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Abstract
Global climate models (GCMs) are important tools for studying the climate system and climate change projections. Due to
their coarse spatial resolution, downscaling is necessary on regional scale. Regional climate models (RCMs) represent a
common solution for this issue. Nevertheless, outputs of RCMs are influenced by the boundary conditions provided by
GCMs. This study evaluates CMIP6 GCMs regarding the variables relevant as RCM boundary conditions. Special focus is on
the simulation of CNRM-ESM2-1, which is being used as a driving model for convection-permitting Aladin-Climate/CZ RCM,
used as one source feeding new Czech climate change scenarios. The analysis is conducted over the boundaries and inside
the RCM integration domain. Firstly, an evaluation of CFSR and ERA5 reanalyses against radiosondes is performed in order
to choose an appropriate reference dataset for upper air variables. Revealed high correlation between both reanalysis and
radiosondes slightly decreases at the most upper tropospheric levels. ERA5 is then chosen as the reference for the boundary
analysis. Over the inner domain, simulated mean annual cycle of impact-relevant variables is validated against E-OBS. The
CNRM-ESM2-1 performs well in terms of near-surface variables over the Czech Republic, but it exhibits larger errors along the
boundaries, especially for air temperature and specific humidity. Weak statistical relationship between the GCM performance
over the boundaries in the upper levels and over the inner domain suggests that the nested RCM simulation does not
necessarily have to be influenced by the biases in the driving data.

1 Introduction
Global climate models (GCMs) represent invaluable instruments for various purposes, in particular, analysis of climate
system dynamics (e.g. Yang et al. 2022; Dai and Deng 2022), evolution of past climates (e.g. Askjær et al. 2022; Wang et al.
2023) and climate change projections (e.g. Coppola et al. 2021; Belda et al. 2016). The newest set of GCM simulations has
been produced under the Coupled Model Intercomparison Project phase 6 (CMIP6) initiative coordinated by the World
Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (Eyring et al. 2016). This multi-model
ensemble enables the evaluation of uncertainty related to various sources (a comprehensive discussion of the uncertainties
has recently been presented in Abramowitz et al. 2019).

Some studies compared the GCMs contributing to both CMIP5 and CMIP6 in order to evaluate the progress between the
model generations in terms of model performance. For example, Cannon et al. (2020) and Fernandez-Granja et al. (2021)
evaluated pairs of CMIP5-CMIP6 GCMs according to their skill in simulating observed patterns of atmospheric circulation;
they concluded that the simulated atmospheric circulation is substantially improved in the new generation of models.
Overall differences in model performance and ensemble spread of CMIP6 simulations in comparison to CMIP5 are hard to
evaluate and explain due to some disparities between the ensembles. These include a higher number of contributing models
in CMIP6, differences in model complexity (e.g. inclusion of wider scale of bio-geo-chemical processes in some earth-system
models), etc.

The coarse spatial resolution of GCMs limits their use for applications on regional and local scales and consequently, some
kind of downscaling is necessary (see e.g. Takayabu et al. 2016; Giorgi 2019; Maraun et al. 2015). One widely used
approach is dynamical downscaling using regional climate models (RCMs). Clearly, the outputs of RCMs are influenced by
the boundary conditions provided at the lateral boundaries of the integration domain (Prein et al. 2019; Takayabu et al. 2016;
Holtanová et al. 2019, 2014; Crhová and Holtanová 2018; Christensen and Kjellstrom 2020). The magnitude of this influence
is a subject of ongoing research and depends on various aspects including the geographical region, temporal scale, climatic
variable, etc.

To overcome the problem of biases in driving data it is possible to apply some correction to the GCM outputs during pre-
processing or to combine the multi-model GCM data with reanalysis products to provide more credible driving data for RCM
simulations. A review of published methods is provided by Adachi and Tomita (2020). The complexity of various
approaches evolved in time from very simple to quite complex methods modifying not only mean values but the whole
simulated distribution (Adachi and Tomita 2020). Improvements in various aspects of RCM simulations after bias correction
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of driving data have been shown by recent studies including Lim et al. (2019) and Kim et al. (2020). On the other hand, some
studies pointed out that even complex approaches to bias correction do not lead to major improvements in RCM simulations
(e.g. Rocheta et al. 2017). Kim et al. (2021) found out that the RCM-simulated inter-variable dependencies are not improved
by univariate bias correction of boundary conditions and propose the use of more sophisticated bias correction methods
that could help preserve the physical consistency of boundary conditions in future studies. Rocheta et al. (2020) highlight
the dampening effect of the relaxation zone and interpolations of lateral boundary conditions, which reduce the influence of
bias correction applied to the driving GCM data on the interior of the nested domain. Kim et al. (2021) also mention that the
relaxation zone and the RCM dynamics improve possible inconsistencies in bias-corrected boundary conditions.

Besides using bias-corrected or combined GCM-reanalysis driving fields, many experiments all over the world with
conventional approaches using raw GCM data are still being undertaken (e.g. EURO-CORDEX initiative). Therefore, a deeper
understanding of the influence of errors in boundary conditions on RCM simulation is needed. Jury et al. (2015) attempted to
answer the question of whether the evaluation of GCM-simulated near-surface meteorological variables inside the
integration domain of a regional climate model driven by a GCM is relevant for the evaluation of the quality of the driving
data and possibly as a hint for the choice of driving model. Analyzing CMIP5 GCMs over the domain used for EURO-CORDEX
RCM experiments, they concluded that there is generally low correlation and no clear relationship between near-surface
parameters and upper-air variables simulated by the GCMs that serve as boundary conditions for nested simulations.
Therefore they recommend a multi-variate evaluation of GCM model performance including the driving data on mid-
tropospheric pressure levels. Recently, studies evaluating CMIP5/6 GCMs with the aim of selecting the most suitable driving
models for dynamical downscaling (e.g. Di Virgilio et al. 2022; Merrifield et al. 2023; Palmer et al. 2023; Sobolowski et al.
2023) concentrated on large scale climatic features, large scale circulation or regional means of selected variables.

In the present study, we take an alternative approach of evaluating the GCMs over the boundaries of the RCM integration
domain concentrating on variables that are used as the RCM boundary conditions. A similar approach was also used in Jury
et al. (2015), Xu et al. (2017), and Zhang et al. (2022). Our analysis is a part of the Czech national project Prediction,
Evaluation and Research for Understanding National sensitivity and impacts of drought and climate change for Czechia
(PERUN). One of the sources feeding the updated Czech climate change scenarios will be simulations of the Aladin-
Climate/CZ regional model (Termonia et al. 2018; Mašek et al. 2023) in convection-permitting mode driven by the CNRM-
ESM2-1 GCM (Séférian et al. 2016, 2019). Therefore we concentrate on CNRM-ESM2-1 (concretely the run denoted as
r1i1p1f2) and put its results in the context of the suite of other available CMIP6 GCMs. We also evaluate the spread of
perturbed initial conditions ensemble of CNRM-ESM2-1 (9 members) as an estimate of uncertainty arising from natural
climate variability. Further, an important goal of this study is to investigate the potential relation between the performance of
the boundary conditions and the inside-domain performance in simulating the near-surface variables over the Czech
Republic. This assessment focuses on air temperature, precipitation, relative humidity and global radiation, which represent
climatic conditions relevant to sectors of agriculture and hydrology. The driving GCM for the PERUN Aladin-Climate/CZ
simulation has already been selected, so the focus is not on model selection, but rather analysis of biases in boundary
conditions and their propagation into the inner domain.

The paper is structured as follows: section 2 describes the datasets (comprising observation, reanalyses and simulation
data) and statistical methods for GCMs evaluation; section 3 presents the results, with a section discussing the reanalyses
uncertainties and the GCMs performance in different parts of the RCM domain (i.e. boundaries and interior); and section 4
presents discussions and conclusions from the study.

2 Data and methods

2.1 Reanalysis and radiosondes
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As the GCM evaluation over the boundaries of Aladin-Climate/CZ integration domain presented here concentrates on upper
air parameters, reanalysis data are used as a reference. ERA5 reanalysis provides the most up-to-date state-of-the-art
reanalysis dataset (Hersbach et al. 2020) and proved useful and trustworthy in many applications, however, most of the
studies concentrate on near-surface parameters (e.g. Urban et al. 2021; Bandhauer et al. 2022) or convective parameters
(e.g. Taszarek et al. 2021; Walawender et al. 2017; Varga et al. 2022). A comprehensive evaluation of upper air parameters is,
as far as our knowledge, missing. Therefore, to investigate possible errors in the reanalysis data, in the first step of our
analysis, we evaluate the ERA5 dataset and compare it to the NCEP Climate Forecast System. Moreover, we analyze
differences between the two reanalyses and selected radiosonde data.

We compare time series of selected meteorological variables (air temperature, specific humidity and horizontal components
of the wind) derived from the ERA5 reanalysis (0.25º of horizontal resolution; Hersbach et al. 2020, 2023) and the NCEP
Climate Forecast System (CFSR) reanalysis (0.5º of horizontal resolution; Saha et al. 2010a,b, 2012, 2014) with selected
radiosondes from the University of Wyoming (https://weather.uwyo.edu/upperair/sounding.html). Data at 0000 UTC and
1200 UTC in three tropospheric levels (850, 500 and 300 hPa) were used for the evaluation in four different locations, as
seen in Fig. 1. We selected sounding locations as close as possible to each of the four boundaries of the Aladin-Climate/CZ
domain studied here. Moreover, only soundings with approximately 30% (specifically 29% for 03354 location, 54% for 10035,
36% for 26477 and 29% for 16622) of data available for the period 1990–2014 were selected and then reanalysis data were
intersected for the same timesteps for the nearest latitude and longitude grid point from the radiosonde location. Mean
absolute error (MAE) and Spearman (s) correlation coefficients were computed for the assessment.

2.2 CMIP6 ensemble
An ensemble of CMIP6 GCM simulations is used (Table 1). Further information and references can be found in Tebaldi et al.
(2021). The time series of monthly mean air temperature (further abbreviated as TA), mean specific humidity (HUS) and the
horizontal components of wind speed vector (UA and VA) were retrieved via Deutsches Klimarechenzentrum (DKRZ) for the
vertical levels of 850 hPa, 500 hPa and 300 hPa. The outputs from the experiment denoted as ‘historical’ are used for the
reference period 1990–2014.

The choice of GCMs is based on the availability of data. We use preferably the simulations denoted as r1i1p1f1, but “f2” or
“f3” is used in case “f1” was missing. For a detailed explanation of the “ripf” notation, we refer to the CMIP6 protocol and
associated documentation. Further, nine perturbed initial conditions ensemble members are used for CNRM-ESM2-1
(hereafter “CNRM-INI”), and we focus on CNRM-ESM2-1 r1i1p1f2 simulation (further as CNRM-r1), i.e. the driving simulation
for the Aladin-Climate/CZ as described above.

We conduct our analysis over the boundaries of the Aladin-Climate/CZ integration domain (Fig. 1). To be able to select
corresponding GCM grid points, we first re-gridded the GCM data to the common grid in the Lambert tangent projection with
horizontal step 5-times larger than the RCM integration; a simple bilinear interpolation was used for this purpose. We did not
interpolate to the original nested integration resolution (approximately 2.8 km) because we considered it to be too fine
resolution for the GCMs. From these re-gridded data, we masked the integration domain and chose the grid points at the four
boundaries: western, eastern, southern, and northern.

For the evaluation of CMIP6 performance in simulating the near-surface climatic variables in the inner part of the Aladin-
Climate/CZ integration domain, that covers the Czech Republic (Fig. 1), we use the E-OBS data (version 27, Cornes et al.
2018) with 0.25° horizontal resolution as the reference. The variables analyzed are near-surface air temperature (TAS),
precipitation (PR), relative humidity (HUR) and global radiation (RSDS). The CMIP6 data for the inner domain were retrieved
from the ETH Zurich CMIP6 Next Generation archive (Brunner et al., 2020), and a similar interpolation process was also
applied for the same period (1990–2014) before the areal averages (delimited by 11.85°-19.15° of longitude and
48.25°-51.25° of latitude; Fig. 1) of monthly mean values were calculated. This area covers the Czech Republic and has been
previously used for GCM and RCM evaluation over this country (e.g. Holtanová et al. 2022, 2012). The GCM subset for the
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inner domain includes 14 GCMs less than the sample available for the upper air variables (for the lists of the models see
Table 1).
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Table 1
The list of CMIP6 GCMs used in present study. The GCMs denoted in italics are missing for the analysis over the inner

domain.
GCM
Acronym

Modelling center horizontal
resolution
(lat x lon or
grid
spacing in
kilometres)

ACCESS-
CM2

Australian Community Climate and Earth System Simulator 1.25°x
1.875°

ACCESS-
ESM1-5

1.25°x
1.875°

AWI-CM-1-
1-MR

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) 0.9° x 0.9°

AWI-ESM-
1-1-LR

~ 200 km

BCC-
CSM2-MR

Beijing Climate Center 0.45° ×
0.45°

BCC-ESM1 ~ 250 km

CAMS-
CSM1-0

Chinese Academy of Meteorological Sciences, China 1.1° x 1.1°

CanESM5 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change
Canada, Victoria, Canada

2.8° x 2.8°

CAS-
ESM2-0

Chinese Academy of Sciences, Beijing, China 100 km

CESM2-
FV2

National Center for Atmospheric Research (NCAR), Climate and Global Dynamics
Laboratory, Boulder, USA

250 km

CESM2-
WACCM-
FV2

250 km

CESM2-
WACCM

1.25° x
0.9°

CESM2 100 km

CIESM Department of Earth System Science, Tsinghua University, Beijing, China 100 km

CMCC-
CM2-HR4

Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy 100 km

CMCC-
CM2-SR5

100 km

CMCC-
ESM2

100 km

CNRM-
CM6-1-HR

Centre National de Recherches Meteorologiques (CNRM) and Centre Europeen de Recherche
et de Formation Avancee en Calcul Scientifique (CERFACS), Toulouse, France

100 km

CNRM-
CM6-1

250 km

CNRM-
ESM2-1

1.4° x 1.4°
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GCM
Acronym

Modelling center horizontal
resolution
(lat x lon or
grid
spacing in
kilometres)

E3SM-1-0 Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA; Argonne National
Laboratory (ANL), Argonne, IL, USA; Brookhaven National Laboratory (BNL), Upton, NY, USA;
Los Alamos National Laboratory (LANL), Los Alamos, NM, USA; Lawrence Berkeley National
Laboratory (LBNL), Berkeley, CA, USA; Oak Ridge National Laboratory (ORNL), Oak Ridge,
TN, USA; Pacific Northwest National Laboratory (PNNL), Richland, WA, USA; Sandia
National Laboratories (SNL), Albuquerque, NM, USA

1° x 1°

E3SM-1-1-
ECA

1° x 1°

E3SM-1-1 1° x 1°

EC-Earth3-
AerChem

EC-Earth consortium, Rossby Center, Swedish Meteorological and Hydrological
Institute/SMHI, Norrkoping, Sweden

100 km

EC-Earth3-
CC

100 km

EC-Earth3-
Veg-LR

250 km

EC-Earth3-
Veg

100 km

EC-Earth3 0.7° x 0.7°

FGOALS-
f3-L

Chinese Academy of Sciences, Beijing, China 100 km

FGOALS-
g3

2° x 2.3°

FIO-ESM-
2-0

First Institute of Oceanography (FIO) and Qingdao National Laboratory for Marine Science
and Technology (QNLM), Qingdao, China

1.25° x
0.9°

GFDL-
CM4

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory,
Princeton, NJ, USA

100 km

GFDL-
ESM4

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory,
Princeton, NJ, USA

1.25° x 1°

GISS-E2-1-
G-CC

Goddard Institute for Space Studies (GISS), New York, NY, USA 250 km

GISS-E2-1-
G

2.5° x 2°

GISS-E2-1-
H

200 km

HadGEM3-
GC31-LL

Met Office Hadley Centre, UK 250 km

HadGEM3-
GC31-MM

0.6° × 0.8°

IITM-ESM Centre for Climate Change Research (CCCR) at the Indian Institute of Tropical Meteorology 0.9° x 0.9°

INM-CM4-
8

Institute for Numerical Mathematics (INM), Russian Academy of Science, Moscow, Russia 100 km

INM-CM5-
0

2° x 1.5°

IPSL-
CM5A2-
INCA

Institut Pierre Simon Laplace (IPSL), Paris, France 500 km
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GCM
Acronym

Modelling center horizontal
resolution
(lat x lon or
grid
spacing in
kilometres)

IPSL-
CM6A-LR-
INCA

250 km

IPSL-
CM6A-LR

2.5° x
1.25°

KACE-1-0-
G

National Institute of Meteorological Sciences/Korea Meteorological Administration,
Republic of Korea

250 km

KIOST-
ESM

Korea Institute of Ocean Science and Technology (KIOST), Busan, Republic of Korea 250 km

MCM-UA-
1-0

Department of Geosciences, University of Arizona, Tucson, USA 3.75° x
2.2°

MIROC-
ES2L

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan,
Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Chiba, Japan,
National Institute for Environmental Studies (NIES), Ibaraki, Japan, and RIKEN Center for
Computational Science, Hyogo, Japan (MIROC)

500 km

MIROC6 250 km

MPI-ESM-
1-2-HAM

ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany;
Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological
Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate
Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium)

250 km

MPI-
ESM1-2-
HR

Max Planck Institute for Meteorology, Germany 0.94° ×
0.94°

MPI-
ESM1-2-
LR

~ 200 km

MRI-
ESM2-0

Meteorological Research Institute, Japan 1.1° x 1.1°

NESM3 Nanjing University of Information Science and Technology (NUIST), Nanjing, China 1.9° x 1.9°

NorCPM1 NorESM Climate modeling Consortium, Oslo, Norway 250 km

NorESM2-
LM

250 km

NorESM2-
MM

1.25° x
0.9°

SAM0-
UNICON

Seoul National University (SNU), Seoul, Republic of Korea 100 km

TaiESM1 Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei, Taiwan 1.25° x
0.9°

UKESM1-
0-LL

Met Office Hadley Centre, Exeter, UK 1.9° x
1.25°

2.3 GCMs evaluation metrics
For the GCM evaluation over the boundaries of the Aladin-Climate/CZ integration domain a metric based on the index
introduced in Reichler and Kim (2008) is used. The calculation is done for each boundary (eastern, northern, western,
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southern) separately. First, for each season s, variable v, model m and grid point i the differences of GCM simulated ( )

and ERA5-given mean seasonal values ( ) normalized by the ERA5 standard deviation ( ) are calculated. These

differences are then summed up over all grid points of the boundary (Eq. 1):

1

The resulting “error” ( ) is then divided by the multi-model mean value, i.e. the resulting metric gives the information
about the magnitude of error of each of the models in comparison to the multi-model mean error. This quantity is further
denoted as RK Index (or RKI). It is important to note that the higher RKI, the more distant the model quantity is from the
reference data.

For the GCM evaluation over the inner part of the domain (defined above in Section 2.2) we use root mean square error
(RMSE) of the mean annual cycle calculated from monthly mean values, i.e. twelve monthly mean values are taken into
account for each of the studied variables. We use the long-term mean values to avoid the internal climate variability
influencing the model evaluation. The relative error (RE, defined by Gleckler et al. 2008), calculated as the difference between
individual GCM RMSE and multi-model median RMSE normalized by the multi-model median RMSE is then used to compare
the performance among different variables. The interpretation of RE values is that more negative values imply relatively
better performance, and more positive values imply relatively worse performance, in comparison to the multi-model median
RMSE.

3 Results

3.1 ERA5 and CFSR reanalysis: observational uncertainty
In this section an evaluation of both studied reanalysis (ERA5 and CFSR) is presented. The aim is to verify how well these
two commonly used gridded datasets perform for the four tropospheric parameters studied here (TA, UA, VA, HUS).
Therefore, the reanalyses are compared to observations represented by soundings. Table 1 shows the Spearman correlation
and mean absolute error (MAE) for the selected variables in different vertical levels and locations.

The correlation is mostly above 0.9, with only a few exceptions, mainly in the case of specific humidity at 500 hPa and 300
hPa levels (Table 2). Lower correlation is also found at the 850 hPa level for the wind components in the southernmost
location (16622 Thessaloniki). In general, both reanalyses have similar correlations taking into account the same
variable/level; in most cases, the values are basically the same (e.g. TA, see Table 2).

Regarding MAE, lower values imply better reanalysis performance. The MAE for specific humidity is generally lower at the
300 hPa level, which might be attributed to generally lower humidity in the upper troposphere. The MAE for wind speed
components is increasing with height. This might be because we are comparing a single grid point from the reanalysis with
the radiosonde data, which might drift away from the grid point location as it gets to the upper troposphere. Another issue is
that the reanalysis data represent the whole gridbox whereas the radiosonde data have the character of point-value. For air
temperature, the reanalyses are more accurate at mid-upper levels, except for the northeastern location (26477 Velikie Luki).
Based on the results in Table 1 we can conclude that both assessed reanalyses perform well. The performance is very
similar for both reanalyses, so we do not inflate large observational uncertainty in the GCM assessment by choosing only
ERA5 as the reference data. Moreover, a positive agreement between ERA5 with radiosondes was found by Varga et al.
(2022), who studied convective environmental parameters over Central Europe; they also found correlation coefficients
higher than 0.9 for multiple variables and low error characteristics for a 26-year period analysis.
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Table 2
Spearman’s correlation coefficient (s) and mean absolute error (MAE) for temperature (ta, ºC), specific humidity (HUS, g/kg)
and horizontal wind velocity components (UA and VA, m/s) at different levels, between reanalyses [i.e. ERA5 and CFSR (in

parenthesis)] and four selected radiosonde locations. Single value indicates the same result for both ERA5 and CFSR.
Variable TA HUS UA VA

Level 850 500 300 850 500 300 850 500 300 850 500 300

16622 LGTS Thessaloniki (Airport)

s 0.99 0.99 0.99 0.94
(0.96)

0.88
(0.90)

0.84
(0.73)

0.88
(0.91)

0.96 0.98
(0.97)

0.91
(0.93)

0.97 0.97

MAE 0.72
(0.66)

0.52 0.48
(0.55)

0.67
(0.61)

0.17
(0.15)

0.04 1.52
(1.30)

1.60 1.75
(2.04)

1.41
(1.21)

1.33
(1.39)

1.80
(1.94)

03354 Nottingham

s 0.99
(0.98)

0.99 0.99 0.94
(0.93)

0.91
(0.90)

0.91
(0.87)

0.98 0.99
(0.98)

0.99 0.97 0.99
(0.98)

0.99
(0.98)

MAE 0.53
(0.59)

0.38
(0.42)

0.41
(0.47)

0.47
(0.50)

0.14
(0.15)

0.02 1.32
(1.35)

1.37
(1.51)

1.70
(1.97)

1.31
(1.37)

1.47
(1.61)

1.86
(2.34)

10035 Schleswig

s 0.99 0.99 0.99 0.94 0.89
(0.90)

0.89
(0.87)

0.98 0.98 0.99

(0.98)

0.96 0.97
(0.98)

0.98

MAE 0.50
(0.53)

0.46
(0.49)

0.45
(0.48)

0.49 0.16
(0.15)

0.02 1.34
(1.37)

1.60 1.88
(2.05)

1.32 1.73
(1.77)

2.20
(2.33)

26477 ULOL Velikie Luki

s 0.99 0.98 0.95 0.96
(0.97)

0.92 0.80
(0.81)

0.96 0.98 0.98 0.96
(0.97)

0.97 0.98

MAE 0.86
(0.76)

1.01
(1.02)

1.26
(1.18)

0.48
(0.43)

0.17
(0.16)

0.04 1.40
(1.26)

1.41
(1.46)

1.73
(1.98)

1.35
(1.27)

1.49
(1.56)

1.67
(1.92)

3.2 GCM evaluation

3.2.2 Model performance in simulating upper air parameters along the
boundaries
Figure S.1-S.4 and Fig. 2 show the values of the RK Index for each of the boundaries and the summed up values over all the
boundaries. They enable comparison of the whole multi-model ensemble (large boxplots), CNRM-INI ensemble (small
boxplots) and CNRM-r1 simulation (i.e. one of the CNRM-INI ensemble, black crosses). Different colors of boxplots
correspond to different atmospheric pressure levels. The range of the vertical axis is set to 0–20, even though there are
several outliers with RKI higher than this value. Up to 16 outliers have RKI higher than 20 for each variable-boundary
combination. However, these are not shown for the sake of better readability of the figures.

There is no clear seasonal course in RKI values for any of the four studied variables and boundaries. Further, the
performance of the full CMIP6 ensemble is not remarkably better or worse in any of the three studied pressure levels.
However, regarding the CNRM-INI ensemble, for TA and HUS at 300 and 500 hPa levels the RKI values are outlying very far
from the rest of the multi-model ensemble (Fig. 2a,b, Figs. S.1-S.4). For VA and UA this feature is seen only in summer and
autumn with less extreme RKI values, the performance of CNRM-INI ensemble is more similar to the rest of CMIP6 GCMs
(Fig. 2c,d, Figs. S.1-S.4). At the 850 hPa level, the RKI of CNRM-INI ensemble decreases in comparison with the two upper
levels, in some cases it is even lower than the multi-model median (especially for VA and UA). The range of internal climate
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variability, estimated here by the spread of the CNRM-INI ensemble, is generally smaller than the spread of the whole CMIP6
ensemble. However, in some cases, it is comparable or even larger (e.g. HUS and VA in the autumn, TA at 500 hPa and 300
hPa in the autumn and summer; Fig. 2).

Generally, the CNRM-r1 is rather exceptional, since it rarely behaves like a “mean” model. In most cases, its RKI is either lower
than for most other GCMs, or much higher. In this sense, especially for the western and northern boundaries (Fig. S.1 and
S.4), the whole CNRM-INI ensemble, including CNRM-r1, has much larger errors of TA and HUS at the 300 hPa level than the
rest of GCMs. On the other hand, smaller errors are seen for UA and VA, especially in the southern boundary (Fig. S.2).

The heatmaps in Fig. 3a show RKI values for individual GCMs summed up over the four boundaries, the three vertical levels
and the four seasons. Figure 3b then shows the values from Fig. 3a summed up over the four studied variables. The lower
the values, the better overall performance of individual GCMs. The best performing GCMs include CMCC-ESM2, all variants
of EC-Earth3 (except for the “Veg-LR”), FIO-ESM-2 and HadGEM3-GC31-MM. On the other hand, the largest RKI values are
seen for CNRM-CM6-1-HR, IITM-ESM, KIOST-ESM, MCM-UA-1-0, FGOALS-g3 and NorESM2-LM (Fig. 3).

For some GCMs the performance varies considerably among variables. For instance, CIESM has an excellent representation
of TA and UA compared to other models, but really poor representation for HUS. Another similar example is GISS-E2-1-H
(Fig. 3a). Focusing on CNRM-r1, the worst represented variable is TA (Fig. 3a), mainly at upper levels, as seen in Fig. 2. The
range of RKI for the CNRM-INI ensemble is relatively small compared to the overall spread of the multi-model ensemble (for
TA values are between 80–110, HUS 40–55, VA 48–58 and UA 30–38, not shown in Fig. 3).

We also investigated mutual correlations between RKI at the three studied pressure levels in individual seasons (not shown).
For TA, VA and UA the Spearman’s correlation coefficient is statistically significant on the 0.05 significance level for all pairs
of pressure levels in all seasons, with the correlations between 500 hPa and the other two levels higher than 0.7. The
correlation between 300 hPa and 850 hPa is mostly lower than 0.5, in several cases even only 0.3, however, even these
relatively low values are assessed as statistically significant. Regarding HUS, the correlations of RKI between pressure levels
are lower than for the other variables and not statistically significant; in eight out of twelve cases it is lower than 0.4, in four
of these eight cases it is even slightly negative. These results are in accordance with Jury et al. (2015), who found strong
positive correlations between 500 hPa level and upper/lower ones among the same atmospheric variables.

3.2.3 Model performance over the Czech Republic territory
Similarly to the boundaries at upper atmospheric levels analysis, the performance of GCMs in simulating the near-surface
variables in the inner domain covering the Czech Republic varies considerably between individual variables (see for example
IPSL-CM5A-INCA or the variants of CEMS2 in Fig. 3c). Overall, the best performing GCM is again the EC-Earth3 (all analyzed
variants). Further, CanESM5, CMCC-ESM2 and both variants of GISS-E-2-1 belong also to the better half of the models in
terms of all four studied variables (Fig. 3c).

CNRM-INI ensemble, including the CNRM-r1 performs relatively well, with the RE for precipitation around − 0.3, and for TA
and HURS very close to zero (that is, the RMSE very close to the median of the multi-model ensemble). RSDS has the largest
RE of CNRM-r1, with values ~ 0.6. It is important to mention that the RE values for each variable among the members of
CNRMI-INI ensemble are similar. Figure 3d shows the RE summed up for all variables for each GCM. This figure highlights
the good performance of the other three models (along with the previously mentioned ones): CESM2-FV2, CESM2-WACCM-
FV2 and SAM0-UNICON, with RE of -0.4 (Fig. 3d).

Further, we investigate possible statistical relationships between the performance along the boundaries of the integration
domain and the Czech territory. For this, the values of RKI are summed up over all seasons, boundaries and levels, and the
Spearman correlation is computed between this summed-up RKI (Fig. 3a) and the RE for individual variables (Fig. 3c). The
correlations are generally low, ranging from 0.4 to less (Fig. 4), even though statistically significant in some cases. The
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scatterplots in Fig. 4 enhance the large variability in data. Hence, the graphical evaluation (Fig. 4) suggests a rather weak
relationship between the indices.

In terms of correlation between pairs of RKI (RE) along the boundaries (inner domain), the highest correlation (0.8) is found
between the RKI for VA and UA, and between RE for PR and HURS (0.6) (Fig. 4), which is in agreement with expectations.
However, other pairs exhibit low correlations, similarly to the pairs between the “boundary” and “inner” variables. It is
important to note that this analysis illustrated in Fig. 4 focuses on the errors compared to the reference data and not on the
values of the variables.

4 Discussion and Conclusions
This study aimed to evaluate the GCMs from CMIP6 over the boundaries of the Aladin-Climate/CZ integration domain as
well as their potential relation with the inside-domain performance in simulating the near-surface variables over the Czech
Republic. A first assessment between ERA5 and CSFR reanalyses and radiosondes was performed; it was found that their
correlation with radiosondes is very high in general, even though there are some differences depending on the variable. For
instance, specific humidity is better correlated at lower levels, while wind speed components are better correlated at upper
levels (Table 2). Further, in the north-eastern and south-eastern locations (Velikie Luki and Thessaloniki), the correlations are
generally lower. The mean absolute error showed discrepancies between radiosonde and reanalysis that are much lower
than the typical values of the parameters themselves, so we conclude that the performance of both reanalyses is
satisfactory. It is worth mentioning that the amount of available data from radiosonde decreases with height, especially for
HUS. Therefore large uncertainties should be taken into account for the GCM evaluation. The ERA5 dataset was chosen for
further evaluation of GCMs errors over the boundaries and E-OBS for the region covering the Czech Republic territory.

The CNRM-r1 simulation, that is the Aladin-Climate/CZ driving simulation, has been previously found to perform
satisfactorily in terms of large-scale climatological features over Europe (Palmer et al. 2023). Here we concentrate on the
evaluation of biases directly in the coupling zone of the nested regional simulation that could potentially affect the RCM
simulation. Our results showed that the CNRM-INI ensemble, including the CNRM-r1, is rather exceptional, rarely behaving as
a “mean” model. In most cases, CNRM-INI members have RKI either smaller or much larger than the rest of the CMIP6 GCMs.
Most profoundly this is seen for TA and HUS at 300 hPa, for which the CNRM-INI ensemble has much larger errors than the
rest of GCMs. On the other hand, it has smaller errors for UA and VA, especially in winter and spring.

Besides the evaluation of the simulation of CNRM-r1, which is of special interest for the Czech Republic’s climate change
scenarios, this study could contribute to the discussion of possible strategies of selecting driving GCMs for the EURO-
CORDEX downscaling experiments (Katragkou et al., 2023), since we concentrate on variables relevant for RCM boundary
conditions. From our results, the best-performing GCMs along the boundaries include CMCC-ESM2, all variants of EC-Earth3
(except for the “Veg-LR”), FIO-ESM-2 and HadGEM3-GC31-MM. For some GCMs, the performance varies considerably among
variables. Similarly to the boundaries, the performance of GCMs in simulating the near-surface variables in the inner domain
covering the Czech Republic varies considerably between individual variables. Overall, the best performing GCM is again the
EC-Earth3 (all variants), followed by CanESM5, CMCC-ESM2, GISS-E-2-1, CESM2-FV2, CESM2-WACCM-FV2 and SAM0-
UNICON.

The topic of GCM subselection for regional impact studies and for downscaling purposes has been widely discussed also in
connection to the “hot model problem” (Hausfather et al., 2022), i.e. the fact that the new generation of CMIP6 GCMs
includes models with higher equilibrium climate sensitivities (ECS) than the previous CMIP5 GCMs. Palmer et al. (2023)
point to the potential tension between selection based on plausible values of ECS and regional-performance-based selection
of models. Our results indicate a rather weak relationship between GCM errors (both along the boundaries in upper levels
and in the CZ domain near the surface) and ECS. Confirming the concern of Palmers et al. (2023), the overall best-
performing EC-Earth model (with several different configurations) has ECS outside the range of 2–4.5°C, which has been
evaluated as likely realistic by the last IPCC report (Forster et al. 2021).
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The spread of the whole multi-model ensemble shows the magnitude of uncertainty in GCM outputs arising from structural
uncertainty (Abramowitz et al. 2019). The CNRM-INI represents an estimate of internal variability, however, it consists of only
nine members from one GCM, so the results might unfold differently if larger ensembles of different GCMs were used, most
probably increasing the spread. Nevertheless, our results show that RKI for the CNRM-INI ensemble (summed up along all
boundaries, variables and levels) is quite high (around three times higher than EC-Earth), whereas over the Czech Republic
territory, it performs relatively well, belonging to better half of the models according to RE, except for RSDS (Fig. 3) .

On one hand, a study over Eastern Africa found better results when forcing an RCM with the best score GCM (Pickler and
Mölg 2021), on the other hand over Europe, generally, a good GCM performance over the boundaries or in large-scale
phenomena does not guarantee a good result within the RCM integration domain. The influence of GCM on nested RCM
simulation is known to be variable and season-dependent. For example, Bartók et al. (2017) have shown that the patterns of
RSDS simulated by RCM are weakly connected to values of RSDS simulated by the driving GCM. This is due to complex
interactions of cloudiness, albedo, evapotranspiration, and other parameters and processes. Moreover, Vautard et al. (2021)
investigated the EURO-CORDEX ensemble of RCM simulations driven by several CMIP5 GCMs and showed that for RSDS,
the influence of an RCM is a more important source of bias than the driving GCM, but for temperature and precipitation, they
found the dominance of the boundary conditions. Furthermore, some studies mentioned in Section 1 claim that the
relaxation zone and the coupling itself can handle potential inconsistencies in bias-corrected boundary conditions.

In general, this study has shown that the GCM performance in simulating the upper air atmospheric variables that are used
as RCM boundary conditions relates rather weakly to the GCM performance in simulating the near-surface parameters in the
inner domain (in terms of parameters relevant for impact studies). This implies that good performance of boundary
conditions cannot automatically guarantee better performance of the downscaling system and, even more importantly, the
other way around. This is justified by the fact that boundary conditions are subject to further dynamical modifications, i.e.
since RCMs operate with finer spatial resolution, the errors might be processed and dynamically improved. Hence, the near-
surface values in the inner domain will have less connection to the boundary conditions, and potential errors entering the
domain on the boundaries are suppressed. But the result cannot be anticipated, individual combinations of GCM-RCM will
behave differently.
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Figures

Figure 1

Integration domain of Aladin-Climate/CZ (shaded in grey), the selected locations with available soundings between the
period 1990-2014 (red dots, and their respective names), and the inner domain covering the Czech Republic territory (black



Page 18/20

rectangle).

Figure 2

RK Index of seasonal mean of (a) air temperature, (b) specific humidity, (c) northward (v) wind speed and (d) eastward (u)
wind speed in the period 1990–2014 summed up over all the boundaries of the studied domain (see Figure 1). Boxplots
show intra-ensemble statistical distribution (median, lower and upper quartiles, whiskers representing 1.5 * IQR, and outliers
as dots) of CMIP6 (larger boxplots with grey lines and outliers as grey dots) and perturbed initial conditions mini-ensemble
CNRM-INI (smaller boxplots with black lines and outliers as black dots). The CNRM-r1 simulation is shown using black
crosses. Green, yellow and blue colors denote, respectively, 850, 500 and 300 hPa levels.
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Figure 3

Heatmap for the RKI summed up for all boundaries, seasons and levels for the individual GCMs: a) for the individual
variables and b) the sum of the four variables in a). Heatmap for the relative error RE of GCMs c) based on RMSE of mean
annual cycle for individual surface variables and d) based on RMSE summed up for the four variables over the Czech
Republic territory.
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Figure 4

Correlation matrix between the RKI summed up over all seasons, boundaries and levels and the RE for individual variables.
Above diagonal, the Spearman correlation coefficients among respective metrics are shown. The stars correspond to the
intervals of p-values resulting from testing the null hypothesis of zero correlation, i.e. ***: 0 - 0.001, **: 0.001 - 0.01, *: 0.01-
0.05. No star implies p-value higher than 0.05. The method of the statistical test can be found in Hollander and Wolfe (1973),
pages 185-194.
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