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Abstract
Background: Claudin (CLDN) proteins have been described to be found and accordingly targeted to
evaluate novel therapeutic approaches. C-terminus of Clostridium perfringens enterotoxin (C-CPE) binds
efficiently several claudins and thus recombinant C-CPE conjugated to gold nanoparticles (AuNPs) has
been used for cancer cell targeting using gold nanoparticle- mediated laser perforation (GNOME-LP).
Cancer cells inoculation is routinely used to generate in vivo models to evaluate novel therapeutic
approaches in prostate cancer. However, detailed characterization of cancer spreading and early tumor
development and therapeutic response is often limited as conventional cell lines do not allow advanced
deep tissue imaging.

Methods: two canine prostate cancer cell lines were stably transfected with red fluorescent protein (RFP),
followed by G418 selection. RFP marker as well as CLDN3, -4 and -7 expression was comparatively
confirmed by flow cytometry, qPCR and immunofluorescences. For cancer cells targeting, GNOME-LP at a
laser fluence of 72 mJ/cm² and a scanning speed of 0.5 cm/s was used.

 Statistical analysis was performed using SAS software 7.1, Dunnett´s Multiple Comparison Test and
Student´s two-sided t-test. Differences were considered statistically significant for p<0.05.

Results: we established two canine prostate carcinoma cell lines, stably expressing RFP allowing
perspective deep tissue imaging. Directed C-CPE-AuNP binding to native and RFP transfected cells
verified the capability to specifically target CLDN receptors. Cancer cell ablation was demonstrated in
vitro setting using a combination of gold nanoparticle mediated laser perforation and C-CPE-AuNPs
treatment reducing tumor cell viability to less than 10 % depending on cell line.

Conclusion: the results confirm that this therapeutic approach can be used efficiently to target prostate
carcinoma cells carrying a marker protein allowing deep tissue imaging. The established cell lines and
the verified proof of concept in vitro study provide the basis for perspective Xenograft model in vivo
studies.

The introduce red fluorescence enables deep tissue imaging in living animals and therefore detailed
characterization of tumor growth and subsequently possible tumor ablation through C-CPE-AuNPs
treatment.

Background
Advanced experimental approaches in cancer research require the establishment of tumor specific in vivo
animal models. Therefore, cell lines represent a powerful tool allowing the generation of neoplasia
mimicking closely the initial tumors through xenografts [1, 2]. Within these models, the characterization
of tumor development and the possibility to monitor tumor cell migration is of major interest for the
evaluation of novel therapeutics. Fluorescent proteins and bioluminescent systems provide unique
opportunities for non-invasive labeling and tracking of specific cell types in living organisms in real time.
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Together with the development of new systems for whole-body imaging, fluorescent proteins can be used
to visualize many types of cancer processes, including primary tumor growth, tumors cell motility and
invasion, metastases and the interaction between tumor and its microenvironment (tumor–host
interaction) [3–5]. For deep imaging of animal tissues, the optical window favorable for light penetration
is in near-infrared wavelengths, which are less absorbed by tissue, requiring proteins with emission
spectra in the far-red wavelengths [3, 5–9]. Tumor cell lines stably expressing detectable fluorescent
proteins enable to evaluate the efficacy of therapeutic anticancer treatments through whole-body imaging
without the need for any invasive procedures in tumor-bearing xenograft models.

Claudins (CLDNs) are proteins abnormally regulated in different human and animal neoplasms affecting
the mammary gland, prostate, pancreas, and colon [10–16]. CLDN family consists of more than 20
proteins essential for tight-junction formation in epithelial and endothelial cells. Additionally, CLDNs are
important regulators of paracellular transport and maintenance of cell polarity [10, 16–19].

The second extracellular loop of CLDN3, -4 and − 7 acts as a receptor for the Clostridium perfringens
enterotoxin (CPE) [20–23]. The C-terminal domain of CPE (C-CPE) by itself retains its high-affinity binding
to CLDN, but overcomes the toxic drawback of full-length CPE, which limited its use to local therapy.
Considering C-CPE’s ability to modulate the tight-junction, and thus the barrier function of epithelium and
endothelium in a non-cytotoxic way, C-CPE has emerged as a promising therapeutic agent [24–26] .

In recent years, laser therapy using gold nanoparticles (AuNPs) has rapidly evolved as a non-invasive
thermotherapy for cancer as it enables hyperthermia of tumor tissues [27–31]. During laser treatment,
AuNPs are delivered into tumors and are irradiated with laser light. AuNPs absorb light energy, causing
electron excitation and subsequent non-radiative relaxation. The absorbed light is converted into heat,
which irreversibly develops cell membrane disruption or protein denaturation of the surrounding tumor
cells [28, 32] .

Although AuNPs can passively accumulate in cancer cells [33], they have a non-specific connection with
cell membranes [32, 34]. Due to the AuNPs accumulation in normal cells, an undesirable damage is
associated with non-targeted AuNPs [35]. In a previous study, we demonstrated that C-CPE-AuNPs can be
used to specifically and efficiently kill human colon, conventional mammary gland and esophageal
adenocarcinoma cells, expressing CLDN3, -4 and − 7, using gold nanoparticle-mediated laser perforation
(GNOME-LP) technique [36, 37] .

Aside from humans, dogs are the only animal known to naturally develop prostate cancer [38]. In both
species, adenocarcinomas of the prostate represent an age-dependent, locally invasive disease [39, 40]
with dysregulated CLDN expression [41–45]. Human and canine prostate carcinomas are at present
incurable once they have metastasized. Since metastases are highly resistant to current conventional
therapies, new therapeutic strategies are necessary. Considering the similarities concerning the
presentation of the disease between both species, canine prostate cancer is considered a reliable model
for the testing of novel therapies for castrate-resistant prostate cancer in humans [46]. Consequently, data
obtained in dogs may also lead to progress in human tumor research.
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Herein we established and characterized stable red fluorescent canine prostate tumor cell lines, which
provide a novel tool for in vitro and in vivo tumor imaging. Further we characterized if the fluorescent
emission interferes with conventional laser ablation and optimized the therefore required parameters in
vitro. Finally, selective C-CPE AuNPs ablation using GNOME-LP in combination was used to eliminate
prostate CLDN3, -4 and/or -7 expressing tumor cell lines.

Materials And Methods

Cell lines and culture
Canine tumor cell lines TihoDProCarc0840 (DT0840) and TihoDProAdCarc0846 (DT0846) were
previously derived by our group from canine prostate carcinomas. DT0840 was generated from a 10-year-
old Pit Bull Terrier, castrated [47] and DT0846 was generated from a 6.3-year old intact German Rough
Haired Pointer [48]. Both cell lines have been demonstrated to express CLDN3, -4 and − 7 [41].

The cells were cultivated separately in 25 cm2 cell culture flasks in medium 199 (Gibco by Life
Technologies, Darmstadt, Germany) supplemented with 10% Fetal Bovine Serum (FBS Superior, Biochrom
GmbH, Berlin, Germany) and 2% penicillin/streptomycin (Biochrom GmbH, Berlin, Germany), and
incubated in a humidified incubator maintained at 37 ˚C with 5% CO2. Cultivation medium was replaced
twice per week.

Red fluorescence expression plasmid
For transfection, the pFusionRed-C (Evrogen, Moscow, Russia) plasmid was used. The vector encodes for
red fluorescent protein FusionRed as well as a neomycin resistance gene allowing selection of stably
transfected cells using Geneticin® Selective Antibiotic (G418) (Life Technologies, Darmstadt, Germany).
The vector was inserted into E. coli DH5α competent cells according to standard heat shock
transformation procedures for further multiplication. Expanded Plasmid DNA was extracted from bacteria
culture using Nucleo Bond® PC 500 plasmid DNA purification Kit (MACHEREY-NAGEL GmbH, Düren,
Germany).

Transfection of canine tumor cell lines
Both cell lines were seeded with a density of 5*105 cells in 6-well plates 24 hours before transfection. The
transfection was performed according to the manufacturer’s protocol using 6 µl X-treme GENE HP DNA
Transfection Reagent (Roche GmbH, Mannheim, Germany) in 200 µl serum-reduced Opti-MEM I media
(Life Technologies, Darmstadt, Germany) containing 2.5 µg of the isolated and purified pFusionRed-C
plasmid. The transfection complex remained for 20 min at room temperature. After adding the
transfection complex to the respective cells, the plates were incubated in a humidified 5% CO2 incubator
for 48 hours at 37 °C. The expression of the fluorescent protein was verified using a Leica DMI 6000B
fluorescence microscope (Leica Microsystem GmbH, Wetzlar Germany).

Geneticin® selective antibiotic kill curve assay
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The titration of a suitable amount of antibiotics required for the selection of DT0846 and DT0840 cell
lines was performed using a kill curve assay. Different G418 concentrations (0, 100, 200, 400, 600, 800,
1000 µg/ml) were applied on 100,000 native DT0846 and DT0840 cells, seeded in 12-well plates. For the
selection of positive cells after transfection, the lowest concentration was chosen in which no non-
transfected cell survived after seven days of G418 exposure determined by microscopy and flow
cytometry analysis.

Selection of positively transfected cells
One day after transfection, the cultivation medium 199 was replaced with medium 199 containing
antibiotic G418. A concentration of 200 µg/ml G418 was used for both transfected cell lines.
Subsequently, the selection medium was changed every 48 hours for the first two weeks, which led to the
selection of cells that stably integrated the FusionRed plasmid, with the encoded antibiotic resistance
gene, into their genomic DNA. Accordingly, cells not expressing the construct were killed by G418.

Fluorescence microscopy and flow cytometry
During the selection of transfected cell lines by Geneticin (G418), cells were controlled by fluorescence
microscopy weekly. FusionRed expression of the transfected cell lines was quantified in a MACSQuant
flow cytometer monthly (MACS Miltenyi Biotec, Bergisch Gladbach, Germany). Cells were detached with
Tryp-LE™ Express (Gibco by Life Technologies) into single-cell suspension, adjusted to 1*106 cells in
500 µl phosphate-buffered saline (PBS), and examined using the PE channel in a flow cytometer. Results
were analyzed with FlowJo Version 7.6.5 (FlowJo, Ashland, OR, USA). Transfected cell lines were used for
all further experiments when overcoming passage 50.

In vitro imaging using the NightOWL LB 983 in vivo imaging
system
Viable cells were harvested, counted and plated at a density of 2.5 × 106 per well in a 96-well plate and
followed by a 1:2 serial dilution until 0.156 × 106 cells per well in duplicates. Each well was set to a
volume of 250 µl. Unlabeled pre-B-ALL NALM-6 cells were used as controls in equivalent concentrations.
The plate was incubated overnight and images were taken with the NightOWL LB 983 imaging system
(Berthold Technologies, Bad Wildbad, Germany). As settings, an excitation filter of 525 nM and emission
filter of 655 nM with variable exposure times (4 s/10 s) were used. Images were analyzed with the indiGO
software (Berthold Technologies, Bad Wildbad, Germany).

RNA isolation and cDNA synthesis
Total RNA was isolated from transfected and native prostate tumor cell lines using the RNeasy®Mini Kit
RNA Purification (Qiagen, Hilden, Germany) according to the manufacturer´s instruction. RNA isolation
was performed three times per cell line. DNase digestion was carried out with RNase-Free DNase Set
(Qiagen) to avoid genomic DNA contamination. Subsequently, cDNA synthesis was performed using
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Transcriptor First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany), 1000 ng of total RNA, and
anchored-oligo (dt)18 primer according to the manufacturer´s instructions.

Quantitative real-time RT-PCR
To verify expression of CLDN genes after transfection process, transfected and native prostate tumor cell
lines were comparatively analyzed by quantitative PCR. Primer pairs for CLDN3, CLDN4, and CLDN7 were
designed according to the mRNA sequences given by the National Center for Biotechnology Information
(NCBI) (Table 1). Real-time PCR was performed using Fast SYBR™ Green Master mix Kit (Life
Technologies, Darmstadt, Germany) according to the manufacturer´s instructions. Quantitative PCR
reactions were carried out in real-time PCR cycler peqSTAR 96q (PEQLAB Biotechnologies GmbH,
Erlangen, Germany). The qPCR results were analyzed using the delta-delta CT (ΔΔCT) method relative to
non-transfected cells. Mean values of three wells were used per measured gene. Normalization was done
against housekeeping genes beta-actin (ACTB) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). The experiment was performed three times.

Table 1
Primer sequences used for real-time PCR.

Target gene Forward primer sequence Revers primer sequence Accession Number

CLDN3 5’ gcccaccaagatcgtctact 3’ 5’ gtctggagtgggttggtctc 3’ NM_001003088.1

CLDN4 5’ gcctcacttacccacctgac 3’ 5’ accagtttgtggcaccttca 3’ XM_005620962.3

CLDN7 5’ cacgatgggcatgaagtgta 3’ 5’ taccaaggcagcaagacctc 3’ XM_546584.5

ACTB 5’ tcgctgacaggatgcagaag 3’ 5’ gtggacagtgaggccaggat 3’ NM_001195845.2

GAPDH 5’ cagtatgattctacccacggcaa 3’ 5’ cctggaagatggagatggactt 3’ NM_001003142.2

 

Immunofluorescence assay
Immunofluorescence was performed for native and transfected cell lines to further confirm CLDN
expression. The cells were cultivated on rat collagen type I (Trevigen, Gaithersburg, MD, USA) coated
glass coverslips. Thereafter, cells were washed with PBS, fixed wit (1:1) Acetone/Methanol for 5 min at
-20 °C and blocked for 30 min with 1% BSA (bovine serum albumin, Sigma-Aldrich, Taufkirchen, Germany)
in PBS at 37 °C. CLDNs were stained with primary antibodies (Table 2) diluted in PBS containing 1% BSA,
overnight at 4 °C. Cells were washed with PBS. iFlour™ 488 Anti-mouse (AAT Bioquest, CA, USA) and
iFlour™ 555 Anti-rabbit (AAT Bioquest, CA, USA) were diluted 1:500 in PBS containing 1% BSA and added
to the respective cells as secondary antibodies for 1 h at 37 °C. For nuclei staining, DAPI (2 µM) (Sigma-
Aldrich) was used. Cells were stored in PBS at 4 °C for further analysis. As a control for unspecific binding
sites, cells were also incubated with only the secondary antibodies. Fluorescent images of cells were
taken with a Nikon Eclipse TE2000-E confocal laser scanning microscope (400 nm for DAPI, 555 nm for
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CLDN3 and − 7 proteins and 488 nm for CLDN4), with a 60x water immersion objective and software EZ-
C1 3.80 (Nikon, Düsseldorf, Germany).

Table 2
Primary Antibodies used for immunofluorescence assays.

Protein Antibody Concentration

CLDN3 Rabbit anti-mouse CLDN3 34-1700

(Thermo Fischer Scientific, Waltham, MA, USA)

3 µg/ml

CLDN4 Mouse anti-human CLDN4 34-1700

(Thermo Fischer Scientific)

3 µg/ml

CLDN7 Rabbit anti-human CLDN7 32-9400

(Thermo Fischer Scientific)

2 µg/ml

 

Visualization of C-CPE-CLDN binging
The C. perfringens enterotoxin C-terminal fragment (C-CPE) with an N-terminal Strep-tag II was prepared
as described previously. For C-CPE-CLDN binding visualization, the C-CPE was conjugated to green
fluorescent Strep-Tactin® Chromeo 488 dye (IBA, Goettingen, Germany). The complex was generated
freshly before usage, by mixing 2.5 µl Strep-Tactin® Chromeo 488 (0.5 mg/mL) as recommended by the
manufacturer with C-CPE dissolved in elution buffer. The mix was incubated overnight at 4 °C to allow
binding of C-CPE with Strep-Tactin® Chromeo 488. To reach a final concentration of 20 µg/ml C-CPE, the
mixture was diluted with 250 µl culture medium. Cells were cultured in a monolayer and stained for 3 h at
37 °C with 20 µg/ml C-CPE-Chromeo 488 complex. For nuclei staining, 1 µM Hoechst 33258 (Sigma-
Aldrich) was used. Thereafter, cells were fixed with 4% formaldehyde for 10 min at room temperature and
stored in PBS at 4 °C. The cells were imaged with a Nikon Eclipse TE2000-E confocal laser scanning
microscope (346 nm for Hoechst 33258 and 488 nm for Chromeo 488) with a 60x water immersion
objective and software EZ-C1 3.80 (Nikon).

Tumor cells ablation by GNOME-LP and C-CPE-AuNPs
complex interaction
For tumor cell killing using a laser beam, confluent cells in 96-wells were treated with the C-CPE-AuNPs
complex for 3 h in a cell culture incubator to allow adhesion of the complex onto the cells. The C-CPE-
AuNPs complex was generated as followed: The Strep-tagged C-CPE in elution buffer and Strep-Tactin®
conjugated AuNPs (diameter 25 nm) (Aurion, Wageningen, Netherlands) were mixed and incubated
overnight at 4 °C. The concentration was adjusted to 20 µg/ml C-CPE and 2.5 × 1010 AuNPs/mL with cell
culture medium.
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In addition to non-treated cells, cells incubated with either non-functionalized AuNPs or C-CPE alone, were
used as controls. Cells were exposed to a pulsed laser with 72 mJ/cm² at a scanning speed of 0.5 cm/s.
Laser treated cells were incubated for 30 min with 1 µM Hoechst 33258 (Sigma-Aldrich) and 10 min with
SYTOX green (1:500, PromoCell GmbH, Heidelberg, Germany) in a cell incubator. Under the Ti-E inverted
fluorescence microscope (Nikon, Duesseldorf, Germany), images were taken with 4x objective and Nikon
Software Nis-Elements 4.4 (346 nm for Hoechst 33258 and 488 nm for SYTOX green). Vital cells were
indicated by Hoechst uptake whereas dead cells were referred by SYTOX and Hoechst uptake. Mean
values of three wells were used per experiment. The experiment was performed three times. For cell
survival quantification, Hoechst and SYTOX stained cells were counted with the image processing
software ImageJ/Fiji V2.0.0.

Electron microscopy
To examine the binding of AuNPs and C-CPE- AuNPs on cell surfaces, the DT0846 and transfected
DT0846-FusionRed cell lines were analyzed with scanning electron microscopy (SEM). Confluent cells
were treated with AuNPs and C-CPE-AuNPs for 3 h in cell culture incubator to allow complex adhesion to
the cells. The cells were exposed to a pulsed laser with 60 mJ/cm² at a scanning speed of 0.5 cm/s.
Subsequently, the cells were fixed with 4% formaldehyde, washed with PBS, and stored for further
processing. For SEM preparation, the coverslips were dehydrated with a graded series of ethanol
completed with an acetone step prior to critical point drying with CO2 as an intermedium (Emitech K850
critical point dryer, Emitech/Quorum Technologies Ltd., Laughton, UK). The coverslips were flat mounted
on SEM-stubs with adhesive carbon tape (Plano, Wetzlar, Germany) and coated with a carbon layer (Leica
SCD500, Leica Microsystems, Wetzlar Germany). Specimens were analyzed in a field-emission SEM
(Zeiss Merlin VP compact, Carl Zeiss Microscopy, Oberkochen, Germany) equipped with HE-SE and in-
lens-Duo detectors operated at 5 kV and images with a size of 1024 × 768 pixels were recorded at
different steps of magnification.

Statistical analysis
The results are given as mean of at least three independent experiments for quantitative real-time RT-PCR
and cell killing using GNOM-LP. Statistical analysis was performed using SAS software 7.1 (SAS Institute
Inc., Cary, NC, USA). Significant differences in gene expression of CLDN3, -4 and − 7 were calculated using
Student’s two-sided t-test. Statistical analysis of cell killing using GNOME-LP was performed using
Dunnett´s Multiple Comparison Test and Student´s two-sided t-test. Differences were considered
statistically significant for p < 0.05.

Results

Generation of red fluorescent tumor cell lines
Transfected cell lines DT0840-FusionRed and DT0846-FusionRed showed a distinct red fluorescence 24–
72 h post-transfection all over the cytoplasm whereas native DT0840 and DT0846 cells showed no
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FusionRed fluorescence (Fig. 1A and 1C).

In order to quantify the amount of FusionRed positive cells, both fluorescent cell lines DT0840 and
DT0846 were compared to native DT0840 and DT0846 cells by flow cytometry. After 50 passages of
geneticin selection, 95.6% and 70.5% of cells were found FusionRed positive in DT0840-FusionRed and
DT0846-FusionRed respectively (Fig. 1B and 1D).

In vitro imaging using NightOWL LB 983 in vivo imaging
system
Transfected DT0840-FusionRed and DT0846-FusionRed cells were further imaged in a NightOWL LB 983
in vivo imaging system to illustrate and quantify fluorescent intensity in a whole body imager. Both cell
lines showed comparable cell concentration dependent fluorescent intensity. The lower limit of detection
was 0.3125 × 106 cells per well with 2.64 average cps ± 3.734 and 4.485 mm² ± 6.343 for DT0840-
FusionRed cell line. For DT0846 the lower detection limit was 0.625 × 106 cells per well with 5.69 average
cps ± 0.339 and 19.08 mm² ± 5.629 (Fig. 2).

CLDN gene expression in transfected cell lines
Gene expression level of CLDN3, -4 and − 7 in transfected cell lines were examined by quantitative real-
time RT-PCR and compared to the native cell lines. Level of CLDN4 expression in DT0840-FusionRed was
significantly lower in comparison to the reference cell line (Fig. 3). In contrast, levels of CLDN3 and − 4 in
DT0846-FusionRed was higher than those of the reference cell line.

CLDN protein immunofluorescence
The presence of CLDN3, -4 and − 7 proteins in native and transfected cell lines were subsequently
examined by immunostaining. In DT0840 cell line, CLDN3, -4 and − 7 proteins showed a strong signal and
were localized at the cell membranes and in the cytoplasm (Fig. 4). For the DT0840-FusionRed cell line,
CLDN3, -4 and − 7 proteins were found at the cell membrane; CLDN7 was weakly expressed (Fig. 4).

Expression of CLDN3 and − 7 proteins in cell line DT0846 was localized at the cell membranes whereas
CLDN4 was punctually localized in the cytoplasm and at the cell membrane. In the generated DT0846-
FusionRed cell line, CLDN3, -4 and − 7 proteins were strongly distributed along the cell membranes
(Fig. 4).

Binding of C-CPE to cell lines
C-CPE’s capability to target CLDN was determined through visualization of C-CPE-CLDN binding. The
experiment was performed by coupling C-CPE was coupled to Strep-Tactin® Chromeo 488. The complex
was detected along cell membranes of native and transfected cell lines at cell-cell junction between
adjacent cells (Fig. 5).

Electron microscopy
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In order to investigate the binding of AuNPs and C-CPE-AuNPs complexes on the cell surface, DT0846
and transfected DT0846-FusionRed cells were examined by scanning electron microscopy (SEM). AuNPs
appearing as white bright spheres in high resolution SEM analysis were detected e.g. on microvilli
extending from the cell surfaces of DT0846 and DT0846-FusionRed cells (Fig. 6). Uncoupled AuNPs
showed a broad distribution at the cell surface while C-CPE AuNPs were found preferentially located in
close distance to cell-cell borders. Whereas the presence of AuNPs and C-CPE-AuNPs on microvilli may
indicate non-specific surface binding, at places internalization of AuNPs was clearly visible (see
Additional file 1).

Selective cancer cells ablation using GNOME-LP and C-
CPE-AuNPs complex
Laser exposure of DT0840 native and transfected CLDN expressing cells in combination with C-CPE
functionalized AuNPs significantly reduced amount of vital cells down to 32.73% and 26.86% respectively
in comparison to untreated cells (Fig. 7). In native and transfected DT0846 cell lines in comparison to
untreated cells, GNOME-LP in combination with C-CPE functionalized AuNPs significantly decreased cell
survival to 8.55% and 5.52% respectively.

In cells treated with C-CPE alone, GNOME-LP application did not significantly impair cell survival.
Application of GNOME-LP in presence of non-functionalized AuNPs reduced cells by 41.56% of DT0840
and 30.91% of DT0840-FusionRed cells. Similarly, laser exposure of DT0846 and DT0846-FusionRed in
combination with non-functionalized AuNPs significantly decreased cells survival to 69.81% and 70.76%
respectively. Killing efficiency in presence of functionalized AuNPs (C-CPE + AuNPs) was significantly
higher in comparison to killing with non-functionalized AuNPs.

Discussion
In vivo models are the key to understand the pathogenesis of prostate cancer and the development of
novel therapeutic approaches [2]. Although in vitro systems offer several possibilities for basic drug
evaluation, they remain limited for the evaluation of complex interactions. The use of long-wavelength
emitting fluorescent proteins to label cancer cells enables deep tissue imaging; thereby allow real-time
tracing of cancer growth, metastasis and determination of efficacy of candidate antitumor and anti-
metastatic therapies. An optimal fluorescent protein for whole-body imaging should have excitation and
emission spectra within 650–950 nm. This “near-infrared optical window” has the lowest absorbance by
hemoglobin, melanin and water in mammalian tissue [9].

Herein, two canine prostate cancer cell lines, stably expressing red fluorescent protein, were established.
These cell lines can be detected in living animals using fluorescence imaging systems. The generated
cells have shown stable long time expression of red fluorescent protein; therefore represent a valuable
tool for studying canine prostate cancer in vivo models such as xenograft mice.
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It is well documented that CPE receptors CLDN3, -4 and/or -7 are abnormally regulated in many tumor
types [10–13, 49, 50], which also was confirmed for the used 0840 and 0846 cell lines [41]. CLDN3, -4 and
− 7 expressions in generated fluorescent cell line DT0840-FusionRed revealed no significant difference in
comparison to native DT0840 for CLDN3 and − 7, however CLDN4 was significantly decreased. Analysis
of CLDN7 in DT0846-FusionRed showed no difference in expression, whereas CLDN3 and − 4 were even
higher expressed after transfection.

Immunofluorescence staining showed strong expression of all three CLDN proteins in all cell lines.
Therefore, DT0840-FusionRed still represents a sufficient model for further experiments despite
significant decrease in CLDN4 mRNA level measured by qPCR. Interestingly, immunofluorescence
staining revealed that CLDN3, -4 and − 7 in DT0840 cells, as well as CLDN4 in DT0846, were punctually
located in the cytoplasm. Such apparent miss-localizations were also described for the CLDN4 protein in
human prostate cancer-derived cell lines and may be related to loss of cellular organization due to a
defect in tight junction formation or cell polarity; features common in tumor cells [43].

Binding of CPE to CLDN3 and − 4 can trigger cell death [51–54]. Therefore, it proposed to use CPE for
tumor therapy. However, studies in vivo revealed that systemic administration of full-length CPE in mice
was toxic and thus limited its use to local therapies [52]. Previously we demonstrated that the non-
cytotoxic C-terminal domain of CPE, which preserves CPE’s binding affinity to CLDN receptors, is capable
to functionalize AuNPs [36]. Imaging of C-CPE binding to the canine tumor cell lines proved that the
protein can specifically target CLDN3, -4 and − 7 demonstrating that the functionalization did not alter the
binding capacity to CLDN.

Further, electron microscopy images indicated that the C-CPE conjugated AuNPs retain the affinity to its
receptors (CLDN3, -4 and − 7).

The GNOME-LP technology has been used for the cellular introduction of dyes as well as siRNA into
different cell types via transient cell permeabilization [55–58]. The present report shows that C-CPE
coupled to Strep-Tactin conjugated AuNPs in combination with GNOME-LP technique can be used for
specific targeting of CLDNs expressing tumor cell lines.

In the previous study, we showed that the energy power of the applied laser at 60 mJ/cm3 and a scanning
speed of 0.5 cm/s in combination with C-CPE-AuNPs reduced cell survival to less than 30% of claudin
expressing cell lines [36]. In a first experiment, GNOME-LP with the same settings accordingly reduced cell
survival to about 30% in native DT0846 cells, but showed no effect on the transfected fluorescence cells
(data not shown). At 532 nm (laser wavelength) the red fluorescent dye FusionRed has approx. 50%
absorption (50% of dye molecules absorb light at 532 nm). Therefore, depending on dye concentration in
the cells, a significant amount of laser light might be absorbed and thus reduced the overall effect on
AuNPs. Therefore, GNOME-LP was applied at the maximal laser fluence (72 mJ/cm3) on native and
fluorescent cell lines. Using the new setting, GNOME-LP in combination with C-CPE functionalized AuNPs



Page 12/24

reduced cell survival to down to 30% in DT0840 and less than 10% in DT0846 (native and fluorescent)
cells.

Significant killing of DT0846 and DT0840 (native and transfected) cells treated with non-functionalized
AuNPs may be related to endocytosis activity allowing them to internalize the AuNPs. However, the
results show that the functionalization of AuNPs with C-CPE increases the ablation efficiency of CLDN
expressing tumor cell lines in comparison to cells treated only with AuNPs. This interpretation is
supported by SEM analysis showing the presence of many uncoupled AuNPs that are bound non-
specifically on the cell surface microvilli even after three hours of incubation whereas fewer C-CPE
functionalized AuNPs are present on the cell surface, mostly restricted along cell-cell borders. This
suggests that C-CPE-AuNPs efficiently bind to their protein targets and are rapidly internalized into the
cells as can be traced at places with SEM (see Additional file 1).

In the current study, the generated DT0840-FusionRed and DT0846-FusionRed cell lines showed stably
strong red fluorescence protein expression. This was further analyzed by NightOWL LB 983 in vivo
imaging system, where the fluorescent detection potential of FusionRed transfected DT0840 and DT0846
cell lines were verified. Small cell numbers were sufficient to monitor the FusionRed labeled cells in the
whole body imager [59]. For in vivo imaging studies a cell number from 1 × 106 cells per tumor is
detectable with this setting already in early tumor stages [60]. Red fluorescent proteins showed high
sensitivity in subcutaneous, abdominal as well as deep tissue cell implantation. Thus, in vivo imaging
with this stably transfected cell lines provides a tool for long-term imaging and monitoring longitudinal
tumor development and drug response per individual mouse [61].

The results confirm for the first time that the therapy concept of C-CPE functionalized AuNPs can be used
efficiently against prostate carcinoma cells. By using GNOME-LP system and C-CPE functionalized
AuNPs an irreversible laser ablation of prostate tumor cells was achieved in vitro. Cells, which were
irradiated with maximal laser power without C-CPE-AuNPs, maintained viability. Likewise, cells incubated
with C-CPE and irradiated with the maximal laser fluence maintained viability as well. A combination of
laser treatment and C-CPE-AuNPs, however, reduced tumor cell viability down to less than 10% in DT0846.

To further extend the presented in vitro findings, in vivo studies need to be carried out in a next step. The
same cell lines used for the in vitro findings can also be detected in vivo through deep tissue imaging and
therefore enabling to observe tumor growth and subsequently possible tumor ablation through C-CPE
treatment in a living animal e.g. mouse xenograft models. In vivo studies could allow the characterization
if the C-CPE complex is able to diffuse through the extracellular matrix and bind to tumor tissues. If
successful, a combination between GNOME-LP and functionalized AuNPs may establish a treatment
option for canine prostate cancer.

Conclusion
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The established cell lines and the verified proof of concept in vitro provide the basis for perspective
xenograft in vivo studies. The introduced red fluorescence enables deep tissue imaging in living animals
and therefore detailed characterization of tumor growth and subsequently possible tumor ablation
through C-CPE-AuNPs treatment.

Since dogs represent an excellent model for prostate cancer, the development of therapeutic strategies
provides an important contribution to translational research directed to treat humans, thus providing
benefit for both species.

Abbreviations
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Figures

Figure 1



Page 19/24

Fluorescence microscopy and flow cytometry analyses of transfected DT0840 and DT0846 cell lines.
(a,
c) Merged transmitted light and red fluorescence image of FusionRed expressing cells; FusionRed is
localized in the cytoplasm. (b, d) Flow cytometric analyses of FusionRed expression in native and
fluorescent cell lines depicted in dot-plots showing side scatter (SSC) vs. FusionRed fluorescence.

Figure 2

Imaging of transfected DT0840 and DT0846 cell lines using NightOWL LB983 in vivo imaging system.
Serial diluted FusionRed labeled DT0840 and DT0846 cells were seeded in a 96 well plate overnight. (a)
Subsequently, images were taken using filter with excitation of 525 nm and emission of 655 nm and 10
seconds exposure using the NightOWL LB 983 in vivo imaging system. Pre-B-ALL cell line NALM-6 was
used as unlabeled control cell line. (b) Area (mm²) and (c) average counts per seconds (cps) were
evaluated by IndiGO software for both cell lines. Error bars represent the mean ± standard deviation (SD).
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Figure 3

CLDN3, -4 and -7 gene expression in transfected tumor cell lines.
Gene expression was measured via
quantitative real-time RT-PCR and results were normalized to the expression of GAPDH and ACTB. (a)
CLDN gene expression in DT0840-Fusionred in comparison to native DT0840. (b) CLDN gene expression
in DT0846-Fusionred in comparison to native DT0846. Error bars represent the mean ± standard
deviation (SD). *p<0.05 indicates statistically significant differential expression of CLDN compared to
non-transfected cell lines.
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Figure 4

Expression of CLDNs protein in native and transfected tumor cell lines. Cells were subjected to
immunostaining with corresponding antibodies using fluorescein-conjugated secondary antibodies,
showing red signals for CLDN3 and -7 and green signals for CLDN4. DAPI was used for blue nuclei
staining. Images were observed under confocal microscopy. Arrows indicate CLDN localization on cell-
cell contact. Scale bars = 20 µm.
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Figure 5

Binding of C-CPE to CLDN. Specific binding of C-CPE-Strep-Tactin Chromeo 488 complex on CLDN
expressing cells at cell-cell contact (green). Images were observed under confocal microscopy .Arrows
indicate C-CPE binding on cell-cell contact. Scale bars = 20 µm.
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Figure 6

Scanning electron microscopy of C-CPE-AuNPs on a DT0846-FusionRed cell.
(a) 2,000x overview of the
cell culture and stepwise higher magnification of a cell-cell border area presented in (b) 10,000x with
AuNPs encircled and (c) 40,000x detailing an 25nm AuNP (arrow) on surface microvilli. The white box
outlined in (a) indicates the area magnified in C Scale bars are 2 µm, 1µm and 100 nm, respectively.
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Figure 7

GNOME-LP mediated tumor cell killing using C-CPE functionalized AuNPs. Increased cell killing efficiency
of GNOME-LP in presence of C-CPE-AuNPs compared to GNOME-LP in combination with non-
functionalized AuNPs. SYTOX green uptake was used as an indicator of cell death after GNOME-LP
application. The graph represents the mean ± standard deviation (SD) of cell survival relative to untreated
cells as a control reference. Significant differences to untreated controls were analyzed with Student’s
test. *: p<0.05; **: p<0.01; ***: p<0.001, # Significant difference to cells treated with AuNPs only; p<0.001.
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