Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
Ansari WA, Atri N, Singh B, Kumar P, Pandey S (2018) Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 56:1019–1030. https://doi.org/10.1007/s11099-018-0821-9
Ansari WA, Atri N, Ahmad J, Qureshi MI, Singh B, Kumar R, Singh B, Pandey S (2019) Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PLoS ONE 14:e0222647. https://doi.org/10.1371/journal.pone.0222647
Ansari WA, Atri N, Singh B, Pandey S (2017) Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol Plat 61:333–341. https://doi.org/10.1007/s10535-016-0694-3
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1. doi 10.1104/pp.24.1.1
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. https://doi.org/10.1104/pp.106.082040
Baghour M, Gálvez FJ, Sánchez ME, Aranda MN, Venema K, Rodríguez-Rosales MP (2019) Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiol Biochem 135:77–86. https://doi.org/10.1016/j.plaphy.2018.11.028
Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166:1207–1217. https://doi.org/10.1016/j.jplph.2009.01.001
Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299
Coyago-Cruz E, Corell M, Stinco CM, Hernanz D, Moriana A, Meléndez-Martínez AJ (2017) Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res Int 96:72–83. https://doi.org/10.1016/j.foodres.2017.03.026
FAOSTAT database, Food and Agriculture Organization Corporate Statistical Database (2012) Available at: http://www.faostat.fao.org
Foolad MR (2007) Current status of breeding tomatoes for salt and drought tolerance. In: Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 669–700
Gill SS, Gill R, Anjum NA, Tuteja N (2013) Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress 7:73–83
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865. https://doi.org/10.1104/pp.124.4.1854
Guo X, Zhang L, Zhu J, Wang A, Liu H (2017) Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants. Plant Cell Tissue Organ Cult 129:469–481. https://doi.org/10.1007/s11240-017-1192-9
Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J (2006) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China Life Sci 49:.436–445. https://doi.org/10.1007/s11427-006-2014-1
Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS (2007) A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1769: 220–227. https://doi.org/10.1016/j.bbaexp.2007.02.006
Karkute SG, Krishna R, Ansari WA, Singh B, Singh PM, Singh M, Singh AK (2019) Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress. Biol Plant 63:268–277. https://doi.org/10.32615/bp.2019.031
Kiełbowicz-Matuk A (2012) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 185:78–85. https://doi.org/10.1016/j.plantsci.2011.11.015
Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M (2019) Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 9:143. https://doi.org/10.1007/s13205-019-1665-0
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Verma JP, Singh M (2021) Co-overexpression of AtDREB1A and BcZAT12 increases drought tolerance and fruit production in double transgenic tomato (Solanum lycopersicum) plants. Environ Exp Bot 184:104396. https://doi.org/10.1016/j.envexpbot.2021.104396
Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, … Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471. https://doi.org/10.1111/pbi.12644
Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210: 899–903.
Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5:61–69. https://doi.org/10.1007/s11816-010-0157-9
Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J (2018) H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biol 18:34.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
Miller G, Coutu J, Shulaev V, Mittler R (2018) Reactive oxygen signaling in plants. Annu Plant Rev online 33:189–201. https://doi.org/10.1002/9781119312994.apr0353
Nahakpam S, Shah K (2011) Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul 63:23–35. https://doi.org/10.1007/s10725-010-9508-3
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021
Owens CWI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–7011. https://doi.org/10.1042/bj0940705
Pék Z, Szuvandzsiev P, Daood H, Neményi A, Helyes L (2014) Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Open Life Sci 9:383–395. https://doi.org/10.2478/s11535-013-0279-5
Persikov AV, Singh M (2014) De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res 42:97–108. https://doi.org/10.1093/nar/gkt890
Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, Singh M, Noyes MB (2015) A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res 43:1965–1984. https://doi.org/10.1093/nar/gku1395
Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975:384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
Rai AC, Singh M, Shah K (2012a) Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem 61:108–114. https://doi.org/10.1016/j.plaphy.2012.09.010
Rai AC, Singh M, Shah K (2013b) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50. https://doi.org/10.1016/j.phytochem.2012.09.007
Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, Singh M (2012b) Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cell Dev Biol Plant 48:565–578. https://doi.org/10.1007/s11627-012-9442-3
Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013a) Expression of rd29A:: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100. https://doi.org/10.1016/j.plaphy.2013.05.002
Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, … Balachandran SM (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439. https://doi.org/10.1007/s11248-013-9776-6
Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013
Rozen S, Skaletsky HJ (1998) Primer3. Code available at http. www-genome. wi. mit. edu/genome_software/other/primer3. html
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327. https://doi.org/10.1046/j.1365-313x.2000.00787.x
Sánchez-Rodríguez E, Romero L, Ruiz JM (2016) Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J Plant Physiol 190:72–78. https://doi.org/10.1016/j.jplph.2015.10.010
Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, … Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40. https://doi.org/10.1016/j.plantsci.2009.10.001
Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570.
Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9
Shah K, Singh M, Rai AC (2013) Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109–117. https://doi.org/10.1016/j.phytochem.2013.07.026
Shah K, Singh M, Rai AC (2015) Bioactive compounds of tomato fruits from transgenic plants tolerant to drought. LWT-Food Sci Technol 61:609–614. https://doi.org/10.1016/j.lwt.2014.12.057
Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864. https://doi.org/10.1016/j.jplph.2004.09.011
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012. https://doi.org/10.1155/2012/217037
Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, … Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818.
Tateishi Y, Nakagawa T, Esaka M (2005) Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by silencing proline dehydrogenase expression with double-stranded RNA interference technique. Physiol Plant 125:224–234. https://doi.org/10.1111/j.1399-3054.2005.00553.x
Xu Y, Xu Q, Huang B (2015) Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.). Front Plant Sci 6:807. https://doi.org/10.3389/fpls.2015.00807
Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621. https://doi.org/10.1007/s00425-009-1075-3
Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, … Jiang M (2014) A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot 65:5795–5809. https://doi.org/10.1093/jxb/eru313