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Abstract
TNBC is the most malignant subtype of breast cancer and there are no accurate and effective therapeutic
targets. Immunotherapy is a promising approach for the treatment of TNBC. Anxiety and depression are
among the most common concomitant symptoms in BC.MDD affects the functioning of the immune
system, and its immune-related genes not only in�uence the pathophysiology of MDD, but may also
increase the risk of BC recurrence and metastasis.

This study revealed signi�cant differences in T-lymphocyte in�ltration between the high-risk and low-risk
groups of TNBC differentiated on the basis of the characteristic in�ammatory genes of MDD, which can
help to screen the population for immunotherapy bene�t and provide new ideas for future
immunotherapy of TNBC. We aimed to identify MDD-related genes involved in the pathogenesis of TNBC
and to provide predictive immunotherapy biomarkers for TNBC.

1. INTRODUCTION
Data from GLOBACAN con�rms that breast cancer (BC) has surpassed lung cancer as the most prevalent
malignancy globally, with approximately 2.26 million cases worldwide in 2020[1]. Triple-negative breast
cancer (TNBC) is a type of BC that is negative for the progesterone receptor, estrogen receptor, and
human epidermal growth factor receptor 2, accounting for 15–20% of all BC. As the predominant type of
BC, TNBC is characterized by high aggressiveness, poor prognosis, and high recurrence rate, usually in
younger women and with an increasing rate of mortality[2–4]. Approximately 45% of TNBC patients
develop brain or other metastases[3]. What’s worse, TNBC is insensitive to both hormonal and targeted
therapies[5], and chemotherapy is virtually the only available option, but it soon develops resistance. It is
a challenging and important clinical issue to �nd accurate and effective targets for TNBC treatment. In
recent years, immunotherapy has thrown light on TNBC patients. Immune checkpoint inhibitors (ICIs)
programmed death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) have improved
outcomes for some TNBC patients[6]. ICIs could signi�cantly improve event-free survival even in patients
who did not reach pathological complete response. However, no predictive biomarker is currently
available for the selection of patients most likely to bene�t from ICI. Due to economic costs and potential
risk of permanent immunotoxicity, only part of patients can be cured by chemotherapy alone; whereas
some patients with high tumor burden still have dismal prognosis. Therefore, research should focus on
selecting the appropriate population for TNBC immunotherapy and maximizing the potential bene�ts of
ICIs.

The Global Burden of Disease Study 2019 shows that depression is the top ten leading drivers for
increased global burden of disease[7]. In the U.S., major depressive disorder (MDD) has a lifetime
prevalence of 21% among women[8] and is the leading cause of suicide. MDD may signi�cantly shorten
life expectancy partly due to suicide and an increased susceptibility to major illnesses including
cardiovascular disease, stroke, autoimmune diseases, and cancer[9–11]. MDD may not only worsen the
course of the above medical disorders but also deteriorate treatment outcomes[12]. There are currently no
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useful predictors of depression clinically, and such biomarkers are of concern because persistent
depression may bring about increased resistance to treatment and increased risks of substance abuse
and suicide. Notably, the prevalence of depression is very high in patients with autoimmune diseases, and
depressed patients with increased in�ammatory markers may be relatively resistant to treatments[13].
Evidence suggests that immune-related genes participate in the pathophysiology of MDD and that
enhanced cerebral pro-in�ammatory levels induce depression. Recent genome-wide studies have shown
that processes (e.g., IL-6 signaling or natural killer cell pathways) associated with immune responses are
greatly enriched in MDD patients [14]. Several studies have con�rmed that MDD affects the function of
the immune system (cellular and humoral immunity), increases the risk of BC recurrence and metastasis,
shortens survival time, and enhances mortality rates[15, 16]. In addition, fatigue, pain, loss of appetite, or
sleep disturbances in BC patients may be incorrectly attributed to physical illnesses rather than mental
disorders.

Past studies have widely recognized that MDD affects the quality of life and prognosis of TNBC patients,
thereby increasing the risk of death[17]. Stress-induced changes in hematopoiesis lead to mononucleosis,
neutrophilia, and lymphopenia, and consequently upregulate pro-in�ammatory levels in immune-related
peripheral tissues. This peripheral in�ammation can trigger psychiatric symptoms, metabolic syndrome,
immunosuppression, and other psychiatric complications[18]. Many articles have addressed the potential
mechanisms by which stress signals are transmitted from the central nervous system (CNS) to immune
cells to modulate stress-related behaviors and psychiatric complications[19–22]. It would be of great
interest to uncover potential biomarkers for both diseases. Thus, determining different clustering features
and MDD-related features can effectively predict TNBC patients' prognosis and response to
immunotherapeutic interventions. MDD signature was identi�ed by differential analysis based on the
MDD scRNA dataset GSE144136. TNBC samples were obtained from TCGA, GEO, and METABRIC
databases. The expression and mutations of MDD signature genes in TNBC were analyzed and an MDD-
related prognostic signature was developed based on the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) database, which was validated by the GSE58812 and TCGA
databases. We �nally analyzed the high and low-risk groups in functional enrichment, cancer stemness,
immune cell in�ltration, response to immunotherapeutic interventions, mutation frequency, and
chemotherapy resistance. The results illustrated that the MDD-related signature was linked to immune
cell in�ltration and could predict treatment responses and outcomes in TNBC.

2. MATERIALS AND METHODS

2.1 Study Design and Data Collection
Single-cell mRNA sequence (scRNA-seq) data from 17 MDD patients and 17 controls were downloaded
from GSE144136 in the GEO database (www.ncbi.nlm.nih.gov/geo) [23]. RNA sequencing data and
clinical annotations of TNBC patients were obtained from the METABRIC ((http://www.cbioportal.org/)
and used as the training cohort. The GSE58812 microarray dataset was downloaded from GEO [24] and
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the RNA-Seq data of TNBC samples were procured from TCGA (https://portal.gdc.cancer.gov/repository).
Detailed information is exhibited in Table 1.

Table 1
Information of datasets

Dataset Platform Origin Sample Species

Experimental Control

GSE144136 GPL20301 Post-mortem dorsolateral
prefrontal cortex

17 17 Homo
sapiens

GSE58812 GPL570 neoplasms 107 / Homo
sapiens

TCGA
TNBC

Illumina Invasive Ductal Carcinoma of
Breast

112 / Homo
sapiens

METABRIC Illumina Invasive Ductal Carcinoma of
Breast

320 / Homo
sapiens

2.2 Selection and Analysis of the Differential Expression of
MDD-Related Genes
MDD scRNA-seq data from GSE144136 were analyzed by Seurat (https://github.com/satijalab/seurat)
[23]. Cells with less than 200 genes or more than 2,500 genes and more than 5% of mitochondrial gene
fragments were screened. Seurat’s functions of NormalizeData and ScaleData were utilized for
normalization and scaling of count data after the remaining cells were merged into one gene expression
matrix. RunUMAP and Findclusters functions were utilized for dimension reduction and cell cluster
identi�cation. After that, cell clusters were annotated by the SingleR R package. “FindAllMarkers” and
“FindMarkers” functions were applied for Wilcoxon tests in astrocytes between MDD patients and
controls to �nd differentially expressed genes (DEGs). Afterward, a protein-protein interaction (PPI)
network was established for DEGs using the STRING database [25]. The R package “clusterPro�ler” [26]
was adopted for functional enrichment analyses with KEGG and Gene Ontology (GO), with a cutoff value
of p < 0.05.

2.3 Identi�cation of a Prognostic MDD-related Gene
Signature in TNBC
The prognostic performance of dysregulated MDD genes was estimated via univariate Cox regression
analysis (p < 0.05) in the METABRIC dataset. Subsequently, the stepwise Akaike information criterion
(stepAIC) method from the MASS package (version 26) was utilized to re�ne the prognostic gene set and
construct a prognostic model. The risk score was graded based on the normalized expression levels of
genes (Expi) and regression coe�cients (Coei):

Riskscore = ∑
N

i=1
(Expi × Coei)
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TNBC patients were assigned to high and low-risk groups based on the median cutoff. The ‘survminer’,
‘survival’, and ‘survivalROC’ R packages were then employed for Kaplan–Meier and ROC curve analyses to
assess the prognostic performance of novel gene signatures. Cox regression analyses were conducted to
evaluate the prognostic independence of MDD-related risk scores with other clinical indexes in TNBC
patients. A survival prediction nomogram was established by incorporating signi�cant risk factors and its
accuracy was assessed with the calibration curves and decision curve analysis (DCA).

2.4 Functional Enrichment Analysis
DEGs between the high and low-risk patients were determined by |logFC| > 0.5 and P < 0.05 and then
selected for GO analysis with the ‘clusterPro�ler’ R package [27]. Gene Set Enrichment Analysis (GSEA) of
the KEGG pathway was performed using the “clusterPro�ler” R package [28], with the threshold of |NES| >
1, NOM p-value < 0.05, and q-value < 0.25.

2.5 Relationship of MDD Prognostic Signature with TME in
TNBC
The 'ESTIMATE' R package was employed for calculating the stromal score, immune score, and
ESTIMATE score to estimate the TME (tumor microenvironment) composition. For further analysis,
immune checkpoints and HLA-related gene expression matrix were extracted for differential analysis. To
identify the mutational pro�les of TNBC patients, the mutation annotation format was created with the
“maftools” package [29].

2.6 Immune in�ltration analysis
The proportion of immune cells was determined for patients in the low-risk and high-risk groups using
CiberSort, a computational method that identi�es different immune cell proportions by tissue gene
expression pro�les. The TIMER database (https://cistrome.shinyapps.io/timer/)) includes 10 of 32
cancer types from the Cancer Genome Atlas. 897 samples to estimate the abundance of immune
in�ltrates (26). Immune cell in�ltration analysis was performed using the "CiberSort" R script and the
Timer 2.0 database. Using the heatmap R package, a heatmap was created showing the in�ltration of 28
immune cells into the body. In the box plots, we visualized the differences between the high and low risk
groups regarding the proportion of different types of immune cells.

2.7 Stemness Signatures Analysis
According to the most comprehensive and up-to-date set of published stemness signatures de�ned by
RNAi screening, gene expression pro�ling, target gene sets of transcription factors, literature, and
computational summaries (Additional �le 2: Supplementary Table 1), 26 stemness gene sets were
recruited from StemChecker (http://stemchecker.sysbiolab.eu/). Next, ssGSEA was applied for
quantifying stemness enrichment scores via the GSVA R package and for differential analysis.

2.8 Drug Sensitivity Prediction
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The ‘pRRophetic’ R package [30] was employed for drug sensitivity estimation. The ridge regression was
implemented to calculate the IC50 value based on the GDSC database.

2.9 Statistical Analysis
All statistical analyses were done using R software (v4.3.1). Wilcoxon test was utilized for pairwise
comparisons (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Kaplan–Meier method and log-rank
test were applied for survival analyses. The optimal cutoff value of the stemness and risk scores was
examined with the “surv_cutpoint” function of the survminer R package (v0.4.6). P value < 0.05 presented
statistical signi�cance.

3. RESULTS

3.1 scRNA-seq analysis reveals marker genes for MDD
The �ow chart of the study design is exhibited in Figure.1. After batch effect removal, the �rst 2000 highly
variable genes in the cells were obtained (Figure.2A). Principal component (PC) values were determined
with the elbow plot function (Figure.2B), which indicated that the optimal PC value was 10 because it was
the last point where the percentage change in variation exceeded 0.1%. A resolution of 0.5 was con�rmed
by clustree. UMAP downscaling visualized individual cells into 22 clusters (Figure.2C), which were then
annotated into 8 cell types by SingleR annotation (Figure.2D). Among them, 298 genes were
characterized genes because their levels differed signi�cantly from those in normal cell types (Figure.2E).
This suggests that astrocytes are predominant cells in MDD tissues. Astrocytes are the major type of glial
cells in the mammalian CNS and are strongly associated with depression.

3.2 MDD key genes mutated and expressed in TNBC
298 DEGs were obtained and then subjected to PPI analysis, which showed that the core genes were
densely connected and closely related (Figure.3A). Summary analysis of MDD core gene expression
mutations in the TCGA-TNBC cohort revealed a high incidence of mutations in the �rst 20 genes of MDD
(Figure.3B). In the TCGA cohort, 39 out of 98 samples (39.8%) had signi�cant gene alterations, and the
gene with the highest mutation frequency was RYR2. One study showed that LINC01194 activated the
Wnt/β-catenin pathway and accelerated TNBC progression by recruiting NUMA1 to stabilize UBE2C
mRNA and enhance RYR2 ubiquitination. Additionally, 20 key MDD genes exhibited signi�cant CNV
alterations in TNBC patients (Figure.3C). The function and signi�cant KEGG pathways of 298 MDD core
genes were further investigated (Figure.3D), and GO and KEGG pathway studies in MDD gene modules
were shown to correlate with neurological class functions such as brain and behavior.

3.3 Prognostic characteristics and prognostic value of MDD
signature genes in TNBC patients
Univariate Cox regression analysis was carried out to identify MDD genes with prognostic signi�cance to
establish a predictive model. The initial analysis unveiled 28 genes with signi�cant prognostic capacity
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(p < 0.05). To streamline the model with fewer genes, we executed stepAIC analysis and ultimately
selected 10 MDD genes to construct the prognostic model. The formulation was as follows: Risk score =
(-0.2062) * PTGDS + (1.8077) * FGF14 + (0.4844) * CRLF3 + (-0.2984) * ST6GALNAC5 + (0.1002) * CKB +
(1.0944) * CDH12 + (0.4444) * PKM + (0.3172) * RHOB+ (0.3462) * GNB2 + (0.2333) * HIP1R.
Subsequently, TNBC patients were allocated into two groups as per their computed risk scores. Kaplan-
Meier method revealed that TNBC patients with high-risk scores had poorer OS probabilities than their
low-risk counterparts from the METABRIC-TNBC dataset (median time = 75.3 months vs. 292.7 months, P 
< 0.0001, Figure.4A). Risk score distribution and survival outcomes are presented in Figure.4A. To verify
the robustness, we extended our analysis to two independent validation groups: the TCGA-TNBC cohort
and the GSE58812 cohort. In both validation cohorts, patients with high-risk scores had poorer OS than
those with low-risk scores (TCGA-TNBC: median time = 98.8 months vs. 115.7 months, P = 0.012,
Figure.4B; GSE58812: median time = 54.5 months vs. 77.2 months, P = 0.00052, Figure.4C). These data
a�rm the robust performance of the 10-gene prognostic model in predicting the TNBC prognosis across
multiple datasets.

3.4 Clinical characteristics of TNBC and construction of
related prognostic indicators
Univariate and multivariate Cox analyses identi�ed age, lymph node, and risk score as independent
prognostic indicators for TNBC patients (Figure.5A, B). To make the model clinically applicable and
feasible, we established a Nomogram based on the METABRIC cohort with age, lymph node, and risk
score as predictors of overall survival (Figure.5C). The Nomogram-based low-risk group manifested a
better prognosis (Figure.5D). The AUC of the combined model for 1-, 3- and 5-year survival were 0.729,
0.684, and 0.753, respectively (Figure.5F), which were all roughly at 0.7. Furthermore, the calibration curve
manifested that the nomogram could make accurate predictions (Figure.5G). Additionally, DCA
(Figure.5E) elicited that the nomogram better predicted the 3- and 5-year OS, providing more net clinical
bene�ts than the 1-year OS. Overall, our developed nomogram demonstrates predictive power and clinical
applicability in assessing the prognosis of TNBC patients based on these important clinical parameters.

3.5 MDD prognostic signature genes are expressed in
immune cells and promote TNBC development
Besides, the low-risk group had higher stromal score, immune score, and estimate score than the high-risk
group (Figure.6A). In the TME, the ratio of immune and stromal cells in the tumors could signi�cantly
affect the prognosis. The results veri�ed that the low-risk group had a better prognosis than the high-risk
group. ICIs have been increasingly utilized in clinical settings for antitumor immunotherapy. Variations in
ICI expression among high-risk and low-risk populations could lead to different responses to ICIs. Our
investigation revealed that certain ICIs were signi�cantly expressed between the high- and low-risk TNBC
patients, with low-risk patients having higher levels and being more suitable for immunotherapy
(Figure.6B). HLA phenotypes have great in�uences on the e�cacy of immunotherapy drugs. The greater
the HLA diversity, the more types of neoantigens can be delivered. This study found 12 signi�cant
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differences in phenotypes (Figure.6C), suggesting that immunotherapy are more effective in low-risk
patients. The stemness index was elevated in high-risk patients, suggesting higher intratumor
heterogeneity (Figure.6D). The IC50 of the four drugs was assessed using the GDSC dataset, which
demonstrated that high-risk patients had higher IC50 values for the four complexes, suggesting less
sensitivity to chemotherapeutic agents, Camptothecin, and ARTA (Figure.6E). This implies that the high-
risk patients are insensitive to conventional therapeutic modalities, and there is a need for the
development of a completely new therapeutic approach. Of note, increased levels of stemness-related
factors are correlated with tumor recurrence, drug resistance, and cell proliferation. Tumor-loaded
mutation scores were also markedly higher in the high-risk patients (Figure.6F). In addition, we found that
in (Figure.6G), the low-risk group had better immune cell in�ltration compared to the high-risk group,
suggesting that the low-risk group is more likely to bene�t from immunotherapy.

3.6 MDD Characterization Genes Expression and Mutations
in TNBC
Figure.7A manifests the localization of the 10 characterized genes on human chromosomes. Pearson
analysis indicated that PTGDS expression showed a strong positive correlation with CRLF3 expression
and a strong negative correlation with ST6GALNAC5 expression, and PKM expression showed a strong
negative correlation with CRLF3 expression (Figure.7B). GO semantic similarity analysis showed that
FGF14 had the highest functional similarities (Figure.7C), and the higher semantic similarity indicated
that the gene played a more important role in the function. As shown in the PCA plot, gene expression
patterns between the high-risk and low-risk groups were quite different (Figure.7D). The expression
differences of 10 characterized genes were comprehensively evaluated to explore the molecular
characteristics. The results exhibited differences in the characterized gene expression pro�les and clinical
features between high-risk and low-risk groups (Figure.7E). To further elucidate the molecular mechanism
of 10 characterized genes, the Network analyst online tool was used to predict the interaction network of
miRNA-characterized genes-transcription factors (Figure.7F).

3.7 Functional enrichment analysis of Low-Risk and High-
Risk populations
GO BP results suggested that high-risk populations had poorer outcomes but more active immune
functions, indicating higher sensitivity to immunotherapies (Figure.7G). To �gure out the potential
differences in biological functions, we performed GSEA and identi�ed the 10 most critical enriched
pathways (Figure.7H). The low-risk populations were mainly related to immune function, including
allograft rejection, antigen processing and presentation, intestinal immune network for IgA production,
autoimmune thyroid disease, natural killer cell-mediated cellular toxicity, primary immunode�ciency,
cytokine-cytokine receptor interactions, in�ammatory bowel disease, Th1 and Th2 cell differentiation, and
Th17 cell differentiation.

4. DISCUSSION
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TNBC is the most malignant type of BC and there is a high rate of distant metastases and lack of
accurate and effective therapeutic targets. Is TNBC progression associated with certain genes that
characterize brain disease? To date, many studies have suggested an extremely high incidence of BC and
anxiety-depressive disorders, with 84% of patients with advanced BC experiencing anxiety-depression[31].
For MDD, mutations have been observed in the genetic region of the FKBP5 allele, which involves
abnormal functions of the hypothalamic-pituitary-adrenal (HPA) axis and links to enhanced blood cortisol
and plasma adrenocorticotropic hormone[32]. Enhanced cortisol levels and malfunctioning of inhibitory
mechanisms change the communication between the HPA axis and/or the CNS and the immune
system[33], thus, inducing an in�ammatory process[34]. Immunization processes are associated with the
pathophysiology of both MDD and TNBC. Only a few have examined the relevance of MDD and TNBC in
terms of pathogenesis, and so we propose that MDD signature genes may be expressed in immune cells
and promote TNBC progression, thus affecting patient prognosis and immunotherapy responses. In
recent years, integrated bioinformatics analysis based on massive data has been increasingly used to
explore new genes and potential diagnostic or prognostic biomarkers to provide more information for
disease pathogenesis and prospective treatment [35, 36]. In this study, we employed various
bioinformatics analysis methods to unveil for the �rst time the role of MDD signature genes in TNBC and
elucidate the relationship between MDD and TNBC from an immune perspective. This novel perspective
helps us understand how MDD signature genes affect the prognosis and development of TNBC and
provides predictive biomarkers for the strati�cation of patients most susceptible to ICIs.

The highly heterogeneous characterization of TNBC leads to different clinical outcomes and treatment
sensitivities[37]. Hence, we developed a new MDD-related marker that has enabled risk strati�cation and
personalized treatment. Brain nuclear tissues were annotated from 34 MDD suicide patients from
GSE144136. Twenty-two cell clusters were annotated into eight cell types, namely Astrocyte, Endothelial
cells, Gametocytes, Macrophages, Neuroepithelial cells, Neurons, and Platelets. Our analysis suggested
that astrocytes are the major cell type in MDD and can be used as the characteristic cells of MDD.
Astrocytes can respond to and promote in�ammatory signals and regulate multiple life processes in the
CNS, both physiologically and pathologically[38]. Emerging evidence suggests that astrocyte dysfunction
is implicated in MDD pathogenesis. Activated astrocytes facilitate the production of pro-in�ammatory
cytokines, like interleukin IL-1β and TNF-αto induce depressive symptoms [39–43]. Of note, 298 genes
were revealed as signature genes because their levels were substantially different from those in normal
cell types. 298 MDD signature genes had signi�cant (39.8%) genetic alterations in the TCGA-TNBC
cohort. The more mutations there are in tumor cells, the more likely they are to produce aberrant proteins,
thus increasing the recognition probability by the immune system and activating the body's immune
response[44]. These data suggest that TNBC populations based on MDD signature genes may bene�t
from immunotherapy.

We calculated the risk scores of the patients and divided the 320 samples of the METABRIC dataset into
high- and low-risk groups as a training set. The survival of the low-risk patients was visibly longer than
that of the high-risk patients, similar to the result in the TCGA and GSE55812 datasets. Further clinical
analyses in both univariate and Cox analyses con�rmed age, lymph nodes, and risk scores as
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independent prognostic factors for TNBC, and these results further validated our inference. TNBC is
considered an early-onset subtype of BC because of its strong immune escape capacity[45, 46].

The in�ammatory hypothesis of MDD is also called the monocyte/macrophage theory, and cells of this
lineage are primary producers of pro-in�ammatory cytokines[47, 48]. Some researchers found
overexpressed in�ammatory genes in monocytes of MDD patients[49, 50]. In patients with solid tumors,
responders exhibit a‘hot’ (‘immune-in�amed’) phenotype, characterized by T lym-phocyte in�ltration,
whereas nonresponders may exhibit a‘cold’ (‘immune-desert’/‘immune-ex-cluded’) phenotype,
characterized by the absence or exclusion of T cells in the tumor parenchyma[51], the TNBC high- and
low-risk groups distinguished by the characteristic in�ammatory genes based on MDD have signi�cant
differences in T-lymphocyte in�ltration between the two groups, which can help to screen for
immunotherapy bene�t. Consistently, our results showed higher stromal score, immune score, and
proportion of immune cells in the low-risk group. The microenvironment of BC is an intricate integrated
system that can be classi�ed into an immune cells-dominated TME and a �broblasts-dominated non-
immune TME. In this regard, the genetic pro�les of immune cells (genes related to gene transcription and
proliferation) and tumor-in�ltrating lymphocytes (TILs) may be particularly important for tumor
progression, clinical response, and prognostic value for TNBC patients with limited therapeutic options
and poor prognosis[52]. We detected a landscape of immune in�ltration of multiple immune cell types
and noticed that the high-risk group had a lower percentage of immune in�ltration and was more
susceptible to tumor progression and metastasis. Few immune cells are also present in normal breast
tissue, but tumor progression is associated with leukocyte in�ltration in this area. TNBC is characterized
by high proliferation and therefore high levels of TILs, partly due to increased genomic instability and
mutational load, thus affecting the immune system to clear cells carrying non-self-antigens[53].
Unsurprisingly, the present study revealed that CD8T and T cells were also mostly enriched in the low-risk
populations, and cytotoxic T cells hinted at a favorable prognosis in early TNBC.

Finally, there is an important philosophical cognitive difference that haunts the �eld. Descartes’s
interactionism holds that the mind and body are mutually independent entities that can interact with each
other. Contemporary neuroscientists are now increasingly aware that mental states can indeed in�uence
peripheral physiological processes, although there is still a signi�cant portion of people who believe that
immune and in�ammatory markers are merely incidental phenomena and have no causal relationship to
the physiology and pathology of mental diseases[13].

Conclusion
In conclusion, we used scRNA-seq analysis to discover for the �rst time that MDD signature genes can be
expressed in immune cells and promote TNBC progression, which may explain the underlying
mechanisms of the reciprocal increase in the incidence of TNBC and MDD.

Abbreviations
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TNBC
triple-negative breast cancer
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major depressive disorder
ScRNA-seq
single-cell mRNA sequence
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Gene Expression Omnibus
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The Cancer Genome Atlas
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disease ontology
KEGG
Kyoto encyclopedia of genes and genomes
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Genomics of drug sensitivity in cancer
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DCA
decision curve analysis
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receiver operating characteristic curve
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human leukocyte antigen
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Figures

Figure 1

Flow chart of this study design
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Figure 2

Single-cell cluster analysis of MDD disease and key gene expression in each cluster. (A) Variable
characterization plot, 2000 MDD genes with highly variable expression values were selected to represent
the cell spectrum. (B) Principal component analysis was performed on 2000 genes (C) The �rst 10
principal components were selected for cluster analysis, and 22 clusters were obtained by co-clustering;
(D) Cellular subgroups were annotated using SingleR, and different colors represented different cell types.
(E) Differential expression was done in normal diseases and a total of 298 differentially expressed genes
were obtained, detailed differentially expressed genes are shown in Appendix A. *p<0.001; **p<0.001;
***p<0.001.
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Figure 3

MDD core gene function and expression in TNBC (A) PPI analysis of key MDD genes. (B) Frequency of
the �rst 20 MDD core gene expression mutations in 98 TNBC patients in the TCGA database. (C)
Frequencies of CNV gain, loss, and non-CNV among TNBC patients on MDD core genes. (D) Gene
ontology analysis and KEGG pathway analysis of MDD gene interaction networks from the brown
module.
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Figure 4

Prognostic characteristics of MDD signature genes in TNBC patients and their prognostic value (A)
Kaplan-Meier survival curves and Risk Score plots of overall survival (OS) of patients in the high-risk and
low-risk groups in the METABRIC-TNBC cohort. (B) Kaplan-Meier survival curves and Risk Score plots of
overall survival (OS) of patients in the high-risk and low-risk groups in the TCGA-TNBC cohort. (C) Kaplan-
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Meier survival curves and Risk Score plots of overall survival (OS) of patients in the high-risk and low-risk
groups in the GSE55812 cohort. *p<0.001; **p<0.001; ***p<0.001.

Figure 5

Prognostic impact of risk score and clinical characteristics of TNBC patients. (A) Univariate and (B)
multivariate Cox analyses assessing prognosis and clinical characteristics including age, type of surgery,
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tumor size, lymph nodes, and Riskcore. (C) Column line plot of risk scores and clinical characteristics
predicting 1-, 3-, and 5-year survival in the TCGA-TNBC cohort. (D) Kaplan-Meier survival curves based on
column-line plots de�ning overall survival in high and low-risk patients with a validation set of the
METABRIC cohort population. (E) Decision curve analysis, a speci�c method developed to assess the
prognostic value of a column line plot strategy, where the column line plot with the greatest net bene�t
would be the most preferred model. (F) Survival ROC plots to determine the sensitivity and speci�city of
TNBC survival-related genes as indicators for determining survival. (G) Cralibration curves of the TNBC
risk factors nomogram. **p<0.001; ***p<0.001, ****p<0.0001.
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Figure 6

Immune microenvironment analysis of MDD signature genes in TNBC disease (A) Differences in TME
scores between high and low risk groups (B) Differences in immune cell in�ltration between high and low
risk groups. (C) Differences in human leukocyte antigen cells between high and low risk groups. (D)
Differences between high and low risk groups in tumor stem cell expression. (E) Sensitivity of high and
low risk groups to different anticancer drugs (F) Differences in tumor mutation load between high and
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low risk groups. (G) Immune cell in�ltrated in high and low risk scoring groups *p<0.001; **p<0.001;
***p<0.001.

Figure 7

Transcriptional alterations and expression of MDD marker genes in TNBC disease and enrichment
pathway analysis of risk genes. (A) Localization of CNV alterations on MDD marker genes on
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chromosome 23. (B) Correlation study of the expression of 10 MDD marker genes (C) Correlation
visualization plot of 10 MDD marker genes in TNBC disease. (D) Principal component analysis showing
signi�cant differences between MDD marker high-risk and low-risk cohorts (E) Heatmap showing
differences in clinical information and expression between MDD marker high-risk and low-risk cohorts (F)
Regulatory network map of miRNA-transcription factors for 10 key genes. (G) Bubble diagram showing
the results of KEGG enrichment analysis. (H) GSEA analyses of different KEGG pathways were clustered
in the high-risk and low-risk groups. *p<0.001; **p<0.001; ***p<0.001.
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