversely, during the rainy season from May to early October, there 383 

was significant variability covering the entire range of the weighting factor as illustrated in 384 

representative stations No. 90, 93, 100, 101, and 211. However, station No. 212 showed no 385 

discernible change over the entire year due to its relatively low contributing area (TW factor 386 

of 0.0005) for the Soyang River basin. This indicates that the areal rainfalls based on the 387 

weighting factor from a limited number of gauging stations could be problematic in 388 

effectively representing spatial rainfall patterns, leading to inaccurate estimation of areal 389 

rainfall.  390 

[Insert Figure 13] 391 

The weighing factors informed by the ASOS (low density) and AWS (high density) networks 392 

were then applied to examine the effectiveness of a higher density of weather stations in 393 

estimating areal rainfalls, as illustrated in Figure 14. The areal rainfall obtained from radar 394 

rainfall estimates on ASOS showed significant biases compared to the true areal rainfall 395 

(labeled Radar) averaged over gridded radar rainfalls. At the same time, a noticeable 396 

improvement was identified with the radar rainfall estimates on AWS. For the case of the 397 

ASOS station, the overestimation mainly occurs with large rainfall amounts, whereas the 398 

underestimation occurs with small rainfall amounts. The consistency of the rainfall patterns 399 

between the two areal rainfall time series for the same basin was further evaluated by 400 

substituting 1 for rainfall and 0 for no rainfall according to the rainfall occurrence in the areal 401 

rainfall time series. It was found that the mismatch ratios were about 10.9% and 5.3% for the 402 



ASOS and AWS networks, respectively. Further, the ROC score is illustrated in Figure 15. 403 

The ROC score between the ASOS-based (or AWS-based) areal rainfalls and true areal 404 

rainfalls lies in the range of 0.84–0.97 (or 0.92-0.98) for SBSNs, 0.86–0.96 (or 0.94-0.98) for 405 

MBSNs, and 0.91–0.96 (0.96-0.98) for LBSNs. It can be concluded that the consistency of 406 

rainfall patterns between the ASOS-based (or AWS-based) areal rainfalls and true areal 407 

rainfalls increases with the density of the weather station network. Moreover, the ROC score 408 

in SBSNs represents increased variability (or range) while a much tighter band is observed 409 

for LBSNs.  410 

[Insert Figures 14 and 15] 411 

This study compared the correlation coefficients (Figure 16) and the RMSEs (Figures 17 and 412 

18) to better characterize the similarity between areal rainfall series. It was found that the 413 

correlation coefficient increases and the RMSE decreases as the weather station network 414 

density and the watershed area are increased, indicating that the areal rainfall informed by a 415 

high density of weather station network (i.e., the AWS network) becomes similar to the true 416 

spatial rainfall pattern. The RMSE for the rainfall time series, excluding the zero rainfalls 417 

(Figure 18), turns out to be more significant and higher by tenfold than the RMSE for the 418 

complete areal rainfall series, including the zero rainfalls (Figure 17). Thus, the systematic 419 

bias in estimating areal rainfalls with respect to the weather station network needs to be 420 

corrected by an increase in the density of the weather station network, leading to the accurate 421 

spatial pattern representation of rainfall. 422 

[Insert Figures 16, 17 and 18] 423 

 424 

Finally, the contributing area ratio, defined as the ratio of the contributing area covered by the 425 

actual rainfall field to the Thiessen polygons, was evaluated for all basins and all rainfall 426 

series, as illustrated in Figure 19. A value of 100 indicates that the contributing rainfall area 427 



on the Thiessen polygons is the same as the existing TW weight factor, and a value closer to 428 

zero represents that the actual rainfall field with respect to the Thiessen polygons is relatively 429 

smaller. As shown in Figure 19, the results support a clear inverse relationship between the 430 

Thiessen polygon area and the ratio. The variability (or range) of the contributing ratio 431 

becomes larger with a relatively small Thiessen polygon area, indicating that rainfall 432 

variability is higher in for areas smaller than approximately 10 km2. In contrast, as the 433 

polygon area is increased, the variability is gradually decreased. For example, to reduce the 434 

difference in the ratio by 10%, the density of the weather station network needs to be within 435 

10 km2 in the average sense, although the variability will be relatively higher. 436 

 437 

5. Discussion 438 

This study provided a detailed comparison of areal rainfall estimates derived from two types 439 

of weather station networks (ASOS and AWS) across various hydrologic units in South 440 

Korea. Unlike many previous studies, which may focus on a specific basin size, our analysis 441 

spans small to large basins (SBSNs, MBSNs, and LBSNs), offering a broader perspective on 442 

the spatial accuracy of rainfall estimation. Consistent with Hyun et al. (2019), this study 443 

demonstrated that the AWS network, with a higher density of weather stations, shows more 444 

accurate spatial patterns of rainfall, especially in smaller basins (SBSN), compared to the 445 

ASOS network. This emphasizes the critical role of weather station density in capturing the 446 

spatial variability of rainfall across different hydrologic units, a similar concept highlighted in 447 

various studies in the field of hydrologic science (Kim et al., 2018; Hwang et al., 2020). In 448 

contrast to the findings of Nguyen et al. (2021) and So et al. (2015), which suggest that bias 449 

associated with extreme weather events may be exacerbated in networks with sparse station 450 

density, our analysis extended this understanding by quantifying the extent of bias across 451 

various basin sizes and rainfall intensities. 452 



In this study, several methodological advancements over previous research were introduced. 453 

Firstly, we offered a detailed analysis of how the density of weather station networks affects 454 

the accuracy of areal rainfall estimates. This was achieved by using a different set of 455 

Goodness-of-Fit (GoF) metrics, encompassing both the ROC score and RMSE value across a 456 

range of basin sizes and rainfall intensities. Secondly, the integration of radar rainfall 457 

estimates into our study provided a systematic comparative framework for evaluating the 458 

performance of ground-based observations in estimating areal rainfall. This comparative 459 

analysis, which is relatively limited in the existing research, enhanced our understanding by 460 

highlighting the capabilities and limitations of ground-based observations compared to radar 461 

rainfall estimates. Thirdly, we investigated how biases identified in areal rainfall estimates 462 

can impact runoff predictions in the Soyang River basin. Our findings on the discrepancies 463 

between areal rainfall estimates from ASOS and AWS networks have direct implications for 464 

rainfall-runoff modeling in the Soyang River basin. The RMSE values, especially when 465 

comparing biases associated with areal rainfall estimates to observed runoff, emphasized the 466 

sensitivity of runoff predictions to the accuracy of rainfall inputs. This was exemplified by 467 

the comparable magnitude of RMSEs to low flow conditions observed in the basin, 468 

suggesting that inaccuracies in rainfall estimation could lead to substantial biases in modeling 469 

the rainfall-runoff process, especially during periods of low flow. 470 

The potential biases in radar rainfall estimates, which were not accounted for in our analysis, 471 

could influence the accuracy of areal rainfall estimations. Furthermore, the generalization of 472 

our results may be constrained by regional climatic and topographical characteristics within 473 

South Korea. Future research should aim to address these biases and explore the applicability 474 

of our findings in different hydrological and climatic contexts. Additionally, exploring the 475 

impact of quasi-real-time data integration and advancements in radar technology on areal 476 

rainfall estimation accuracy could provide valuable insights for the hydrological community.  477 



Our study emphasized the significance of optimizing weather station network density for 478 

improving areal rainfall estimates, which are crucial for hydrological modeling, flood 479 

forecasting, and water resource management. Accurate areal rainfall estimation can 480 

significantly enhance the reliability of rainfall-runoff models, contributing to more effective 481 

water resource planning and management strategies. The variability in estimation accuracy 482 

across different basin sizes and network densities highlights the need for tailored approaches 483 

in deploying weather station networks, especially in regions prone to extreme weather events. 484 

Thus, it should be noted that a sensitivity analysis on the variability of the contributing ratio 485 

could significantly enhance our understanding of the dynamics between weather station 486 

density, the accuracy of areal rainfall estimation, and the performance of hydrological 487 

models. In this context, future efforts will concentrate on understanding the impact of 488 

weather station density on the accuracy of areal rainfall estimation, especially concerning the 489 

critical threshold of the weather station density. This analysis aims to explore optimal 490 

strategies for deploying weather stations, offering valuable insights for water resource 491 

management and fostering more resilient and adaptive hydrological practices in response to 492 

climatic variability. 493 

 494 

[Insert Figure 19] 495 

 496 

6. Conclusions 497 

In this study, we explored the systematic bias in estimating the areal rainfall for a basin in the 498 

context of the density of the weather station network. For this purpose, radar rainfall 499 

estimates were utilized to better understand the required density of the weather station 500 

network for accurate areal rainfall estimation. Further, we compared areal rainfall estimates 501 

for different basin sizes using a limited number of weather station networks. A stepwise 502 

procedure was developed to systematically evaluate areal rainfalls with an existing ground 503 



weather station and radar station networks. The main findings and recommendations of this 504 

study are as follows. 505 

1. The areal rainfalls estimated by the ASOS and AWS weather station networks for 506 

different hydrologic units were compared, and the discrepancies in the estimated areal 507 

rainfalls were evaluated. Here, areal rainfalls were solely derived from the observed 508 

precipitation over the weather station network to characterize the role of the spatial 509 

distribution of rainfall gauges. We calculated the ROC scores and compared spatial 510 

rainfall patterns from ASOS and AWS weather station networks. As expected, the 511 

AWS-based areal rainfalls obtained from more than 500 stations were more effective 512 

than the ASOS-based areal rainfalls from 96 stations in terms of representing the 513 

spatial patterns of rainfall fields. The variation in the ROC scores was higher for the 514 

smaller basins than for the larger basins. Alternatively, the similarity of rainfall 515 

patterns between the two areal rainfalls increased with the watershed area. The ROC 516 

scores for the smaller basins (SBSNs) demonstrated more variability, while those for 517 

the larger basins (LBSNs) were higher.  518 

2. The bias in the areal rainfall was explored by determining the RMSE between the 519 

areal rainfalls estimated from the ASOS and AWS weather station networks. The 520 

RMSE was found to be significant, especially for modeling the hydrological process. 521 

More importantly, the RMSE was comparable in magnitude to that of the low flow 522 

condition and was relatively high with respect to the observed flow rate, misleading 523 

the overall rainfall-runoff modeling process. Therefore, reduction of bias in the areal 524 

rainfalls is required for an accurate representation of the rainfall-runoff modeling 525 

process. This study recommends the use of spatial patterns of rainfall informed by 526 

radar rainfall networks to reduce the bias of the areal rainfalls estimated by a limited 527 

number of ground weather station networks. 528 



3. Radar-based rainfall measurements for the locations of the ASOS and AWS stations 529 

were extracted and compared with the areal rainfalls averaged from grids over the 530 

target basin that were assumed to be the true values. As a case study, biases in the 531 

weighting factor of the TW method were evaluated by estimating areas covered by 532 

radar rainfall fields over time with respect to the Thiessen polygons over the Soyang 533 

River basin. It was found that the radar-based TW weighting factors were 534 

significantly different from that of the existing TW in the range of 4%–100%, 535 

demonstrating that the areal rainfalls from a limited number of stations are 536 

problematic for hydrologic studies. The areal rainfall estimated from radar rainfall 537 

estimates on ASOS showed a noticeable increase in bias compared with the radar 538 

rainfall estimates on AWS with respect to the true areal rainfall averaged over gridded 539 

radar rainfalls. For lower density weather station networks, higher rainfall intensity 540 

was overestimated, whereas low rainfall intensity was underestimated. Similarly, the 541 

ROC score between the AWS-based areal rainfalls and true areal rainfalls showed an 542 

improved agreement. The results confirmed that the consistency between estimated 543 

areal rainfalls and true areal rainfalls increases with the density of the weather station 544 

network, and its effect was more prominent for large basins. 545 

4. The contributing area ratio, defined by the actual rainfall areas with respect to the 546 

Thiessen polygons, showed a clear inverse relationship with the Thiessen polygon 547 

area, whereas the associated variability is enlarged with a relatively small area and 548 

vice versa for the larger polygon area. If one intends to minimize the bias in the 549 

estimation of areal rainfall within approximately 10%, our case study demonstrated 550 

that the gauging station density needs to be within 10 km2 in the average sense.  551 



This study recommends utilizing a radar station network for understanding the bias in the 552 

areal rainfall estimation and examining the required density of weather stations for accurate 553 

hydrological modeling, especially for larger basins. The future research will combine rainfall-554 

runoff modeling with the areal rainfall estimation process to reduce uncertainty in 555 

hydrological analysis over different basin sizes and rainfall patterns. 556 
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Tables and Figures 730 

 731 

Table 1. Properties of the weather station networks used in this study 732 

Weather Network 

Inventory 

Specifications 

ASOS AWS 
Composite Radar 

HSR 

Number of stations 96 504 10 

Start Date 

(Different for each 

site) 

April/1904 July/1989 September/16/2019 

Data type Point Point Grid 

Spatial Coverage - - 
500 m (2305 × 

2881) 

Timescale 

Minutely, hourly, 

daily, monthly, 

yearly 

Minutely, hourly, 

daily, monthly, 

yearly 

5 min 

File format CSV, XML CSV, XML Bin (binary), PNG 

Download link http://data.kma.go.kr 
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Table 2. Hydrologic unit map information used in this study 735 

Basin classification 

Specifications 

Large Basin 

(LBSN) 

Middle Basin 

(MBSN) 

Standard Basin 

(SBSN) 

Total number of units 20 106 808 

Area 

(km2) 

Mean 5378.06 951.87 128.97 

Maximum  34428.1 2483.82 700.45 

Minimum  505.52 43.87 7.46 

Download link http://www.nsdi.go.kr  

 736 

 737 
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 739 
Figure 1. Map showing precipitation over a dense network along with weather radar system 740 

domain over South Korea 741 

  742 



 743 
Figure 2. Map showing hydrologic units over South Korea, with different colors indicating 744 

the 20 large basins (LBSN). The boundaries of the 106 middle-size (MBSN) and 808 745 

standard-size (SBSN) basins are marked by solid black and gray lines, respectively. The 746 

national rivers of South Korea are delineated by blue lines on the map  747 



 748 
Figure 3. Detailed three-step modeling process for areal rainfall estimation: analyzing the 749 

impact of weather station network density and watershed area on basin-scale hydrological 750 

analysis 751 

  752 



 753 
Figure 4. ROC space for “better” and “worse” classifiers. The space above the diagonal 754 

(dotted red line) represents similar patterns between areal rainfall occurrence sequences 755 

(better space); the space below the line represents different patterns between areal rainfall 756 

occurrences over time (worse space). The point at (0, 1) represents an identical sequence 757 

between the two areal rainfall occurrences over time and vice versa in the space around (1, 0)  758 

 759 

 760 

  761 



 762 
Figure 5. Distribution of ROC scores for the three types of hydrologic units classified 763 

according to the basin scale. The ROC score represents similarities of the two areal rainfalls 764 

estimated by the ASOS and AWS networks. (SBSN: standard basin, MBSN: middle basin, 765 

and LBSN: large basin) 766 

 767 

 768 

  769 



   
a) SBSN b) MBSN c) LBSN 

Figure 6. Spatial distribution of RMSE between the areal rainfalls constructed using the TW 770 

method on the ASOS and AWS networks for the three basin sizes. The comparisons were 771 

made with complete rainfall sequences, including zero rainfall. (SBSN: standard basin, 772 

MBSN: middle basin, and LBSN: large basin) 773 

 774 

 775 

 776 
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 778 
Figure 7. Boxplot showing RMSE distribution between the areal rainfalls constructed using 779 

the TW method on the ASOS and AWS networks over the three basin sizes. The comparisons 780 

were made with the complete rainfall sequences, including zero rainfall. (SBSN: standard 781 

basin, MBSN: middle basin, and LBSN: large basin) 782 

 783 
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a) SBSN b) MBSN c) LBSN 

Figure 8. Spatial distribution of RMSE between the areal rainfalls constructed using the TW 785 

method on the ASOS and AWS networks for the three basin sizes. The comparisons were 786 

made with the rainfall sequences, excluding zero rainfall. (SBSN: standard basin, MBSN: 787 

middle basin, and LBSN: large basin) 788 

 789 
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 792 
Figure 9. Boxplot of RMSE distribution between the areal rainfalls constructed using the TW 793 

method on the ASOS and AWS networks over the three basin scales. The comparison was 794 

made with the rainfall sequences excluding zero rainfall. (SBSN: standard basin, MBSN: 795 

middle basin, and LBSN: large basin) 796 

 797 

798 



 799 
Figure 10. Observed runoff series of the Soyang River basin from January 1st, 2021, to 800 

December 31st, 2021. The black-solid and red dashed lines are the average RMSE in m3/s, 801 

including and excluding zero rainfalls, respectively 802 
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a) Relationship of stations in the ASOS 

network 

b) Relationship of stations in the AWS 

network 

  
c) Relationship of radars located in the 

ASOS network 

d) Relationship of radars located in the 

AWS network 

Figure 11. Spatial dependency across weather stations with correlation coefficients: a) ASOS 804 

network, b) AWS network, c) radar rainfall estimates on the ASOS network, d) radar rainfall 805 

estimates on the AWS network. Initially, radar-based rainfall data for the locations of 96 806 

ASOS and 504 AWS stations are extracted. The TW method is then utilized to construct areal 807 

rainfall measurements. Subsequently, cross-correlations of the precipitation series across both 808 

ASOS and AWS stations are calculated to assess the spatial dependency among weather 809 

stations 810 

 811 
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 813 
Figure 12. Radar image at 2022-04-26 13:10 – 13:15 (a). The red dots are weather stations in 814 

the ASOS network. The area defined by the yellow line is a middle-size basin (MBSN). 815 

Figure (b) is an enlarged area covered by rainfall fields, and figure (c) shows the Thiessen 816 

polygon map for the Soyang River basin with the ASOS station codes 817 

  818 



 819 
Figure 13. Weighting factor sequences from 01:00 on January 1st, 2021, to 24:00 on December 31st, 2021, for six contributing areas with the 820 

representative gauging stations in the Soyang River basin. Factors are obtained by repeatedly estimating areas covered by actual rainfall fields 821 

from radar rainfall networks over time with respect to the Thiessen polygons in the Soyang River basin. The red solid line represents the 822 

existing TW weighting factor 823 

  824 



 825 
Figure 14. Areal rainfall time series and scatter plot from 01:00 on January 1st, 2021, to 24:00 on December 31st, 2021. The weighing factors 826 

informed by the ASOS (top panel) and AWS (lower panel) networks are used to construct the areal rainfall series for comparison with the 827 

areal rainfalls averaged over gridded radar rainfalls covering the Soyang River basin  828 
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 830 
Figure 15. Boxplots of ROC scores for basin-scale type. Here, the ROC score was obtained 831 

by comparing two areal rainfalls: averaged gridded radar rainfalls over the hydrologic unit 832 

and radar-based areal rainfalls on the ASOS and AWS networks. (SBSN: standard basin, 833 

MBSN: middle basin, and LBSN: large basin) 834 

 835 
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Figure 16. Correlation coefficient distribution between the radar-based areal rainfalls 837 

constructed using the TW method on the ASOS and AWS networks and true areal rainfalls 838 

for the three basin sizes. The transition from SBSN (left) to LBSN (right) shows the case with 839 

increasing basin scale, while the transition from Radar on ASOS (top) to Radar on AWS 840 

(bottom) represents the increasing density of the weather station network. (SBSN: standard 841 

basin, MBSN: middle basin, and LBSN: large basin) 842 
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 846 
Figure 17. Boxplot of the RMSE distribution between the areal rainfalls constructed using 847 

the TW method on the ASOS (or AWS) networks and true areal rainfalls over the three basin 848 

sizes. The comparisons were made with the complete rainfall sequences, including zero 849 

rainfall. (SBSN: standard basin, MBSN: middle basin, and LBSN: large basin) 850 

 851 

 852 

  853 



 854 
Figure 18. Boxplot of the RMSE distribution between the areal rainfalls constructed using 855 

the TW method on the ASOS (or AWS) networks and true areal rainfalls over the three basin 856 

sizes. The comparisons were made with the complete rainfall sequences, excluding zero 857 

rainfall. (SBSN: standard basin, MBSN: middle basin, and LBSN: large basin) 858 
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 864 
Figure 19. Contributing area ratio on the Thissen polygon area for all basins over South 865 

Korea in 2021 and all rainfall time series. The red solid line is the result of a linear regression 866 

model 867 
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