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Abstract

With the rapid development of the Internet of Things (IoT), Mobile Edge Com-
puting (MEC) technology is shifting computational and storage capabilities from
centralized clouds to the network edge to meet the low-latency demands of
numerous emerging applications. However, ensuring quality of service (QoS) for
mobile users becomes challenging in dense, decentralized wireless communica-
tion environments and with limited MEC server storage capacity. Against this
background, this paper proposes a collaborative task processing model for mul-
tiple ENs based on service placement and formulates a MINLP optimization
problem aimed at minimizing system latency and cost. To address this problem,
we introduce an online optimization algorithm (OPDA) based on the Lyapunov
framework which operates in real-time without the need to predict future infor-
mation. Subsequently, we decompose the long-term optimization problem into a
series of one-time slot problems and design a two-stage one-time slot optimiza-
tion algorithm to obtain an approximate optimal solution. Specifically, we use
the Lagrange multiplier approach to solve the resource allocation problem for
tasks and the matching theory to solve the offloading decision and service place-
ment problem for tasks. Simulation results show that our algorithm can achieve
near-optimal latency performance while satisfying long-term cost constraints.

Keywords: Mobile Edge Computing, Collaborative Task Processing, Service
Placement, Resource Allocation, Lyapunov Optimization.
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1 Introduction

As the Internet of Things (IoT) continues to thrive, there is a growing trend of deploy-
ing resource-intensive tasks on user devices, including mobile games, video analytics,
and virtual/augmented reality (VR/AR). However, the limited computational and
storage capacities of these devices often struggle to meet the processing requirements
of such user tasks [1]. In response to this challenge, cloud computing technology has
emerged as an effective solution, enabling task offloading from local devices to remote
cloud processing. Yet, cloud computing is not without its drawbacks, such as the
extensive data transmission between users and remote clouds, and the considerable
round-trip distances involved. These factors contribute to an extended system delay for
task processing, subsequently escalating offloading costs [2]. Hence, cloud computing
technology may not be the optimal solution for processing latency-sensitive tasks.

In response to this issue, the European Telecommunications Standards Institute
(ETSI) has introduced a novel computing paradigm - Mobile Edge Computing (MEC)
technology [3]. This approach extends cloud computing to the edge of the network and
has garnered significant attention within the academic community [4]. By offloading
tasks from user devices to proximate edge nodes, MEC provides users with services that
are low-latency and high-bandwidth, thereby overcoming the challenges traditional
cloud computing faces when dealing with large-scale, real-time data [5]-[6]. In essence,
MEC technology offers more efficient, real-time, and secure data processing solutions
across various industries, and is set to play a pivotal role in the future development of
the IoT. However, MEC servers, in comparison to remote cloud servers, have limited
communication and computing capabilities. This makes it difficult to meet the high
volume of offloading demands from users during peak load periods, leading to a less
than optimal user experience. As a result, the collaboration between cloud computing
and edge computing has emerged as a new research trend in order to more effectively
handle tasks [7]. For tasks that are sensitive to delay, offloading them to the edge for
processing is a viable solution, while tasks that can tolerate delay can be offloaded to
the remote cloud for processing [8]. Simultaneously, optimizing task offloading deci-
sions and resource allocation to minimize task processing delay and cost has become
a critical aspect of cloud-edge collaborative processing for computing tasks.

Furthermore, edge caching technology, a rapidly evolving field, is garnering increas-
ing interest [9]. The fundamental concept of this technology involves caching a variety
of services that users may require on servers during off-peak times. These services can
either be downloaded from the remote cloud when user tasks arrive or pre-cached on
MEC servers [10]. Unlike traditional edge caching, the services cached in this scenario
refer to those deployed on MEC servers, including relevant databases (such as datasets
required for user computing tasks), to execute tasks offloaded from users. Only MEC
servers equipped with the corresponding services can perform tasks uploaded by users,
thereby reducing the delay and energy consumption associated with user tasks [11].

While most literature on edge caching theoretically presumes that MEC servers
can cache all types of services, practical limitations such as storage capacity
mean that MEC servers must prioritize user-required services within their capacity
constraints[12]. Furthermore, research into the collaborative caching of services across
multiple MEC servers is not yet comprehensive. In our previous work, we did not
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consider the issue of services required by users placement, that is, services may be
randomly assigned to any MEC server. Therefore, service storage may be uneven
across multiple MEC servers, potentially causing some servers to be overloaded while
others are underutilized. To address task offloading issues in vehicle edge computing
networks, a load balancing scheme was proposed [13], which leverages collaboration
between multiple MEC servers and cloud servers to jointly process tasks, thereby
reducing task processing delay. Consequently, under the constraints of limited storage
resources, determining which services should be cached on which server to maintain
system balance is of paramount importance [14]-[15].

In order to solve the load imbalance problem between MEC servers and fulfill the
latency requirements of different user tasks, we propose a multi-MEC server collab-
orative task processing model based on service placement. This issue is divided into
two sub-problems. The first is the task offloading decision problem, which involves
which MEC server should handle the tasks that users offload to the edge. The second
is the service placement problem, which involves which MEC server should store the
services required by users. The goal of this paper is to minimize system latency and
cost by making optimal offloading decisions for tasks and allocating reasonable com-
putational resources, as well as optimizing service placement decisions. The primary
contributions of this paper are as follows:

1) Under the constraint of satisfying the long-term average system cost, we aim to min-
imize system latency by making optimal offloading decisions for tasks and allocating
reasonable computing resources, while optimizing service placement decisions.

2) In response to the aforementioned issue, this paper proposes an online optimization
algorithm (OPDA) based on the Lyapunov framework. This algorithm operates in
real-time and does not require the prediction of future information.

3) The paper utilizes the Lagrangian multiplier method to solve the computational
resource allocation problem for tasks and employs matching theory to address the
task offloading decisions and service placement issues.

4) Simulation results indicate that the proposed approach not only achieves near-
optimal latency performance but also maintains lower system costs.

The organization of the remaining sections in this paper is as follows: Section
2 summarizes relevant research work. Section 3 introduces the system model and
formulates the optimization problem addressed in this paper. Section 4 outlines the
design of the OPDA online algorithm to address the proposed optimization problem.
Section 5 conducts an in-depth analysis of the performance of the OPDA algorithm
through simulation results. Finally, Section 6 provides a comprehensive summary of
the entire paper.

2 Related Work

2.1 Computing Offloading and Resource Allocation in MEC

In recent years, MEC has garnered considerable attention, with numerous researchers
making significant contributions in this field. A key theme in both mobile cloud com-
puting and mobile edge computing revolves around how to offload latency-sensitive
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tasks while adhering to energy consumption constraints [16]-[18]. Existing literature
primarily focuses on task offloading decisions. For example, in [19], authors exam-
ined the issue of energy-efficient dynamic offloading in MEC for the IoT, with the
goal of minimizing average transmission energy consumption while ensuring device
performance. In [20], authors delved into the optimization of minimizing bandwidth
consumption during task offloading in IoT applications, striking a balance to maximize
the reliability of these applications. In [21], authors investigated the task offloading
problem in ultra-dense networks and proposed a heuristic greedy offloading scheme
aimed at minimizing the energy consumption of mobile devices within acceptable
time constraints. The aforementioned studies primarily concentrate on optimizing task
offloading decisions, with less focus on the judicious allocation of communication and
computational resources.

Several other studies have focused on offloading user tasks to MEC servers for
processing, without considering the collaborative processing of user-uploaded tasks
between cloud and edge computing. For instance, in [22], the authors proposed a delay-
optimized resource allocation method with the aim of minimizing communication
latency between mobile devices and MEC servers. They then provided performance
metrics for tasks from three perspectives: average delay, levels of energy consumption,
and the availability of computational resources. In [23], a joint task offloading and
resource allocation scheme in MEC, assisted by moving vehicles, was proposed. This
method allocates tasks to edge servers at base stations or vehicles, while efficiently
distributing the resources of base stations to minimize the overall weighted task pro-
cessing delay for all devices. In [25], the authors explored the computation offloading
problem in MEC networks with dynamically weighted tasks. They proposed a Compu-
tation Offloading algorithm based on Deep Supervised Learning to jointly optimize the
offloading decisions and bandwidth allocation, thereby minimizing the system utility
of the MEC network.

While other studies have considered the scenario of collaborative task processing
between a single MEC server and a remote cloud server, they often overlook the
collaboration among multiple MEC servers. For instance, in [26], the authors proposed
a cloud-edge collaborative computing framework with the aim of minimizing task
processing delay by leveraging both remote cloud and edge resources. In [27], the
authors took into account the cooperation scenarios of cloud computing and MEC
within networks with limited communication capabilities. They designed an iterative
heuristic MEC resource allocation algorithm to address the problem of multi-user
computing offloading.

2.2 Service Caching in MEC

Recently, numerous studies have suggested the use of edge caching technology within
the MEC system to minimize task processing delay or energy consumption [28]-[30].
In [28], the authors introduced an energy-efficient task caching and offloading scheme
that strikes a balance between the resource utilization of MEC servers and user expe-
rience. By storing either part or all of the task data on the MEC server, task execution
efficiency can be improved. In [29], authors carried out a joint optimization study on
task caching and offloading in the edge cloud environment, with the goal of reducing
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the energy consumption of task processing under computational and storage resource
constraints. Following this, in [30], authors explored the challenges of dependency-
aware task offloading and service caching within the context of vehicular networks.
They devised a semi-distributed algorithm based on dynamic programming to enhance
the efficiency of task offloading for vehicles.

Previous research has primarily focused on caching user tasks or related services on
MEC servers. However, the issue of service placement has often been overlooked when
deploying caching on servers. For example, In [31], the authors proposed a cooperative
content placement problem aimed at minimizing the delivery delay of location-based
content and the service cost of two types of content. In [32], authors focused on the
joint optimization problem of MEC access network selection and service deployment.
Their goal was to enhance the quality of service for user tasks in a cost-effective way
by skillfully balancing access latency, communication latency, and service switching
costs. In [33], to address the issue of service interruptions caused by mobile terminal
devices roaming across different MEC server regions, an effective edge intelligent ser-
vice placement algorithm was proposed. In [34], authors proposed a joint model for
MEC server deployment and service placement, with the aim of maximizing the over-
all profit of all MEC servers while considering constraints on storage capacity and
computing power.

However, these studies primarily concentrate on server deployment and service
placement issues, rarely incorporating considerations for both service caching and task
offloading.

2.3 Joint Service Caching and Computation Offloading in MEC

In [35], the authors developed an intelligent transportation system framework by inte-
grating three computing layers: vehicles, network edge, and high-altitude platform
stations. This framework considers the computation offloading strategy for vehicles,
plans the caching strategy for network edge infrastructure data, and coordinates
resource scheduling to enhance the delay performance of applications. In [36], a lay-
ered framework for edge intelligent IoT was constructed with computation offloading
and content caching, aiming to minimize the total network latency of RSUs under
long-term energy constraints. In [37], a study was conducted on an efficient caching
scheme in Vehicle Edge Computing (VEC) based on edge-cloud collaboration. They
proposed a VEC architecture utilizing Software-Defined Networking (SDN) with the
goal of minimizing the migration latency of supporting data required for edge servers
to execute tasks. In [38], the collaborative caching problem in edge environments
was investigated with the aim of minimizing system costs, including data caching
costs, data migration costs, and Quality of Service (QoS) losses. In [39], research was
conducted on computational service caching in a multi-drone-assisted MEC system,
addressing optimization problems related to joint service caching, task offloading, and
drone placement. The study aims to minimize the overall delay of all devices while
ensuring compliance with task delay requirements and energy budgets for both devices
and drones. The aforementioned articles primarily address comprehensive considera-
tions related to task offloading, service caching, and server placement. However, they
seldom consider the integrated optimization of task offloading and service placement.
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3 System Model and Problem Formulation

In this section, we will introduce the system model and give the problem formulation.
The system model considered in this paper has a three-tier architecture, which includes
a remote cloud server, multiple edge nodes (EN), and numerous users (as illustrated
in Fig. 1). Assume that these users generate various types of task requests that need
to be executed across the entire network. For each user’s task request, the execution
process may require different type of services, and these services are stored in ENs and
the cloud server. Suppose the cloud server has stored all needed services, while in each
EN, considering the limited storage resources, it only stores a small subset of these
services. Suppose all ENs can communicate with each other and with the cloud server,
while each user can only communicate with its local EN. This implies that for a user’s
request, the required services may not be stored on it’s local EN. Therefore, the local
EN needs to forward the request to other ENs for processing, or download the required
services from the cloud server. In the following, we will proceed to introduce the
network model, the service caching and placement model, the communication model,
the computational model, and the system cost model respectively. Additionally, we will
provide a detailed exposition of the multi-MEC server collaborative task processing
problem based on service cache placement.

3.1 Network Model

We consider there are N ENs in the entire network model, and denote N as the set
of ENs. For each ENj(∈ N ), it primarily consists with one wireless access point (AP)
and one MEC server. The AP’s job is for communicating, including communications
with users, other APs, and the cloud. The MEC server’s job is for computing, including
computations for tasks and the storing for services. Specifically, let Gj denote the
storage capacity of ENj , which is used for storing the services required by tasks. When
specific service caches are present in an EN, the EN can process tasks for users based
on the corresponding service requests. Let Bj denote the available communication
resources of ENj , utilized for wireless data offloading of tasks. Let Fj denote the
calculation capability of ENj , which is used for processing tasks offloaded by users.

We consider there are M users in the entire network model, and denote M as
the set of users. For each user i(∈ M), it may have a computationally intensive
task needed to be processed during the scheduling time. Since each task has different
resource requirements, four parameters are used to define the task model. Let Ui

denote the task for user i, and we use the quadruple {Di, Ci,Ki, T
max
i } to denote

resource requirements of Ui, where Di is the workload data volume, Ci is the required
computing resources, Ki is the set of required services, and Tmax

i is the threshold of
time latency.

3.2 Service Cache and Placement Model

We consider there are K services in the entire model, and denote K as the set of
services. Let ck denote the required storage space for service k. During the initialization
phase, each EN downloads services from the cloud server. The storage capacity for
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Fig. 1: Multi-ENs collaborative task processing model

services on each EN must not exceed the EN’s capacity limit. Let Kj represent the
service set of ENj , we have

∑

k∈Kj

ck ≤ Gj , ∀j ∈ N . (1)

Current research primarily employs two distinct approaches to solve the service
placement problem. In one scenario, when an EN lacks the required services, it requests
the corresponding service from other ENs and subsequently processes the task within
its own environment. In another scenario, when an EN lacks the required services, it
initiates a task request to other ENs and then processes the task within the environ-
ment of the other ENs. This paper comprehensively considers and improves upon two
optimization approaches. Specifically, when a specific service is missing, in the first
scenario, the service is downloaded by requesting the remote cloud server. In the sec-
ond scenario, the local EN can initiate task requests to other ENs for processing. The
optimal solution is designed for different scenarios to minimize system latency and
energy consumption.

Let xt
j,k ∈ {0, 1} denote a binary service placement decision of whether service k is

deployed on ENj in time slot t. xt
j,k = 1 means service k is deployed on ENj in time

slot t, otherwise xt
j,k = 0. For ENj , the services it deploys can be represented by a

collection. And we use {xt
j,1, x

t
j,2, ..., x

t
j,k} as the service resource deployed by ENj .

3.3 Communication Model

In our scenario, we consider using Orthogonal Frequency Division Multiple Access
(OFDMA) technology for wireless communication, which allows us to ignore interfer-
ence between users. Let Ri,j denote the uplink transmission rate between user i and
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ENj , we have

Ri,j = Bj log2(1 +
pi,jhi,j

σ2
), ∀i ∈ M, j ∈ N , (2)

where Bj is the available spectrum bandwidth, pi,j is the uplink transmission power,
σ2 is the noise power and hi,j is the state of the uplink channel between user i and
ENj . Let T

up
i,j denote the uplink transmission latency for task Ui to ENj . It is primarily

influenced by the allocated communication resources (i.e., wireless radio bandwidth
resources) and the channel quality between user i and ENj . The uplink transmission
latency from task Ui to ENj can be expressed as

Tup
i,j =

Di

Ri,j

, ∀i ∈ M, j ∈ N . (3)

Many studies indicate that the downlink transmission rate from the EN to the
user is high, while the processed data volume is relatively small. Therefore, in our
scheduling scenario, we only consider the transmission latency of the uplink link and
ignore the latency of the return transmission.

As for the task request scheduling, we introduce a binary decision variable yti,j ∈
{0, 1} to denote whether task Ui is executed on local ENj in time slot t. yti,j = 1
means task Ui is executed on the local ENj , otherwise yti,j = 0. At a given time slot,
since each user is handled by only one EN for the task, we have

∑

j∈N

yti,j = 1, ∀i ∈ M. (4)

Similarly, let the binary decision variable zti,j,j′ ∈ {0, 1} to indicate whether task

Ui is executed on other ENj′ (i.e., zti,j,j′ = 1) or not (i.e., zti,j,j′ = 0) in time slot t.
When the user i sends task request to ENj , if ENj doesn’t have the required service
k and ENj needs to send a task request to ENj′ , we have yti,j = 0 and zti,j,j′ = 1.

When ENj executes task Ui, if the required service k is missing, the ENj may
initiate a task request to other ENs or download the service from the cloud server to
ENj . Let R

round
i,j,j′ denote the transmission rate of the task Ui between ENj and ENj′ .

Let T round
i,j,j′ denote the round trip latency of task Ui between ENj and ENj′ , we have

T round
i,j,j′ =

Di

Rround
i,j,j′

, ∀i ∈ M, j ∈ N , j′ ∈ N . (5)

Let Rdown
c,j denote the download rate between the cloud server and ENj . Let T

down
c,j

denote the download latency for the required set of services from the cloud server to
ENj . We have

T down
c,j =

∑

k∈Ki

ck
Rdown

c,j

, ∀j ∈ N . (6)

Thus the total transmission latency consists of three main components: uplink
transmission latency Tup

i,j , round trip latency T round
i,j,j′ and download latency T down

c,j . Let

8



T trans
i denote the total transmission latency, we have

T trans
i =Tup

i,j +
∑

k∈Ki

yti,j(1− xt
j,k)T

down
c,j

+
∑

j′∈N

zti,j,j′(1− yti,j)(T
round
i,j,j′ +

∑

k∈Ki

(1− xt
j′,k)T

down
c,j′ ).

(7)

3.4 computational Model

Since the user’s computational power is limited and the task is offloaded to the edge
for execution, we can ignore the local computational latency. When user i sends task
Ui to ENj wirelessly, ENj will allocate appropriate computational resources for user i
to process the task. Eventually, after the task processing is completed at the edge end,
EN returns the computational result to user i. Let fmec

i,j denote the computational
resources allocated to user i by ENj . Since the computational resources allocated by
each EN to users must not exceed the total computational resources of that EN, each
EN needs to satisfy

Mj
∑

i=1

fmec
i,j ≤ Fj , ∀i ∈ M, j ∈ N , (8)

where Mj is all users who execute tasks in ENj . Let T
exe
i,j denote the computational

latency for ENj to execute task Ui, we have

T exe
i,j =

Ci

fmec
i,j

, ∀i ∈ M, j ∈ N . (9)

Let T exe
i denote the computational latency for EN to execute task Ui, we have

T exe
i = yti,jT

exe
i,j +

∑

j′∈N

zti,j,j′(1− yti,j)T
exe
i,j,j′ . (10)

Combining the transmission latency T trans
i and the computational latency T exe

i ,
the total latency of the EN execution task Ui is obtained as

T t
i = T trans

i + T exe
i . (11)

3.5 System Cost Model

There are additional costs involved in renting EN’s resources to execute tasks, mainly
including storage, communication and computation costs. Storage costs mainly include
the overhead of using EN and remote cloud storage services, which mainly depends
on the storage resources occupied by the services. Communication cost is the over-
head incurred by data transfer between the user and the EN, which mainly depends
on the amount of data transferred by the user. The computation cost is the overhead
incurred by performing tasks in the EN, which mainly depends on the amount of data
of the user’s tasks. Note that we denote Qavg

i as the long-term average system cost for
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user i. The system cost comprehensively considers expenses related to storage, com-
munication, computation, and other factors. Let Qt

i denote the system cost brought
about by user i when renting EN resources during time slot t. We have

Et
i =

∑

k∈Ki

xt
j,kνjck +

∑

k∈Ki

(1− xt
j,k)µcck +

αjpi,jDi

Bj log2(1 +
pi,jhi,j

σ2 )
+ βjCi, (12)

where νj and µc are the unit costs of storage services in ENj and cloud servers,
respectively. αj and βj are the unit costs of transmission energy consumption and task
execution in ENj , respectively.

3.6 Problem Formulation

In this section, we discuss the problem of collaborative task processing and resource
allocation for multiple ENs based on service placement. Under the constraint of
long-term average system cost, our goal is to minimize the total system latency for
processing tasks. Therefore, we focus on the joint optimization of task offloading deci-
sions, computational resources, and service placement decisions. Building upon the
previous discussions, we can formulate the problem as follows:

P1 : min
xt,yt,zt,ft

lim
T→∞

1

T

T−1
∑

t=0

(

M
∑

i=1

T t
i )

s.t. C1 : lim
T→∞

1

T

T−1
∑

t=0

Et
i ≤ Eavg

i , ∀i ∈ M

C2 : T t
i ≤ Tmax

i , ∀i ∈ M

C3 :
∑

k∈Kj

ck ≤ Gj , ∀j ∈ N

C4 : fmec
i,j > 0, ∀i ∈ M, j ∈ N

C5 :

Mj
∑

i=1

fmec
i,j ≤ Fj , ∀i ∈ M, j ∈ N

C6 : xt
j,k ∈ {0, 1}, ∀j ∈ N , k ∈ K

C7 : yti,j ∈ {0, 1}, ∀i ∈ M, j ∈ N

C8 :
∑

j∈N

yti,j = 1, ∀i ∈ M

C9 : zti,j,j′ ∈ {0, 1}, ∀i ∈ M, j ∈ N , j′ ∈ N

(13)

C1 represents the long-term average system cost threshold for each user. C2 is the
maximum limit on the total latency of executing the task. C3 indicates that EN’s
storage space is limited. C4 is the computational resource constraint assigned by EN
to the task. C5 means that the computational resources allocated by EN to the task do
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not exceed EN’s computational capabilities. C6 is a constraint on the binary decision
variable for the existence of service k in ENj . C7 and C9 are constraints on the binary
offloading decision variables, which determine whether the task is executed on the
local EN or ENj′ respectively. C8 ensures that tasks can only be executed on one EN.

Solving the above-mentioned problem primarily involves addressing two challenges.
Firstly, resolving P1 necessitates a significant amount of future information, which
is often difficult to predict, and in some cases, even impossible. Secondly, we have
identified that P1 is a mixed-integer nonlinear programming problem. It encompasses
constraints related to three discrete binary variables and continuous variables C4-
C5, rendering it an NP-hard problem. This indicates a high degree of computational
complexity, making a direct solution to P1 evidently impractical. To overcome these
challenges, we need to devise an online algorithm capable of effectively addressing
optimization issues related to offloading decisions, computational resource allocation,
and service placement without relying on future information.

4 Our Proposed Online Algorithm

To effectively solve problem P1, we propose an online algorithm named OPDA that
does not require future information. Our algorithm is primarily based on the Lya-
punov optimization framework, which transforms the original long-term optimization
problem P1 into multiple one-slot optimization problems. For the one-slot optimiza-
tion problem, we adopt an algorithm based on the Lagrange multiplier method and
matching theory to determine the optimal offloading decision, computing resource
allocation, and service placement problem.

4.1 Problem Transformation

In this section, we will restate and transform problem P1. The core idea of Lyapunov
optimization is to make decisions that approach optimality while ensuring the stability
of the system, allowing us to solve deterministic problems in each time slot with low
complexity[40]. Based on this concept, we can design a set of virtual cost queues
Q(t) = {Q1(t), Q2(t), ..., Qi(t)} to address constraints on the long-term average cost
budget. The virtual cost queue for user i can be expressed as

Qi(t+ 1) = max{Qi(t) + Et
i − Eavg

i , 0}, (14)

where Qi(t) denotes the queue backlog of time slot t, representing the deviation
between the system cost and the threshold under the current time slot t. Additionally,
the initial queue backlog is given by Q(0) = 0. According to queueing theory, C1 can
only be satisfied when the virtual cost queue remains stable, meaning that the aver-
age arrival rate does not exceed the average departure rate. Therefore, ensuring the
stability of Q(t) becomes a crucial factor.

To maintain the stability of Q(t), we denote L(Q(t)) = 1
2

M
∑

i=1

Q2
i (t) as a quadratic

Lyapunov function, representing the ”congestion level” of the virtual cost queue length.
A smaller value of L(Q(t)) indicates a smaller backlog for all virtual cost queues,
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thereby achieving stability for all queues. Next, we further denote ∆(Q(t)) as a single
time slot Lyapunov drift to ensure that the Lyapunov function remains at a low value,
thereby preserving the stability of the queues. we have

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t))|Q(t)], (15)

where ∆(Q(t)) denotes the variation of the virtual cost queue in the Lyapunov function
over a time slot. Based on the Lyapunov optimization framework, we further define a
drift-plus-penalty function to integrate the stability of the system latency and virtual
cost queue by (15).

∆(Q(t)) + V E[

M
∑

i=1

T t
i |Q(t)], (16)

where V is a non-negative parameter that controls the trade-off between system latency
and cost. The following Lemma 1 provides an upper bound on the drift-plus-penalty
function.

Lemma 1: For all possible optimization variables satisfying C2-C9, there is an
upper bound for the drift-plus-penalty function [41], as shown in (17). Where B is a

constant, B = 1
2

M
∑

i=1

(Emax
i −Eavg

i )2. Where Emax
i is the upper bound of the one time

slot virtual cost for user i.

∆(Q(t))+V E[

M
∑

i=1

T t
i |Q(t)] ≤ B+V E[

M
∑

i=1

T t
i |Q(t)]+E[

M
∑

i=1

Qi(t)(E
t
i−Eavg

i )|Q(t)] (17)

Proof : By transforming formula (14), we can know,

Q2
i (t+ 1) ≤ (Qi(t) + (Et

i − Eavg
i ))2 (18)

Combined with our analysis, all queues are accumulated on the basis of formula
(18), and it can be concluded that

1

2

M
∑

i=1

Q2
i (t+ 1) ≤

1

2

M
∑

i=1

Q2
i (t) +

1

2

M
∑

i=1

(Et
i − Eavg

i )2 +

M
∑

i=1

Qi(t)(E
t
i − Eavg

i ). (19)

Therefore it can be concluded that

∆(Q(t)) =
1

2
E[

M
∑

i=1

Q2
i (t+ 1)−

1

2

M
∑

i=1

Q2
i (t)|Q(t)]

≤
1

2

M
∑

i=1

(Et
i − Eavg

i )2 + E[

M
∑

i=1

Qi(t)(E
t
i − Eavg

i )|Q(t)]

≤ B + E[

M
∑

i=1

Qi(t)(E
t
i − Eavg

i )|Q(t)].

(20)

12



Proof completed.
As demonstrated in Lemma 1, we observe that by minimizing the expression on

the right-hand side of formula (17), it is possible to determine the upper bound of
the drift-plus-penalty function. This will help us transform the long-term optimization
problem P1 into a real-time optimization problem P2. By solving P2, we can ascertain
the offloading decisions, resource allocation, and the placement strategy for service in
the current time slot.

P2 : min
xt,yt,zt,ft

M
∑

i=1

V T t
i +Qi(t)E

t
i (21)

In Algorithm 1, we provide a detailed description of the implementation process
of OPDA. The algorithm requires current available network state information and the
backlog status of the current queue as input, making OPDA operate online. In each
time slot t, by solving P2, we can obtain the values of variables xt, yt, zt and f t, and
subsequently update each virtual cost queue for the calculation of the next time slot.
We can obtain the optimal solution to problem P1 by solving the approximate optimal
solution to problem P2.

Algorithm 1 OPDA Algorithm

Require: All user set information M, all ENs set information N , user task Ui, all
services set information K and non-negative parameter V

Ensure: The offloading decision yt, zt, the computational resource f t, and the
placement decision xt of the caching service within each time slot

1: while t = 0 to T-1 do

2: According to Algorithm 2 and Algorithm 3, we can obtain the values of xt, yt, zt

and f t for each time slot.
3: Update each virtual cost queue Q(t+1) according to (14).
4: t = t + 1.
5: end while

Although transforming the long-term optimization problem into a real-time opti-
mization problem, it can be seen that solving P2 using mathematical methods is
quite challenging, as shown in the formula (21) above. Firstly, solving problem P2
has exponential complexity. Secondly, the variables xt, yt and zt in P2 are binary
variables, while f t is a continuous variable. Therefore, P2 is categorized as a mixed-
integer nonlinear programming problem, typically falling into the category of NP-hard
problems[42]. Subsequent steps to solve the real-time optimization problem P2 will be
discussed in the next section.

4.2 One time slot optimization algorithm

To address problem P2, we can decompose it into two subproblems for resolution:
given the conditions of xt, yt and zt, solving the allocation problem of computing
resources f t using the Karush-Kuhn-Tucker (KKT) optimality conditions. Based on
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the obtained value of computational resources f t, subsequently, through a bilateral
matching of user task set and EN set, as well as the matching between the services
and the set of ENs, we derive the values of xt, yt and zt. By iteratively solving these
two subproblems, we can progressively optimize problem P2 and ultimately find the
optimal solution.

4.2.1 The Optimal Computing Resource Allocation.

In this section, to maximize system utility for users offloading tasks to the edge, we
strive to allocate optimal computing resources for them. Assuming xt, yt and zt are
given, we will ignore variables unrelated to the computing resource f t. Consequently,
the optimization problem can be formulated as follows:

P3 : min
ft

M
∑

i=1

Ci

fmec
i,j

s.t. C4 : fmec
i,j > 0, ∀i ∈ M, j ∈ N

C5 :

Mj
∑

i=1

fmec
i,j ≤ Fj , ∀i ∈ M, j ∈ N

(22)

Let G1(f
mec
i,j ) be designated as the objective function for problem P2. In order to

prove that P3 is a convex problem, we take the second derivative of G1(f
mec
i,j ) with

respect to fmec
i,j . we have

∂2G1(f
mec
i,j )

∂(fmec
i,j )2

=
2Ci

(fmec
i,j )3

. (23)

Due to constraint C4, we have
∂2G1(f

mec
i,j )

∂(fmec
i,j

)2 > 0. Furthermore, considering that

constraint C4 is linear, and f t is a continuous variable, the problem presented in
Equation (22) is convex. Given that the problem is convex and satisfies the Slater
condition, to obtain the optimal solution for (22), we can use the Lagrangian function
to solve P3. We have

L(f, λ) =

M
∑

i=1

Ci

fmec
i,j

+ λ(

Mj
∑

i=1

fmec
i,j − Fj), (24)

where λ is a non-negative Lagrangian multiplier associated with the computing
resource constraints of EN. Then, we use the KKT conditions to obtain the opti-
mal allocation f t for computational resources[43]. By taking the partial derivative of
L(f, λ) with respect to fmec

i,j and setting it equal to 0, we can obtain

∂L(f, λ)

∂fmec
i,j

= −
Ci

(fmec
i,j )2

+ λ. (25)
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Subsequently, utilizing the binary search method, we can obtain an approximate
optimal solution for equation (25). We have

f∗ =

√

Ci

λ
. (26)

Then we can obtain the optimal computing resource allocation scheme f∗ based on
Algorithm 2. Algorithm 2 provides a detailed description of the specific process for
obtaining the optimal computational resource allocation.

Algorithm 2 Optimal Computing Resource Allocation Algorithm

Require: All user set information M, all ENs set information N , user task Ui,
Maximum tolerance ζ = 1× 10−8, λmin = 0 and λmax = 1

Ensure: The optimal computing resource f∗

1: for all users i ∈ M do

2: while λmax − λmin > ζ do

3: Get the value of λ according to the formula λ = (λmax + λmin)/2.
4: Calculate f∗ by substituting the obtained value of λ into equation (26).
5: If constraint C5 is satisfied, we will update λmax = λ.
6: Otherwise, we will update λmin = λ.
7: end whileThrough formula (26), we can get the optimal computing resources

f∗ for each user.
8: end for

4.2.2 The Optimal Task Offloading and Service Placement Decision.

From the preceding discussion,it can be inferred that the primary challenge in address-
ing this issue lies in the high coupling between task offloading decisions and service
placement decisions. Moving forward, we should reframe problem P2 into one that
focuses on optimizing task offloading decisions and service placement decisions to
reduce system latency and costs when the computing resource f∗ is determined.
Therefore, we can formulate the problem as follows:

P4 : min
xt,yt,zt

G2(x
t
j,k, y

t
i,j , z

t
i,j,j′)

s.t. C2− C9
(27)

G2(x
t
j,k, y

t
i,j , z

t
i,j,j′) =

M
∑

i=1

N
∑

j=1

V [Tup
i,j + yti,j(

Ci

f∗
i,j

+
∑

k∈Ki

(1− xt
j,k)T

down
c,j )

+
∑

j′∈N

zti,j,j′(1− yti,j)(
Ci

f∗
i,j′

+ T round
i,j,j′ +

∑

k∈Ki

(1− xt
j′,k)T

down
c,j′ )] +Qi(t)E

t
i

(28)
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From a macro perspective, the offloading of user tasks and the placement of services
can be seen as a variant of the stable matching problem, akin to the college admissions
problem (CAP). Unlike traditional one-to-one matching, CAP aims for stable many-
to-one bilateral matching, where a specific college can be open to and admit multiple
students. Similarly, a student can choose multiple colleges but can ultimately select
only one. In our context, each EN corresponds to a college, and users and cache
services play the roles of students in the CAP framework. According to the concept of
stable matching theory, it is essential to precisely define the interests and preferences
of two participants. For example, we can use ”ac > bc” to indicate that c prefers a
over b. Therefore, it is necessary to identify the specific interests of each participant in
the problem and create preference lists for them based on these interests. To address
P4, we propose a task offloading and service placement algorithm based on matching
theory, striving to find a stable optimal match between the sets of tasks and ENs,
as well as between the sets of services and ENs[44]. This ensures that tasks achieve
maximum system utility in the current matching.

In this paper, users tend to offload tasks to EN that have the required services
and sufficient computing resources, while ENs are more inclined to handle tasks with
low computational resource requirements. Similarly, services tend to store data on
ENs that handle relevant tasks, and ENs tend to store fewer services to reduce the
overall system costs. For simplification, we denote U as a set of tasks and N as a set
of ENs, which are two disjoint participants. We then perform the matching between
U and N . Each task can only be assigned to one EN for processing, but each EN can
handle multiple tasks. W denote H1(x) as the matching function between Ui ∈ U and
ENj ∈ N , which is a mapping from the set U ∪N to the subset of U ∪N . It needs to
satisfy the following three conditions: (1). H1(Ui) ∈ N , ∀Ui ∈ U means that any task
can be offloaded and processed on any EN in the set N . (2). H1(ENj) ∈ U , ∀j ∈ N
indicates that any task processed by EN in set N is included in set U . (3). H1(ENj) =
Ui ⇔ H1(Ui) ∈ ENj implies that the task Ui to ENj processing is equivalent to ENj

processing of tasks including Ui, but not only processing a task Ui. If there is a current
matching H1(x), the offloading decision of the task can be determined as

yti,j =

{

1 , if H1(ENj) = Ui;

0 , otherwise.
(29)

zti,j,j′ =

{

1 , if H1(ENj′) = Ui and yti,j = 0, j ̸= j′;

0 , otherwise.
(30)

Each participant can establish a preference list with other participants by formu-
lating a utility function[45], which is defined as inversely proportional to the sum of
the total system latency and cost. Therefore, the utility function for task Ui can be
expressed as

SUUi
(ENj) =

1

G2(yti,j , z
t
i,j,j′)

. (31)

If there is the following definition SUUi
(ENj1) > SUUi

(ENj2), it means that the task
Ui prefers to be processed in ENj1 rather than in ENj2 .
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Similarly, we denote K as a set of services and denote N as a set of ENs, which
are two disjoint participants. Services can only be selected for storage in one EN, and
multiple services can be stored in each EN. Denote H2(x) as the matching function
between k ∈ K and ENj ∈ N . If a match currently exists for H2(x), then the service
placement decision can be determined as

xt
j,k =

{

1 , if H2(ENj) = k;

0 , otherwise.
(32)

Then the utility function of EN for task Ui can be expressed as

QUk(ENj) =
1

G2(xt
j,k)

. (33)

If the definition states that QUk(ENj1) > QUk(ENj2), this implies that the service k
is more inclined to be stored in ENj1 rather than in ENj2 .

Algorithm 3 addresses the specific process of solving problem P4 in two main
phases: an initialization phase and a matching phase. In the initialization phase, all
users offload tasks to ENs while storing services in random ENs and creating corre-
sponding matches relationships. In the matching phase, users seek the corresponding
ENs for task processing, and cache services also search for the corresponding ENs for
storage, establishing stable matching relationships. If the system utility of task Ui

with the currently matched EN is low, user i will send a matching request to other
ENs. Similarly, if the current matching with the EN cache associated with this service
results in additional high costs and prolonged task processing latency, the service may
choose to send matching requests to other ENs.

When other ENs receive matching requests for tasks, they calculate the system
utility and make matching decisions: (1) If accepting task Ui can improve the system
utility, they accept the matching request from user i. (2) Otherwise, they reject the
matching request from user i. If the matching request from user i is rejected, user i will
send a matching request to the next available EN. Likewise, when other ENs receive
matching requests for services, they also calculate additional costs and task processing
latency and make matching decisions: (1) If the service cache in that EN can reduce
additional costs and decrease task processing latency, they accept the matching request
from service k. (2) Otherwise, they reject the matching request from service k. If the
matching request from service k is rejected, service k will send a matching request to
the next available EN.

When there are no matching requests from users and services during the matching
phase, the matching phase ends. In each round of the matching process between tasks
and cache services with ENs, stable matching is achieved on both sides, maximizing
system utility. Ultimately, based on the matching results that satisfy all constraints,
optimal offloading decisions for all tasks and optimal placement decisions for cache
services can be determined.
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Algorithm 3 Task Offloading and Service Placement Algorithms Based on Matching
Theory

Require: All user set information M, all ENs set information N , user task Ui and
all services set information K

Ensure: The placement decision xt for the service, and the optimal offloading
decisions yt and zt for all tasks

1: Initialize Phase:
2: Match all user tasks with local EN while satisfying constraints C2-C9.
3: Randomly deploying all services on EN.
4: Calculate the utility under the current matching according to (31) and (33).
5: Matching Phase:
6: while there exists unstable matching do

7: if current EN does not have the services required for the user task then

8: Consider the following two scenarios.
9: 1. Query ENj′ with the services required by the user.

10: Retrieve all parameter information for ENj′ .
11: Calculate the system utility of user i to ENj′ .
12: for all ENs j′ ∈ N and j′ ̸= j do

13: If SUUi
(ENj) < SUUi

(ENj′)
14: ENj′ will accept the match request and offloads the task to ENj′ .
15: Otherwise, tasks are offloaded to the current ENj for processing.
16: end for

17: 2. EN stores only the services required by the current user.
18: Remove services that are not currently needed.
19: Calculate system utility of service k to ENj′ while satisfying constraints.
20: for all ENs j′ ∈ N and j′ ̸= j do

21: If QUk(ENj) < QUk(ENj′), service k will be stored in ENj′ .
22: Otherwise, service k is still stored in this current EN.
23: end for

24: end if

25: end while

26: The system utility no longer changes, i.e., a stable match H is reached between
tasks and ENs, and a stable match G is formed between services and ENs.

27: Base on (29), (30), (32) and the matching results, we can get the placement decision
of the service xt, and the optimal offloading decision of all tasks yt, zt.

5 Simulation Results

In this section, we will evaluate our proposed OPDA algorithm through experimental
simulation results. We will compare the OPDA algorithm with other algorithms and
conduct an in-depth analysis of the comparison results.
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5.1 Simulation Setting

In the scenario of multi-ENs cooperative task processing and resource allocation based
on service placement, we can set a series of parameters for simulation experiments.
Firstly, we can set a coverage area of 500m × 500m for the scenario, which includes
10 users and 4 ENs, all randomly distributed within the coverage area. Secondly, we
can set the transmission power pi,j of user i to 30dBm[46], and the noise power σ2

is set to -100dBm. At the same time, we have set the wireless channel gain hi,j from
user i to ENj as hi,j = d−ϑ

i,j , where di,j represents the distance between user i and
the relevant ENj , and the path loss factor ϑ = 4. Considering the heterogeneity of
ENs and user tasks, we set the input data size Di of each user task to be within the
range of [30, 50]MB[47], and the CPU cycles required to execute the task is 1200.
Next, we set the channel bandwidth Bj , storage capacity Gj , and computing resources
Fj of ENj to be [8, 12]MHz, [5, 10]GB, and [30, 60]GHz, respectively. In order to
more effectively handle tasks offloaded by users to the edge end, we must occupy
various resources of the EN, which will also bring additional costs. Therefore, we set
the transmission energy cost αj of the task and the unit cost βj of executing the task
to be [2 × 10−4, 3 × 10−4] unit/J and [0.4 × 10−7, 0.8 × 10−7] units/bit, respectively.
Finally, we set the unit costs of the remote cloud server and the storage service of the
EN to be [1.0, 1.2] units and [0.54, 0.6] units[48], respectively. These settings will help
us to simulate and evaluate the performance of the algorithm more accurately.

Next, we conduct a performance study of the proposed OPDA algorithm and com-
pared it with other algorithms. We evaluate the OPDA algorithm using 500 time slots,
with a time interval of 10 ms for each slot. Additionally, to assess the performance
of the OPDA algorithm, we introduce four baseline algorithms: (1). Independent EN
Processing Algorithm(IEPA): In this algorithm, ENs within the coverage area inde-
pendently handle tasks without any collaborative relationship. Tasks can only be
processed locally in the respective ENs, with each EN allocating appropriate com-
puting resources. (2). Optimal System Latency Processing Algorithm(OSLPA): When
processing tasks, this algorithm maximizes efforts to reduce system latency with-
out considering system cost constraints. (3). Random Processing Algorithm: Due to
mutual communication among ENs, tasks can be randomly offloaded to any EN for
processing. In these three algorithms, there is no consideration for the placement of
service caches; services are randomly deployed on ENs. (4). Service Cache Random
Placement Algorithm(SCRPA): This algorithm disregards service cache placement
issues but maintains consistency with this paper regarding task offloading and resource
allocation problems.

5.2 The Effect of Parameter V on System Performance

Fig. 2 and 3 illustrate the average system latency and cost when employing OPDA and
OSLPA algorithms to handle 10 tasks under different parameters V. From Fig. 2 it
can be observed that as the parameter V increases, the average system latency of the
OPDA algorithm significantly decreases, gradually approaching the optimal process-
ing latency of the system. Similarly, Fig. 3 reveals that with the increase in parameter
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V, the average system cost of the OPDA algorithm significantly rises, ultimately main-
taining a level below the system cost of the OSLPA algorithm. This indicates that
the OSLPA algorithm achieves the best system processing latency at the expense of
higher system costs.

These two figures validate that the parameter V can achieve a controllable balance
between system latency and cost, exhibiting a relationship of [O(1/V), O(V)], consis-
tent with Lyapunov’s characteristics. As the non-negative parameter V increases, the
system’s latency performance decreases, but the system cost simultaneously increases.
Therefore, we can adjust the parameter V based on specific circumstances to meet the
diverse requirements of the system. Even in the absence of network status information,
optimizing the parameter V allows us to attain optimal system latency performance
and cost. Considering the constraints of long-term costs, our algorithm demonstrates
a clear advantage over the OSDPA algorithm. This advantage is not only reflected in
the improvement of system latency performance but also in the more effective control
of system costs.

Fig. 2: The impact of different V Fig. 3: The impact of different V

5.3 Performance Comparison

Based on the trade-off analysis of system latency and cost, a larger V value will make
the system pay more attention to latency performance, but it may violate the long-
term average system cost within a limited time slot. Therefore, we show the average
latency and cost performance of 4 ENs processing 10 tasks under the condition of V
= 4 in Fig. 4 and 5. These two figures clearly show that the OPDA algorithm achieves
nearly optimal latency performance while satisfying the long-term cost constraint.
Although the OSLPA algorithm performs best in terms of latency performance, Fig. 5
clearly shows that using the OSLPA algorithm requires a large amount of system cost.
In contrast, the OPDA algorithm slightly sacrifices some latency performance to meet
the long-term average cost constraint. Since the OPDA algorithm adds a constraint
of long-term average system cost in each time slot, our algorithm also meets the
constraint of long-term average system cost.
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On the other hand, because ENs can cooperate with each other in communica-
tion, the random algorithm can randomly assign tasks to any EN without considering
specific resource requirements, resulting in poor latency and cost-effectiveness. In
addition, in the IEPA algorithm, each EN processes the task requests sent by users
independently, without considering the cooperative relationship between ENs, result-
ing in poor overall system latency performance. In general, compared with the other
three algorithms, the system latency of our proposed OPDA algorithm is lower, and
the long-term average system cost also maintains a lower level.

Fig. 4: Average system latency Fig. 5: Average system cost

5.4 The Effect of The Number of Users on System Performance

Fig. 6 and 7 respectively reveal the total system latency and cost when we handle
different numbers of tasks using different schemes. As the number of tasks increases,
the system latency and cost in all scenarios rise. Among them, the OSLPA algorithm
achieves the lowest system latency, followed closely by the OPDA algorithm, while the
IEPA and random algorithms have the highest system latency.

Combining Fig. 6 and 7, although the OSLPA algorithm maintains a relatively
low system processing latency, its system cost for handling tasks is the highest. This
indicates that the algorithm consumes a large amount of system cost to achieve the
best system latency, which obviously does not meet our expectations. In addition, we
can also observe that compared with other algorithms, the OPDA algorithm maintains
the lowest system cost when handling tasks, and the system latency also remains at
a relatively low level. In summary, the algorithm we propose can effectively handle
user tasks, maintaining a relatively low long-term average system cost while its system
processing latency is closer to the optimal state.
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Fig. 6: System latency with different M Fig. 7: System cost with different M

5.5 The Effect of Service Placement on System Performance

Fig. 8 and 9 illustrate the impact of employing OPDA and SCRPA algorithms on
system latency performance and costs. As the number of tasks increases, both algo-
rithms exhibit a rising trend in system latency and costs. However, in comparison to
the SCRPA algorithm, the use of OPDA consistently maintains lower levels of system
latency and costs. In the absence of considering the optimization of service placement,
services can be arbitrarily placed on any given EN. As seen in Fig. 8, this may result
in the current EN not storing the necessary services for tasks, requiring the download
of these services from cloud servers, thereby increasing the processing latency of EN
for tasks. On the other hand, as observed in Fig. 9, this could also lead to the cur-
rent EN storing many services that tasks do not require, wasting a significant amount
of storage resources and consequently increasing the storage costs for EN in handling
tasks. In summary, this indicates that our OPDA algorithm is highly effective. By
optimizing the service placement issue, it significantly reduces latency and additional
costs incurred during task processing at the edge.

Fig. 8: System latency with different M Fig. 9: System cost with different M
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6 Conclusion

In this paper, we propose a multi-ENs collaborative task processing model based
on service cache placement and formulate a MINLP optimization problem aimed at
minimizing system latency and cost. The main research content is to store the services
required by users in the EN and to collaboratively process tasks offloaded to the edge
end by users among multiple ENs. In this process, we make optimal offloading decisions
and compute resource allocations for tasks, while optimizing the placement decisions of
services. To solve this problem, we propose an online optimization algorithm (OPDA),
which operates online and does not predict future information. We then decompose
the long-term optimization problem into a series of one-time slot problems and design
a two-stage one-time slot optimization algorithm to obtain an approximate optimal
solution. Finally, simulation results show that this algorithm can achieve near-optimal
latency performance under the premise of satisfying long-term cost constraints.
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