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Abstract

This paper outlines methods for improving Bantu languages through the application of Natural Lan-

guage Processing techniques. We trained a Large Language Model known as Bidirectional Encoder

Representations from Transformers for the understanding of 18 Bantu languages. More precisely, we

pre-trained the model using an unsupervised corpus obtained using pseudo-labeling. This pre-training

task aims to comprehend the latent structures of these languages owing to an attention mechanism

that enables a deeper understanding of the context. We then conducted various experiments on five

downstream tasks: Language Identification, Sentiment Analysis, News Classification, Named Entity

Recognition and Text Summarization. Finally, we proposed to test the effectiveness of using multilin-

gualism in a few closely related languages instead of leveraging a vast amount of data and multiple

languages that are not necessarily related. In fact, we conducted experiments on unseen languages

belonging to the Bantu family and we found that the model demonstrates better ability understanding

them due to their similarities to the languages used for pre-training.

Keywords: Cross-Lingual NLP, Bantu Language Family, BERT

1 Introduction

Languages belonging to the same linguistic fam-
ily consequently share several similarities man-
ifested through common vocabularies, identical
word etymologies, or other latent properties. This
intuitively means that understanding a language
improve the learning process of other languages
within the same group. In Natural Language
Processing (NLP), a similar observation can be
encountered, where a model gains the ability to
enhance different languages through cross-lingual

learning. In [32], knowledge sharing was observed
in Neural Machine Translation (NMT). In fact,
the experiments led to a form of generalization by
the NMT model to a language different from the
one for the model training. This was due to the
similarities between them.

Incorporating cross-lingual approaches could
significantly enhance the cutting-edge of NLP,
particularly when dealing with scenarios of data
scarcity. We then want to use such methods to
improve NLP for 18 Bantu languages, including
low-resource dialects like Shingazidja, Shindzuani
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and Shimaore spoken in the Comoros Islands,
related to Swahili.

In recent years, Large Language Models (LLM)
such as Bidirectional Encoder Representations
from Transformers (BERT) [8] have significantly
played a pivotal role in enhancing language under-
standing, largely due to their capacity to grasp
contextual nuances within documents. Intriguing
experiments conducted by [27] demonstrated that
the multilingual iteration of BERT, pretrained on
104 languages, possesses the capability, through a
transfer learning approach, to better comprehend
languages even if they utilize scripts distinct from
those languages already enhanced by the model.

In this study, we employ the BERT architec-
ture to construct our pre-trained model. During
the training phase, we utilize the NLLB Dataset1,
a parallel dataset inspired by the work of [31].
This dataset is part of a substantial Neural
Machine Translation initiative that enhances 200
languages, including 50 African languages. Specif-
ically, we extract the splits relevant to our target
languages and merge them for training purposes.
To assess the performance of the resulting model,
we conduct experiments involving three down-
stream tasks: Language Identification (LID), Sen-
timent Analysis (SA) and Named Entity Recogni-
tion (NER).

The remainder of this work is structured as
follows. We begin by provide an overview of sim-
ilar works (see Section 2) present in the existing
literature. Then we proceed to elaborate on the
language choices and offer insights into Bantu lan-
guages in Section 3. In Section 4 we describe the
main contributions of this work. Subsequently,
Section 5 outlines the experimental setups with
the results and we discuss these latter in Section 6.
Concluding our study, we encapsulate the findings
and contributions in Section 7.

2 Related Works

The use of multilingual NLP solutions to enhance
African languages has been experimented multi-
ple times before. In [23], interesting results were
obtained by only using low-resource data to pre-
train a multilingual BERT model. They interest-
ingly found that, in low-resource settings, having

1https://huggingface.co/datasets/allenai/nllb

a few data provided from closely related lan-
guages could ensure the obtainment of effective
results compared to mixing a massive amount of
data that does not necessarily belong to languages
sharing common properties. This consequently led
us to limit our corpus to only Bantu languages.
This approach was also defended in [3] where
they shown that grapheme overlapping between
close languages help considerably to enable cross-
lingual solutions.

One important aspect to consider regarding
the scarcity of data in African languages per-
tains to the scarcity of labeled data, specifically.
While obtaining unlabeled data might be a rel-
atively straightforward task, acquiring labeled
data presents significant challenges. Given that
it’s often essential for fine-tuning in downstream
tasks, the necessity for a robust data labeling
strategy becomes crucial. An initiative introduced
in [22] strives to provide an SA dataset for 14
African languages. The effectiveness of the pro-
posed approach is evident, yet its implementa-
tion can be complex due to its dependence on
manual labeling which can be a time-consuming
and resource-intensive endeavor. Thus, proposing
automatic labeling approaches could offer tremen-
dous advantages.

3 About Bantu Languages

The Bantu language family consists of 435 living
languages spoken by approximately 300 million
speakers [1]. As obtaining data for all of these
languages poses challenges mainly due to the fact
that many of them are spoken by only few speak-
ers who may not generate sufficient data for the
development of effective solutions, we have cho-
sen to concentrate solely on 18 languages (refer to
the ”LLM” column in Table 1) for the purpose of
model pre-training. Given the substantial number
of speakers for these selected languages, our solu-
tion has the potential to substantially contribute
to the advancement of NLP technologies within
these languages as well as their closely related
languages.

As demonstrated in [6], Bantu languages are
notably influenced by code-mixing with colonial
languages. For instance, languages like Swahili
and Lingala exhibit influences from English and
French, respectively, to an extent where foreign
words have become an integral part of these
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Table 1 Bantu Languages.

Language
Examples Models

Singular Plural LLM LID SA NER

Swahili m·tu wa·tu ✓ ✓ ✓ ✓

Zulu umu·ntu aba·ntu ✓ ✓ ✓ ✓

Xhosa um·ntu aba·ntu ✓ ✓ ✓ ✓

Kinyarwanda umu·ntu aba·ntu ✓ ✓ ✓ ✓

Northern Sotho mo·tho ba·tho ✓ ✓ ✓ ✗

Tswana mo·tho ba·tho ✓ ✓ ✓ ✓

Chichewa mu·nthu a·nthu ✓ ✓ ✓ ✓

Southern Sotho mo·tho ba·tho ✓ ✓ ✓ ✗

Kongo muu·ntu baa·ntu ✓ ✓ ✓ ✗

Rundi umu·ntu aba·ntu ✓ ✓ ✓ ✗

Umbundu omu·nu oma·nu ✓ ✓ ✓ ✗

Luganda omu·ntu aba·ntu ✓ ✓ ✓ ✓

Luba-kasäı mu·ntu ba·ntu ✓ ✓ ✓ ✗

Tsonga mu·nhu va·nhu ✓ ✓ ✓ ✗

Tumbuka mu·nthu wa·nthu ✓ ✓ ✓ ✗

Swati umu·ntfu ba·ntfu ✓ ✓ ✓ ✗

Lingala mo·to ba·to ✓ ✓ ✓ ✗

Shona mu·nhu va·nhu ✗ ✓ ✗ ✓

Bemba umu·ntu aba·ntu ✗ ✓ ✗ ✗

Shingazidja m·ndru wa·ndru ✗ ✓ ✗ ✗

Shimaore mu·tru wa·tru ✗ ✓ ✗ ✗

Kalanga n·thu ba·thu ✗ ✓ ✗ ✗

Chokwe mu·tu a·tu ✗ ✓ ✗ ✗

Kamba mu·ndu a·ndu ✗ ✓ ✗ ✗

Kikuyu mu·ndu a·ndu ✗ ✓ ✗ ✗

Makua mu·tthu a·tthu ✗ ✓ ✗ ✗

languages. This phenomenon contributes to the
interconnectedness of Bantu languages due to
the shared influence of the same colonial lan-
guages. Moreover, even before considering these
observations, Bantu languages share fundamental
linguistic components, such as the noun class sys-
tem [21, 35] (refer to Table 2) and even vocabulary.
As evident in Table 1, the term ”person” has anal-
ogous translations2 across a significant number of
Bantu languages.

2We obtained these translations using our knowledge on cer-
tain languages and the Glosbe dictionary that can be reached
in this url : https://fr.glosbe.com/.

4 Main Contributions

4.1 Motivations

The main purpose of this work is to introduce
BantuLM, a pre-trained multilingual model con-
tributing on the representation of low-resource
languages in the field of NLP especially Bantu
lmanguages. Instead of processing each language
separately we propose to resort to a multilingual
approach that could have the ability to enhance
at the same time a certain number of Bantu
languages and that could also manage unseen
languages belonging to the Bantu family even if
these languages are not present in the pre-training
phase. After this latter, we evaluate the model on
five downstream tasks as shown in Figure 1.

These tasks could be divided into three sub-
categories : Text Classification, Token Classifi-
cation and Text Generation. Test Classification

3
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Table 2 Nominal Prefixes in three Languages.

Class Prefix Meaning Example

1 *mu- person, human
mo- (lingala), mu-
(swahili), umu- (zulu)

2 *ba- plural of class 1
ba- (lingala), wa-
(swahili), aba- (zulu)

3 *mu- plant, inanimate
mo- / mu- (lingala), m-
(swahili), umu- (zulu)

4 *mi- plural of class 3
mi- (lingala), mi-
(swahili), imi- (zulu)

Fig. 1 Global Pipeline.

is represented by Language Identification, Senti-
ment Analysis and News Classification while for
Token Classification we experiment on Named
Entitity Recognition and on Text Summarization
for Text Generation. One last thing to notive here
is that this list of tasks is not exhaustive. Indee,
pre-trained language model could be fine-tuned
on various other tasks (Part-Of-Speech Tagging,
Spelling Correction, etc.). We simply choose here
to experiment on a limited number of use cases
that we consider as one of the most used in NLP
and depending of the ability of data to conduct
the experiments.

4.2 Downstream Tasks

In this section, we elucidate the data process-
ing methodologies that we employ following the
training particulars, to assess the effectiveness
of our pre-trained model. All conducted experi-
ments were carried out on a T4 GPU within the

Colab Notebook3 environment. Due to resource
constraints, we impose limitations on the size of
the training corpora. For instance, in the case of
LID and SA, we limit the maximum size of each
training set at 200,000 sentences.

4.2.1 Language Identification

LID holds significant importance in the field of
NLP, particularly in multilingual systems. In pre-
vious researches such as [24], a Naive Bayes model
was employed to identify Sotho and Tswana lan-
guages, while [9] focused on 9 South African Bantu
languages using Rank Order Statistics methodol-
ogy. AfroLID [2], on the other hand, addresses 517
African languages, including several Bantu lan-
guages. These studies have demonstrated compet-
itive results for their respective target languages.
However, there are some limitations to consider.
Some of these works exhibit challenges in terms
of generalization to other Bantu languages [9, 24],
while others consider non-closely related Bantu
languages [2], which can dilute the specific Bantu
language properties that we aim to enhance.

We extract a subset of the data used for model
pre-training and append the corresponding lan-
guage as a label column. To mitigate the impact
of data imbalances and facilitate the fine-tuning
process, we limit the languages with substantial
data to 20,000 samples. However, these samples
are not chosen randomly. Indeed, we retain the top
samples with the highest source sentence lid and
target sentence lid scores. Additionally, to enable
data reuse for SA, we retain only the bitext
instances where a Bantu language is translated
into English or French and vice versa. For the
datasets involving closely related languages, we

3https://colab.research.google.com/
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Fig. 2 Pseudo Labeling for Sentiment Analysis.

extract texts from PDF files in the JW Website4

for the 11 closely related Bantu languages. This
process yields a total of 75,000 samples distributed
across these languages.

4.2.2 Sentiment Analysis

We adopt a pseudo-labeling approach, outlined
in Fig. 2, for SA. Specifically, for samples where
the translated sentences are in French, we employ
[5], which has been fine-tuned from CamemBERT
[17]. For English, we use [11], which has been fine-
tuned from RoBERTa [15], an optimized BERT
variant. However, not all sentences are retained for
analysis. To ensure the reliability of the selected
sentences, we apply a polarity threshold: only sen-
tences with polarities less than -0.8 and greater
than 0.8 are retained. The first set is labeled
as Negative, while the second set is labeled as
Positive.

4.2.3 News Classification

For News Classification, we employ the
MasakhaNEWS dataset [4], which encompasses
16 languages, including 6 Bantu Languages:
Lingala, Luganda, Rundi, Shona, Swahili and
Xhosa. The dataset comprises a total of 9062
sentences. Due to the relatively low monolingual
splits (refer to Table 3), we opt for multilingual
experiments, hypothesizing that the lexical simi-
larities among these languages could enhance the
learning process for each language.

4https://www.jw.org/fr

We conduct two multilingual scenarios (refer
to Figure 3), inspired by the experiments con-
ducted in [19] for Multilingual Speech Recogni-
tion:

• Joint-Multilingual Scenario : The Joint-
Multilingual scenario represents a ”naive
approach” involving the straightforward con-
catenation of monolingual datasets without pro-
viding any information about the languages
involved.

• Language-Dependent Scenario : In this
approach, we augment the texts with a lan-
guage tag during the data processing phase. The
objective is to aid the model in recognizing the
language, thereby facilitating the identification
of latent properties specific to each language
and ultimately improving sentence classifica-
tion. During inference, we utilize the LID model
described in 4.2.1.

4.2.4 Named Entity Recognition

For NER, we make use of the MasakhaNER
Dataset [3], implementing several pre-processing
operations. This dataset covers 20 languages,
including 8 Bantu languages (see Table 1). Our
approach involves the initial training of a multi-
lingual model, followed by 8 monolingual models.

NER essentially involves token-level classifica-
tion. The dataset consists of sentences, with each
word annotated. Our goal is to classify words into
four entity types: dates (DATE), persons (PER),
organizations (ORG) and locations (LOC). The
”O” tag is used for undefined tokens, while ”B-”
and ”I-” denote the start of an entity and sub-
sequent tokens belonging to it, respectively. This
distinction is crucial as an entity may span one or
multiple tokens. Table 4 presents an overview of
the token distribution within the dataset.

4.2.5 Text Summarization

Text Summarization is a crucial application in
NLP that focuses on distilling the most essen-
tial information from lengthy texts [33, 34]. Two
primary methods are commonly used in Text Sum-
marization: Extractive and Abstractive summa-
rizations. The Extractive method involves select-
ing highly relevant sentences from the document
and combining them to form the summary. This
approach is widely adopted in practical systems.

5
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Table 3 Nominal Prefixes in three Languages.

Classes
Languages

Lingala Luganda Rundi Shona Swahili Xhosa

business 82 169 76 500 316 72
entertainment - - 158 - 98 500
health 193 228 372 425 500 100
politics 500 500 500 500 493 308
religion - 91 73 - 233 -
sports 95 116 419 417 400 496
technology - - - - 132 -

Fig. 3 Multilingual News Classification.

On the other hand, Abstractive Summarization
creates a summary by generating sentences that
may not be directly present in the original text.
This method may involve rewriting or paraphras-
ing, making it the more challenging of the two
approaches.

In Abstractive Summarization, the primary
challenge lies in obtaining labeled data, as it neces-
sitates documents along with their summaries for
model training. Many existing works employing
this method rely on press articles [10, 12, 28, 30].
This approach typically involves treating the arti-
cles and their headlines as the summaries. Despite
its effectiveness, we opt not to use this approach

due to the scarcity of labeled data for the lan-
guages and dialects addressed in this study. Con-
sequently, we adopt an Extractive Summarization
approach.

Our proposed architecture draws inspiration
from the works in [10, 14, 29]. It follows the
pipeline outlined in Figure 4 and is structured as
follows:

• Data Preparation : In this initial step, we
begin with straightforward data processing,
which includes tasks such as removing URLs,
hashtags, emojis and other similar elements.
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Table 4 Named Entity Recognition Tokens.

B-DATE I-DATE B-LOC I-LOC B-ORG I-ORG B-PER I-PER O

15793 16569 30926 9416 26337 24726 38832 21088 1290327

Following this preprocessing, we proceed to
extract sentence embeddings using BantuLM.

• Centroid-Based Clustering : In the second
step, we initially employ the Elbow method [18]
to identify the most optimal number of clus-
ters that K-means may generate. Subsequently,
we incorporate this parameter when conduct-
ing the clustering process. At the conclusion of
this step, we obtain embeddings partitioned into
clusters, each associated with its centroid.

• Summary Generation : For each embedding
within a given cluster, we compute its Cosine
Similarity with the centroid. We retain cases
where the similarity exceeds 0.9. Finally, we
concatenate the corresponding sentences that
we regard as the summary.

5 Experiments

5.1 Model Pre-training

5.1.1 Dataset Preparation

The dataset utilized in this study is constructed
based on the guidelines outlined in [31] involving
mining bilingual text data from 200 languages.
The raw data is organized as follows:

{”translation”: {”eng Latn”: ”Has a nation
changed its gods, even when they are
not gods?”, ”swh Latn”: ”Taifa wame-
badili miungu yao, ingawa siyo miungu?”},
”laser score”: 1.25, ”source sentence lid”: 1,
”target sentence lid”: 0.99}

The translation value contains information
about the language pair and the associated
laser score, which signifies the translation qual-
ity. A high LASER (Language-Agnostic SEntence
Representations) score indicates a strong align-
ment between the two sentence pairs. Regard-
ing the source sentence lid and target sentence lid
values, higher values indicate a greater likelihood
that the sentences correspond to the identified lan-
guages. During our data processing, we consider
various criteria:

• Sentence Length: We only retain sentences
that consist of at least three words. This cri-
terion is employed because a sentence typically
comprises at least a subject, a verb and a
complement.

• Metrics: We prioritize samples with higher LID
scores.

• Cleanliness: We avoid samples that exhibit
significant noise, such as sentences containing
extremely long words or words with excessive
successive vowels or consonants, among other
factors.

5.1.2 Pre-training Setup

The pre-training procedure is executed using
the Google Cloud platform, leveraging a TPU
resource obtained through the TRC5 program
for researchers. The model is composed of 12
encoder blocks, each equipped with a hidden size
of 512 and 12 attention units. For optimization, we
employ the Adam optimizer with a learning rate
of 1e-4 and a batch size of 128.

Before initiating the processing task, we
undertake tokenization using SentencePiece [13].
To avoid out-of-memory issue due to the high
resource consumption of SentencePiece, we ran-
domly select 200,000 samples to construct the
vocabulary. To prevent bias, we randomize the
sentences not only at the corpus level but also
at the level of language-specific sentences. This
entails taking approximately 11,000 random sen-
tences for each language. During pre-training,
15% of the tokens are masked and replaced by
the [MASK] token to facilitate Masked Language
Modeling (MLM). The pre-training process ulti-
mately takes around 120 hours for 150,000 steps.

5.2 Evaluation Metrics

5.2.1 Text Classification

We assess the model’s classification performance
using four metrics: Accuracy, F1-score, Recall

5https://sites.research.google/trc/about/
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Fig. 4 Extractive Text Summarization.

and Precision. Assuming a classification problem
with N classes, overall accuracy gauges the total
correct predictions (true positives + true nega-
tives) divided by the total number of observations
(Equation 1).

Accuracy =
SumofTruePositivesforallclasses

TotalObservations
(1)

The definitions for the three other each metrics
for the i− th class would be as follows:

• Precisioni : The Precision is calculated as the
number of true positives (correctly classified
positive observations) divided by the total num-
ber of observations classified as positive (true
positives + false positives) (Equation 2).

• Recalli : It measures the number of true pos-
itives divided by the total number of actually
positive observations (true positives + false
negatives) (Equation 3).

• F1−scorei : The F1-score is the harmonic mean
of precision and recall. It is often used when
there is a need to balance precision and recall
(Equation 4).

Precisioni =
TruePositivesi

TruePositivesi + FalsePositivesi
(2)

Recalli =
TruePositivesi

TruePositivesi + FalseNegativesi
(3)

F1i = 2×
Precisioni ×Recalli

Precisioni +Recalli
(4)

If for the class i we have Supporti as the num-
ber of samples, the weighted average metric are
calculated as follows:

Metric =

∑N

i=1 Metrici × Supporti
∑N

i=1 Supporti
(5)

With Metrici ∈ {Precisioni, Recalli, F1i}
and Metric ∈ {Precision,Recall, F1}.

5.2.2 Text Generation

For Text Generation, we employ the BERTScore
[36] metrics to calculate the similarities between
the generated text and their references, as illus-
trated in Figure 5. In contrast to traditional
text generation evaluation metrics like BLEU
[25], BERTScore computes semantic equivalence
instead of merely counting words and n-gram
occurrences within the reference texts and the
generated texts. This approach enables a better
understanding of the meaning conveyed in the
texts.

BERTScore also produces metrics similar to
those described in Section 5.2.1. The concept is
to adapt these metrics to text generation prob-
lems. The original BERTScore library6 has limited
supported models. Therefore, to evaluate the per-
formance of BantuLM on Text Generation, we
replicate the pipeline outlined in Figure 5 using
BantuLM to generate the text embeddings.

6https://github.com/Tiiiger/bert score
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Let x = (x1, x2, ..., xk) and x̂ = (x̂1, x̂2, ..., x̂k)
represent a given reference text and its cor-
responding generated summary, respectively. To
compute the BERTScore metrics, we first normal-
ize the vector of each in order to facilitate the
similarities computation. Specifically, for a given
token vector xi, the normalized vector will be
xi =

xi

∥xi∥
. The cosine similarity between xi and x̂j

will simply be the scalar product of these vectors.
We then follow these steps :

• Token Representation : Initially, we utilize
the tokenizer trained during model pre-training,
employing SentencePiece [13], to transform the
text into a sequence of tokens with the contex-
tualized embedding for each.

• Similarity Measure : We then calculate the
cosine similarity between each token xi and x̂j .

• Score Computation : A greedy match-
ing approach is employed to identify the
maximal similar pairs. Each token in the
reference is matched to its most simi-
lar token in the generated text. Recall,
Precision and F1-score are calculated as

follows: RBERT =
∑

xi∈x
maxj Sim(xi,x̂j)

|x| ,

PBERT =

∑
x̂j∈x̂

maxi Sim(xi,x̂j)

|x̂| and

FBERT = 2PBERT×RBERT

PBERT+RBERT
.

• Importance Weighting : More the common
words, in Text Summarization, rare words play
a major roles as shown in previous works [16,
20]. Here we propose to put a more importance
on words depending of their Inverse Document
Frequency (idf). Suppose that we have M sen-
tences in a text (reference or generated). We
compute the idf of a token w within a given sen-

tence with idf(w) = log
(

M
df(w)

)

, with df(x) the

number of sentences in which w appears. The
weighted Recall could then be computed like

RBERT =
∑

xi∈x
idf(xi)maxj Sim(xi,x̂j)
∑

xi∈x
idf(xi)

• Baseline Rescaling : We finally normalize the
score between −1 and 1. Re Recall is finally
RBERT = 1

2 (RBERT + 1)

5.3 Evaluations

5.3.1 Language Identification

We assess here the performance of BantuLM
against AfriBERTa and mBERT, as detailed in

Table 5. The outcomes reveal an interesting obser-
vation: despite mBERT’s ability to handle mul-
tiple languages, including Swahili and the fact
that it was trained on a substantial amount of
data, its performance is notably lower compared to
our model, which is trained on a smaller dataset.
This discrepancy can be attributed to the fact
that the languages present in mBERT’s might
not be closely related to the Bantu language fam-
ily. A similar rationale could possibly apply to
AfriBERTa, despite its exclusive focus on African
languages and its inclusion of 4 languages from the
Niger-Congo language family, which encompasses
the Bantu languages.

We proceed to another round of experiments
involving LID on unseen close languages. The
results, as displayed in Table 6, are promising for
the unseen languages. However, it’s important to
note that while achieving good results on LID for
these specific languages is a positive outcome, it
may not be sufficient to definitively conclude that
the model can effectively generalize to all potential
downstream tasks and all Bantu languages. Fur-
ther evaluation is needed to establish the model’s
overall adaptability and effectiveness.

Detecting close languages is quite difficult [26]
due to different reasons like the phonemes and
graphemes similarities between them. We focus
in this second experience to only two Comorian
dialects : Shingazidja and Shimaore. Owing to the
high closeness of these dialects, their respective
speakers do not encounter difficulties to commu-
nicate between them [7]. This means that LID
solutions could have difficult to perform better on
identifying these languages. But in our case, as
shown in the seconds experiments, our model is
able to better identify these similar dialects.

5.3.2 Sentiment Analysis

These experiments conducted in [22] utilized man-
ually annotated tweets provided by native speak-
ers in 14 African languages. In contrast, our
approach relies on pseudo-labeled data to assess
the potential for achieving significant results, par-
ticularly in cases where manual labeling is not
feasible. The summarized results are shown in
Table 7. It’s important to note that for most of
these languages, these represent some of the first
SA models ever developed, to the best of our
knowledge.
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Fig. 5 BERTScore Recall metric calculation as described in [36].

Table 5 Bantu LID.

Model
Metrics

Accuracy F1-score Recall Precision

AfriBERTa [23] 0.772012 0.758207 0.770399 0.776148
BantuLM 0.885092 0.882989 0.882986 0.888356

mBERT [8] 0.830595 0.828483 0.828369 0.840629

5.3.3 News Classification

Table 8 shows the results obtained with the two
multilingual experiments for News Classification.
Having high scores for the Language-Dependant
approach indicate that the language tokens added
to the train dataset play a crucial role in the
learning procedure. Despite the efficiency of this
approach, its performance relies heavily on the
LID model performance. In fact, a false predicted
language token could mislead the model and result
to incorrect prediction.

One important thing to notice here is that,
because of the fact that a model performance is
highly influenced by the training data, our experi-
ments could faced severe limitations and bias. For
instance, as we can see in the Table 3, the classes
and the languages are highly unbalanced. We
should then except to observe interesting results
for Swahili and Politics compared to the other lan-
guages and classes. The low F1-scores for the two
experiments confirm the negative impact of data
unbalancing to the models.

5.3.4 Named Entity Recognition

We have developed a total of 9 models, with their
corresponding results presented in Table 9. The
first model constitutes a language-independent
NER system, while the subsequent eight models

specialize in individual languages. It’s notewor-
thy that while a monolingual model is naturally
expected to excel in recognizing entities within
the language it specializes in, it’s interesting to
observe that for some languages, the multingual
model’s superiority goes beyond efficiency gains
(e.g., reduced inference time and storage size). In
fact, a multilingual model can often exhibit sig-
nificant effectiveness, particularly in NER tasks.
This phenomenon can be attributed to the fact
that entities like names, places and organizations
are not always language-dependent, particularly
when the languages share the same alphabet.

5.3.5 Text Summarization

We only assess the designed model on Swahili due
to the absence of labeled data for other languages.
Specifically, we conduct experiments on press arti-
cles gathered from RFI7 and Tuko8 Swahili news
from each media source. This results in approx-
imately 24000 articles and headlines9, which we
utilize as reference summaries. The data collec-
tion is performed through web scraping using
Selenium10.

7https://www.rfi.fr/sw/
8https://kiswahili.tuko.co.ke/
9The dataset is available here: https://huggingface.co/

datasets/nairaxo/swahili-text-summarization
10https://selenium-python.readthedocs.io/
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Table 6 LID on Unseen Languages.

Scope
Metrics

Accuracy F1-score Recall Precision

All JW Data 0.908478 0.900274 0.900444 0.915489
Comorian dialects 0.963798 0.959927 0.957621 0.962378

Table 7 Sentiment Analysis Results.

Language Length
Metrics

Accuracy F1-score Recall Precision

Kimbundu 5032 0.704071 0.591279 0.600720 0.710907
Rundi 23172 0.678964 0.647289 0.644110 0.657094
Chichewa 62773 0.699243 0.623374 0.619539 0.664367
Kikongo 37590 0.767358 0.739842 0.734871 0.747153
Lingala 59214 0.645698 0.392355 0.500000 0.322849
Luba-Kasai 45875 0.757493 0.717720 0.712436 0.725251
Swati 6619 0.699396 0.653908 0.651856 0.656525
Northern Sotho 69434 0.694102 0.497150 0.542467 0.707626
Tsonga 19007 0.702788 0.646247 0.640406 0.667671
Kinyarwanda 200000 0.700100 0.698285 0.700108 0.705047
Tumbuka 17241 0.736735 0.717269 0.718398 0.716267
Umbundu 6847 0.705109 0.672884 0.671893 0.674003
Swahili 200000 0.788550 0.787876 0.788393 0.791910

Southern Sotho 44002 0.731508 0.683950 0.681501 0.686892
Tswana 123546 0.703642 0.656894 0.651552 0.670611

Table 8 Multilingual News Classification Results.

Approaches
Metrics

Accuracy F1-score Recall Precision

Joint-Multilingual 0.8588 0.7377 0.7393 0.7556
Language-Dependant 0.8709 0.8090 0.8154 0.8107

Table 9 Named Entity Recognition.

Model Length
Metrics

Accuracy F1-score Recall Precision

Multilingual 15404 0.966747 0.827892 0.811618 0.847079
Kinyarwanda 4163 0.973113 0.863082 0.866652 0.863939
Luganda 3066 0.969137 0.817980 0.801221 0.873738
Chichewa 4770 0.977529 0.810543 0.804974 0.877815
Shona 8311 0.965226 0.819159 0.788598 0.878275

Swahili 4739 0.981371 0.878474 0.885146 0.873935
Tswana 1744 0.963094 0.744271 0.745633 0.749894
Xhosa 4402 0.951819 0.793964 0.784786 0.815986
Zulu 3065 0.954948 0.754533 0.718613 0.808073
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Table 10 Text Results on
Swahili.

F1-score Recall Precision

0.4450 0.4611 0.4536

Table 10 provides a summary of the
BERTScore metrics computed across the test
dataset. The metrics calculation is performed
without the IDF weighting part described in
Section 5.2.2. This is because importance weight-
ing is more effective when working with long
sequences. However, for short texts like sum-
maries, which are typically composed of a limited
number of sentences, IDF may be less significant.
Therefore, we consider the raw scores without
importance weighting.

The metrics suggest that the model generates
summaries that are semantically close to the high-
lights, indicating its ability to capture essential
information in long texts. However, to validate
the relevance of this solution for languages other
than Swahili, it would be beneficial to evaluate the
model on corpora in those languages.

6 Discussion

6.1 Pre-trained Model

The solutions devised in this study may encounter
certain limitations due to the nature of the data.
Specifically, for the model pre-training, the data
was sourced using a bitext mining algorithm. Con-
sequently, challenges could arise from the poten-
tial presence of non-Bantu languages within the
trained sentences, despite our focus on sentences
with high LID scores. However, it’s worth noting
that during MLM tasks (as indicated in Table 11),
we observe minimal generation of foreign words
and a high relevance of the predicted words. This
provides reassurance about the pertinence of the
pre-trained model.

6.2 Downstream Tasks

When it comes to the downstream tasks for which
we have trained the models, stringent measures
in data processing become essential. Despite our
rigorous filtering of pseudo-labeled data for SA,
complete reliability is still a challenge to achieve.
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To gauge the effectiveness of the models on man-
ually labeled data, we conducted experiments on
the three languages for which existing datasets
were available (as shown in Table 12). Our aim
there was to assess whether our models perform
less effectively when working with real-world data.
To achieve this, we utilized the AfriSenti [22]
dataset for Kinyarwanda and Tsonga, while for
Swahili, we combined splits from the Swahili sen-
timent dataset by Neurotech11. Notably, all of
these datasets were manually annotated by native
speakers, which implies that these labels are inher-
ently closer to the ground truth compared to our
pseudo-labeled data.

What’s noteworthy here is that even though
there is a reduction in performance when operat-
ing on ground truth data, the models still exhibit
improved performance overall. This is evident as
the decrease in performance is only around 5%
to 10%. To further mitigate this diminishment,
various strategies can be explored and these will
constitute the focus of our future endeavors to
enhance performance.

Regarding the pseudo-labeling procedure, one
avenue to explore involves refining the annotation
process by employing more advanced and accurate
models. For instance, the plan is to initially train
Sentiment Analysis models in English and French
using extensive amounts of data to ensure the
models’ robust generalization. This strategy aims
to enhance the overall quality of the annotations
used in the pseudo-labeling process.

7 Conclusion

In this study, we introduced BantuLM, a BERT-
based Language Model tailored to address the
intricacies of Bantu languages. Our contributions
were centered around data construction and mod-
els training. We proposed diverse methodologies
for data creation, leveraging pseudo-labeling and
web scraping, which offered viable alternatives for
processing low-resource languages like the ones
considered in this project.

Through our conducted experiments, we
observed compelling outcomes in multilingual sce-
narios when concentrating solely on closely related
languages during pre-training. However, our intent

11https://github.com/Neurotech-HQ/
swahili-sentiment-analysis-dataset

extended beyond constructing solutions for a lim-
ited subset of languages. Our objective was to
demonstrate that enhancing a group of languages
within the same family can potentially facili-
tate the adaptation to unseen languages within
it. Indeed, we achieved promising results when
fine-tuning the models for Language Identifica-
tion on 11 previously unseen languages. Further-
more, we extended our experimentation to four
additional downstream tasks: Sentiment Analysis,
News Classification, Named Entity Recognition
and Text Summarization.
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