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Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici Eriks. & E. Henn (Pst) is one of the most prevalent
wheat diseases causing upto 70% yield losses worldwide. The present study was conducted in wheat for
the first time to identify important meta-QTL (MQTL) regions for their use in developing stripe rust
resistant wheat cultivars and to understand the genetic architecture of stripe rust resistance in wheat.  For
this purpose, a dense consensus map consisting of 76,753 markers was constructed and 353 QTLs from
earlier studies were projected on this consensus map. As many as 61 MQTLs were identified using 184
(out of 353) original QTLs. Ten important genomic regions including six breeders’ MQTLs (PVE >20%)
and four MQTL hotspots were selected to be used by wheat breeders. As many as 409 important
candidate genes (CGs) were also identified, which either encoded known R proteins (265) or showed
differential expression (144) due to stripe rust infection. These included genes encoding the following
proteins: NBS-LRR, WRKY domains, ankyrin repeat domains, sugar transporters, etc. Overall, the present
study provided robust MQTLs and underlying CGs which may be potential targets for molecular breeding
for development of stripe rust resistant wheat cultivars or may be the target for future molecular studies
to understand the mechanism of stripe rust resistance.

Key Message
Important meta-QTL regions and underlying candidate genes were first time identified for stripe rust
resistance in wheat for development of resistant cultivars.

Introduction
Due to its wide adaptability, wheat is grown on > 200 mha globally and it provides 20% of the daily
protein for the growing world population (Shiferaw et al. 2013; Tesfaye et al. 2021). In production,
globally wheat is the second most important crop after maize (FAO-2021). Rust diseases (leaf rust, stem
rust and stripe rust) which occur world-wide are among the major biotic stresses severely affecting wheat
yield. Among the three rusts, stripe rust (also known as yellow rust or Yr) caused by Puccinia striiformis f.
sp. tritici Eriks. & E. Henn (Pst) is the most devastating and widely prevalent disease in major wheat
growing countries around the world. There are at least 140 stripe rust pathotypes known globally, of
these, more than 28 pathotypes occurring in India alone (Line and Qayoum 1992; Chen et al. 2010;
Bhardwaj et al. 2014; Tomar et al. 2014; Pradhan et al. 2020).

Stripe rust causes significant yield losses in almost every part of the world, where cool and humid
conditions persist during crop season. The yield losses can be up to 70% under severe epidemic
conditions, adversely affecting grain-filling duration, thus leading to poor grain yield as well as grain
quality (Vikram et al. 2021). Under severe conditions, the yield losses may go up to 100% when the
infection occurs at the seedling stage and environment conditions conducive to the pathogen persist until
maturity (Afzal et al. 2007; Pradhan et al. 2020). In India, it is a major disease in the North West Plain
Zones (NWPZ) especially in the sub-mountainous parts of Punjab, Haryana, and Western Uttar Pradesh,
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which are the major wheat growing areas. In fact, a major outbreak of this disease was witnessed in
NWPZ during 2006 and in the Northern Hills Zone (NHZ) during 2012-13, leading to severe yield losses
(Prashar et al. 2007; Saharan et al. 2013; Pradhan et al. 2020).

As many as 83 Yr genes have already been identified globally, which are distributed on all the 21 wheat
chromosomes (McIntosh et al. 2014). Out of these 83 Yr genes, more than 15 genes have been derived
from alien wheat species (Park 2016). As many as 9 genes (Yr5/YrSP, Yr7, Yr10, Yr15, Yr36, Yr18, YrU1
and Yr46) have also been cloned and were shown to encode a variety of proteins including those with the
nucleotide binding site leucine rich repeats (NBS-LRR) domain, kinase like domains, ankyrin repeats,
WRKY domain and lipid binding domain; Yr genes encoding putative ABC transporter and hexose
transporter are also known (Fu et al. 2009; Krattinger et al. 2009; Liu et al. 2014; Moore et al. 2015;
Klymiuk et al. 2018; Marchal et al. 2018; Zhang et al. 2019; Wang et al. 2020). In the host, a number of
differentially expressed genes have also been identified through genome-wide transcriptome analysis
during wheat-Pst interaction (Coram et al. 2008; Garnica 2013; Zhang et al. 2014; Hao et al. 2016; Zhang
et al. 2019; Pradhan et al. 2020 and Yan et al. 2021) and a network pathway operating during the
interaction was also speculated in one of these studies (Zhang et al. 2014).

Stripe rust resistance has also been treated as a quantitative trait (QT) and > 300 QTLs for this trait have
been reported using interval mapping (Wang et al. 2017a). Several LD-based genome wide association
studies (GWAS) for stripe rust resistance have also been conducted during the last two decades, leading
to identification of a number of marker trait associations (MTAs). The activity involving quantitative
genetic studies for this trait increased so extensively in recent years that five of these GWA studies were
reported in 2021 alone (Zhang et al. 2021; Abou-Zeid et al. 2021; Gyawali et al. 2021; Vikram et al. 2021
and Wu et al. 2021).

However, no attempts have been made so far to conduct MQTL analysis and to validate the robustness
of QTLs for stripe rust resistance, identified across different environments and using different mapping
populations differing in their genetic make-up. This is despite the fact that MQTL analysis in wheat has
been conducted for a number of other traits including those for tolerance to abiotic stresses such as
drought and heat (Acun˜a-Galindo et al. 2015; Kumar et al. 2020) and resistance to biotic stresses like (i)
leaf rust (Soriano and Royo 2015), (ii) tan spot (Liu et al. 2020), (iii) stem rust (Yu et al. 2014), (iv)
Fusarium head blight (Loffler et al. 2009) and (v) powdery mildew (Marone et al. 2013). The present study
involving MQTL analysis is the first of its kind which was planned to identify MQTLs for stripe rust
resistance, using the QTL information already available. The CGs for MQTLs were also identified. The
MQTLs, MQTL hotspots and the CGs identified during the present study should serve as an important
resource for future molecular breeding programs for stripe rust resistance in bread wheat. The results of
this study should also allow identification of the consensus and robust QTLs and for refining the QTL
positions on a consensus map (Goffinet and Gerber 2000).

Materials And Methods
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Bibliographic search and input file preparation

For conducting MQTL analysis for stripe rust resistance, bibliographic search was done to collect
literature on QTL mapping studies published during past 20 years (2000 to 2020) (Table S1). From the
literature, detailed information on types of mapping populations and their parents, population size,
pathotypes used for phenotyping, methods of QTL mapping, position of QTL and markers flanking the
QTL, logarithm of odds (LOD) value, and R2 values of the QTLs was collected. Only QTLs with complete
information required for meta-analysis were retained for final analysis. The two types of input data text
files including the genetic map file and QTL information file were prepared from each study following the
instructions provided in the BioMercator v3/v4 manual (Sosnoswki and Joets 2012).

Construction of consensus genetic map

A consensus genetic map involving SSR, DArT and SNP markers was constructed using LPmerge
software (Endelman and Plomion 2014). For this purpose, five individual genetic linkage maps each from
different studies were used as reference maps (Somers et al. 2004; Marone et al. 2012; Maccaferri et al.
2014; Wang et al. 2014 and Bokore et al. 2020). Markers flanking individual QTL regions identified in
individual QTL studies used for MQTL analysis were also included for construction of a consensus
genetic map.

Projection of QTLs on consensus map

The original QTLs were projected onto the above developed consensus map using the QTL projection
(QTL Proj) tool available in BioMercator v4.2; QTLs which could not be projected onto the consensus map
were excluded. For the projection of QTLs on the consensus map, a scaling rule between the marker
interval of the original QTL and the corresponding interval on the consensus chromosome was used
(Veyrieras et al. 2007). The new confidence interval (CI) for MQTLs on the consensus linkage group was
computed using Gaussian distribution (Veyrieras et al. 2007).

Meta-analysis of QTLs and identification of MQTL hotspots

MQTL analysis was conducted using BioMercator v4.2 (Arcade et al. 2004; Sosnowski et al. 2012).
Following two different approaches were used based on the number of QTLs on each individual
chromosome for conducting MQTL analysis: (i) If the number of QTLs on an individual chromosome was
≤10, the approach suggested by Goffinet and Gerber (2000) was used; and (ii) if the number of QTLs on
an individual chromosome was >10, the approach suggested by Veyrieras et al. (2007) was used. For
identification of the MQTLs, QTL model having the lowest Akaike information criterion (AIC) value was
considered (AIC value estimates the relative amount of data lost by different statistical models). Quality
of the model depended on the assumption that lesser is the information loss, higher will be the quality of
that model (Akaike 1998). The MQTLs located in the same physical interval and genetic/confidence
interval <15 cM were considered as MQTL hotspots.
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Identification of known Yr genes co-located with MQTLs

The known Yr genes that are co-located with the MQTLs in the present study were also identified. For this
purpose, the sequences of the markers linked to the Yr genes were blasted against the wheat reference
genome version 49 (Triticum_aestivum IWGSC_Ensembl_Release 49) available in the Ensembl Plants
database and the physical coordinates of the respective markers were extracted. These physical intervals
of the markers linked to Yr genes were compared with the physical coordinates of the MQTL regions; an
individual Yr gene falling within a specific MQTL region was treated as the MQTL region co-located with
the corresponding Yr gene.

Identification of CGs underlying the MQTL regions

The CGs underlying the MQTL regions were identified in the 1Mb interval on either side of the peak
position of the MQTL (total 2Mb interval). For this purpose, the options available in biomart tool of
Ensembl Plants were utilized. The following steps were used to identify CGs: (i) the physical coordinates
of the MQTLs were extracted by Blasting the sequences of the closest markers (retrieved from
GrainGenes, CerealDB or JBrowse) flanking the MQTL regions against the wheat reference genome
sequence (Triticum_aestivum IWGSC_Ensembl_Release 49) available in Ensembl Plants database. (ii)
The physical interval (in Mb) for an individual MQTL was calculated based on the genetic confidence
interval (in cM) of the MQTL regions. For this purpose, the genetic interval (in cM) was divided by the
physical interval (in Mb, calculated from the coordinate information of the MQTL and the distance in
units of Mb per cM was calculated. (iii) Based on this information, the actual physical position of the
MQTL was calculated and the 1Mb region on either side of the MQTL (total 2Mb interval) was extended
for identification of the putative CGs associated with the respective MQTL region. (iv) The putative
function of the identified CGs was annotated on the basis of the domain in their protein sequences, which
were identified utilizing InterPro database.

Gene ontology (GO) and in silico expression analysis of CGs

GO analysis was conducted using Biomart tool available in Ensemble Plants. In silico expression of CGs
was also conducted using the tool expVIP available online (wheat-expression.com; Ramirez-Gonzalez et
al. 2018) to select the important genes based on their expression values. Expression data on three
different experiments involving two different studies related to stripe rust resistance that were available in
expVIP database were selected for in silico expression analysis. Following is the brief summary of these
two expression studies. In the first study conducted by Zhang et al. (2014), transcriptome divergence and
overlap in response to stripe rust and powdery mildew was studied using the seven-day old seedlings of
the variety N9134 that was inoculated using Pst race CYR31. The inoculated leaves were harvested at 0,
1, 2, and 3 dpi (Zhang et al. 2014). In the second study of Dobon et al. (2016), two different varieties,
namely Vuka (susceptible) and Avocet-Yr5 (resistant) were inoculated with stripe rust using Pst isolate
87/66 at three leaf stage. Leaf samples were collected at 0, 1, 2, 3, 5, 7, 9, and 11 days post-inoculation
(dpi) for the susceptible variety Vuka and 0, 1, 2, 3, and 5 dpi for the resistant Avocet-Yr5 line. In both the
studies, three biological replicates were taken for each time point.
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The data on expression was available as log2 transformed tpm (transcripts per million) values. Only
those genes showing FC≥2 or FC≤-2 (on comparison of tpm values under stress vs. control) were
considered as differentially expressed. The results of such differentially expressed genes were depicted in
the form of heatmaps generated using online tool Morpheus
(https://software.broadinstitute.org/morpheus/).

Results
QTLs and their distribution on wheat chromosomes

Based on the bibliographic search, a total of 68 studies (66 studies involving common wheat and two
studies involving durum wheat) were found to contain all the required QTL related information and were
used for the MQTL analysis (Table 1; for details see Table S1). Salient features of these studies include
the following: (i) The mapping populations consisting of RILs, DH or F3 ranged in size from 78 to 1020
plants/lines (Table1; Table S1). (ii) A total of 353 QTLs were identified from these 68 studies and the
information on the flanking marker, phenotypic variation explained (PVE) % of each QTL along with their
confidence intervals (CI) are presented in Table S1. (iii) The 353 QTLs were distributed on the all the 21
wheat chromosomes, with the total number of QTLs per chromosome ranging from 3 on chromosome 5D
to 52 on chromosome 2B (Figure 1a). (iv) Of the QTLs, 100 (28.3%) QTLs were identified on A sub-
genome, 206 (58.4%) on B sub-genome and 47 (13.3%) on D sub-genome (Figure 1a). The number of
QTLs per trait ranged from 2 for leaf area infected (LAI) to 243 for disease severity (DS) (Figure 1b). (iv)
LOD scores for these QTLs ranged from 2 to 62 with 47% of QTLs showing a LOD score of 2-7 (Figure
1c). (v) The proportion of phenotypic variance explained (PVE) by individual QTLs ranged from 1% to
88% (average of 6%) and followed the expected L-shaped distribution, with most (67%) of the QTLs
showing a PVE <20 % (Figure 1d).

Consensus map and projection of QTLs on consensus map

The consensus map had 76,753 markers, including 3526 DArT, 65459 SNP, 3975 SSR, and 3793 AFLP,
STS, and TRAP etc. The total length of the consensus map was 5774 cM; the size of the 21 individual
linkage groups ranged from 98 cM to 462 cM (Figure 2). The marker densities ranged from 5 markers per
cM in case of 6D to 28 markers per cM for 1A (Figure 2). The average marker densities of the seven
linkage groups was the lowest for D sub- genome (11.85 markers per cM) followed by B sub-genome
(14.28 markers per cM) and A sub-genome (15.42 markers per cM) (Figure 2).

Out of the total 353 QTLs collected from 68 studies, only 214 QTLs could be projected on to the
consensus map; only these were used for MQTL analysis.

MQTLs, MQTL hotspots and their distribution on wheat chromosomes

Out of the 214 QTLs projected on the consensus map, 30 QTLs were found to be singletons and were
therefore removed from further analysis. The remaining 184 QTLs with 8 QTLs overlapping two adjacent
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MQTLs were grouped into 61 MQTLs following the lowest AIC values. These MQTLs were located on 18
out of the 21 chromosomes (except 5D, 6D and 7D) with 1 to 8 MQTLs per chromosome (Figure 3).
Further, all original QTLs clustered in each of the 60 out of the 61 MQTL regions (except MQTL57) were
identified using different types of mapping populations reported in different studies. In case of MQTL57
which was represented by 2 initial QTLs, both these QTLs were reported from the same population in a
single study (Table 2). For 59 out of the 61 MQTLs, the information of stripe rust pathotypes that were
utilized during the original studies was also available. The number of individual QTLs per MQTL ranged
from 2 to 10 (Table 2). Mean R2 (PVE %) of the MQTLs ranged from 1.9% to 48.1% and their CI ranged
from 0.02 cM (MQTL51) to 11.47 cM (MQTL40). Out of the 61 MQTLs, maximum (36) MQTLs were
found on the B sub-genome followed by 19 MQTLs on A sub-genome and 6 MQTLs on D sub-genome.
The genetic position, genetic interval and other related information for each MQTL are listed in Table S2.

Four MQTL hotspot regions were identified on chromosome 1B, 2B and 6B. Each of the four hotspot
regions consisted of 2 MQTLs as follows: (i) MQTL4-1B and MQTL5-1B containing 9 initial QTLs
controlling 6 different traits (ii) MQTL14-2B and MQTL15-2B containing 5 initial QTLs controlling single
trait and 7 known Yr genes (iii) MQTL17-2B and MQTL18-2B containing 15 initial QTLs controlling 5
different traits and 9 known Yr genes and (iv) MQTL53-6B and MQTL54-6B containing 6 initial QTLs
controlling 3 different traits (Figure 3; Table 2).

Co-located Yr genes with the MQTLs

Twenty-two (22) known major Yr genes were found to be co-located (on the basis of physical position of
MQTLs as well as the physical position of Yr genes) within the genomic regions of the following 10
MQTLs; MQTL3, 10, 15, 17, 18, 19, 20, 21, 24 and 29; 9 Yr genes were co-located with MQTL3 alone
(Figure 3). Further, since the physical intervals of the MQTL15, MQTL17 and MQTL21 overlapped with
each other, the same six Yr genes were co-located with these three MQTLs. In case of MQTL17, one more
gene was co-located in addition to these six genes.

Identification of CGs, GO terms and in-silico expression analysis

A total of 1581 genes were available in the genomic regions defined by 60 out of the 61 MQTLs. Of the
above 1581 genes, total 409 (265+144) important CGs were identified based on two different criteria
which included (i) 265 important R genes which follow six of the 9 different mechanisms listed by
Kourellis and van der Hoorn (2018) (Figure 4a and Table S3) and (ii) 144 significant differential
expression based on in silico expression analysis (Table S4). These 265 genes belonged to 48 out of the
61 MQTLs. Twenty four (24) of the above 144 differentially expressed genes mentioned in category 1
were also commonly identified in the 265 genes belonging to second category.

GO analysis of the above 409 (144+265) CGs revealed a number of GO terms out of which some of the
important and most abundant GO terms include those involved in biological processes like
phosphorylation, protein ubiquitination, proteolysis, transmembrane transport, oxidation-reduction
processes, etc. Similarly, important GO terms in molecular functions category included those involved in
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catalytic activity, ATP binding, protein binding, heme binding, iron ion binding, metal ion binding,
transmembrane transporter activity, oxidoreductase activity, etc.

The above 144 differentially expressed CGs identified through in silico expression analysis (FC≥2 or ≤-2)
belonged to 44 out of 60 MQTLs and the number of differentially expressed genes per MQTL ranged from
1 to 8 (Table 3 and Table S4). Further, these differentially expressed CGs encoded proteins for different
categories like R-domain containing proteins, transcription factors (Zn finger binding proteins, SANT/Myb
domains, NAC domain, BTF3), transporters (mitochondrial carrier domains, sugar-phosphate transporter
domain, sodium/carbon exchanger domain, SLC26A/SulP transporter), different protein kinases, genes
involved in calcium signaling, a number of peptidases, genes involved in oxidative stress (cytochrome
P450) and domains like S1/P1 nuclease, Six-bladed beta-propeller/Strictosidine synthase, Alpha-
mannosyltransferase and Peptidase T2 (Table S4). A representative heat map of 29 important
differentially expressed CGs which included 14 CGs encoding R domain containing proteins, 9 CGs
known to be involved in disease resistance signaling pathways and 6 CGs having very high expression
(FC≥ 5 or ≤-5) shown in Figure 4b.

Discussion
The QTL interval mapping studies for stripe rust in wheat started in mid-1990s (Line et al. 1996). Since
then, more than 70 reports have been published, leading to identification of >350 QTLs, so that stripe rust
resistance is now treated both as a quantitative trait involving quantitative resistance loci (QRLs) and a
qualitative trait controlled by a number of Yr genes, the latter following a gene-for-gene relationship with
Avr genes in the pathogen. The relationship of QRLs in the host and the corresponding QTLs for virulence
in the pathogen has not been worked out so far, although quantitative nature of virulence in pathogen has
been worked out in some cases including wheat pathogens like Zymoseptoria tritici where several large
and small effect QTLs were identified for virulence (Stewart et al. 2018)

The 61 MQTLs identified during the present study were derived from 184 QTLs, which indicated roughly
three-times reduction in redundancy for the genomic regions controlling stripe rust resistance in wheat
genome. Earlier, while conducting meta-QTL analysis in wheat for fusarium head blight, roughly five-fold
reduction in redundancy was reported (Venske et al. 2019). The absence of MQTLs on the 3 of the 7 D
sub-genome chromosomes (5D, 6D, 7D; Figure 2) agrees with earlier reports on QTL analysis (Gutierrez-
Gonzalez et al. 2019; Rimbert et al. 2018; Gardener et al. 2016; Iehisa et al. 2016; Poland et al. 2012). A
similar situation was earlier reported for MQTL analysis for leaf rust resistance (Soriano and Royo 2015)
and MQTLs for fusarium head blight (Venske et al. 2019).

Sixty-one (61) MQTLs (including four MQTLs derived from the QTLs belonging to durum wheat) is a fairly
large number indicating a high degree of redundancy of QTLs which agrees with a large number of Yr
genes for stripe rust resistance reported in wheat genome. Such a redundancy of genes/MQTLs is a
requirement for providing resistance against large number of ever-evolving races of stripe rust, distributed
in different wheat growing regions of the world (Pradhan et al. 2020). Earlier, for resistance against
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fusarium head blight also, 65 MQTLs were identified. However, the number of MQTLs identified in this
study far exceeds the number of MQTLs identified for leaf rust resistance (35) (Soriano and Royo 2015).
Perhaps this is due to relatively fewer QTL studies (19) available for meta-analysis in case of leaf rust
resistance.

Most of the MQTLs identified in the present study controlled more than one parameters/traits (Table 2;
Table S2). This probably indicated either a tight linkage of genes for different traits, or occurrence of
pleotropic genes or a bias due to the use of related traits measuring the same resistance component by
different means as also reported earlier in case of MQTL analysis for leaf rust resistance in wheat
(Soriano and Royo 2015). In the present study, five MQTLs (MQTL3-1B, MQTL10-2A, MQTL19-2B,
MQTL20-2B and MQTL24-2D) also showed co-localization of 1 to 9 different known Yr genes including
four cloned Yr genes. These genomic regions may be involved in controlling both, qualitative and
quantitative resistance and thus may be more important. Earlier, a number of Yr genes (out of the 82
reported Yr genes) have been deployed in commercial wheat cultivars; however only few are still effective.
For instance, some of the Yr genes which are still effective in India include Yr5, Yr10, Yr15, Yrsp, Yr47,
Yr57 and Yr63 (Prasad 2020; Sharma et al. 2020). Four of these Yr genes (Yr5, Yr10, Yr15, Yrsp) that were
found to be co-located with MQTLs (Figure 3) identified during the present study and four other Yr genes
(Yr53, Yr61, Yr65,Yr69) are known to be effective worldwide (Zhang et al. 2019; Zhou et al. 2014). The
MQTLs showing co-localization with Yr genes may be important targets for introgression into susceptible
wheat lines for improvement of stripe rust resistance. While breeding for stripe rust resistance, generally
Yr genes are deployed and there is only one report where two QTL (QYr.nafu-2BL and QYr.nafu-3BS) have
been utilized for developing stripe rust resistance in wheat cultivars (Hu et al. 2020).

Some of the MQTLs also overlap Yr genes that have already been cloned. For instance, MQTL20-2B was
co-localized with two cloned Yr genes (Yr5/Yrsp and Yr7) whereas MQTL1-1A was co-localized with
cloned gene Yr10. Co-localization of Yr5/Yrsp and Yr7 in the same MQTL region is perhaps due to the
allelic nature of both the genes which were earlier shown to be closely linked (Zhang et al. 2009). All the
above three cloned genes encode proteins for NBS-LRR (Liu et al. 2014; Marchal et al. 2018).

Efforts were also made during the present study to identify MQTLs and MQTL hot spots that may prove
useful for breeding; we describe these MQTLs as breeders’ MQTL. For selecting these breeders’ MQTLs,
we utilized a number of criteria including the following two criteria suggested in an earlier study (Loffler et
al. 2009): (i) the low CI and high average PVE of the MQTLs and (ii) the number of QTLs carried by
individual MQTL. Additional criteria were also used in the present study for prioritizing and selecting
breeders’ MQTLs and MQTL hotspots. For instance, the relationship between MQTLs and the pathotypes
occurring in specific wheat growing regions may be an important criterion. While doing this we also have
to keep in mind that virulence can also be quantitative in nature as mentioned earlier. MQTLs showing
resistance against more than one pathotypes may also be important for achieving broad spectrum
resistance. Such important MQTLs showing resistance against multiple pathogen races were also
identified in a recent study on MQTL analysis reported for tan spot resistance in wheat (Liu et al. 2020).
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MQTLs identified in the present study consisted of original QTLs which showed resistance at either APR,
HTAP (high temperature adult plant resistance), SR (seedling resistance) or all stage resistance (ASR).
Also, almost all the MQTLs (except MQTL36-4A) showed resistance against more than one pathotypes
indicating that these MQTLs exhibit race non-specific resistance and may be containing a number of
novel genes which may be involved in providing resistance against broad spectrum of pathotypes.
Keeping in view the different criteria listed above, a number of breeders’ MQTLs were identified, which are
listed in Table 4.

Some of the Yr genes have been shown to overlap the QRLs/MQTLs and also the CGs that were identified
during the present study. The 409 CGs identified during the present study have been shown to encode a
variety of proteins; at least some of them are known to be involved in disease resistance (Table 3). The
differential expression of CGs observed during the present study agrees with earlier reports (Wang et al
2021; Dobon et al. 2016; Zhang et al. 2014). These genes are largely involved in important processes like
protein phosphorylation, photosynthesis, protein ubiquitination, transmembrane transport, oxidation-
reduction processes, etc. which are relevant to disease resistance. In an earlier study also, a reduction in
photosynthesis was shown to enhance stripe rust resistance due to the interaction of Yr36, encoding for
wheat kinase STARTI (WKSI) with Psbo, a member of photosystem II (Wang et al. 2019) without having
any adverse effect on yield. Similarly, in another study, a number of genes encoding PR (pathogenesis-
related) proteins, involved in a number of defense responses were shown to get induced in response to
stripe rust infection in a number of wheat lines carrying different genes for ASR (YrTr1, Yr76, YrSP,
YrExp2) and HTAP (Yr5, Yr59, Yr62 and Yr7b) (Farrakh et al. 2016). A number of downstream genes,
apparently similar to the CGs identified in the present study and involved in processes mentioned above
were also identified in a transcriptome study conducted using a pair of introgression lines, which differed
for Yr5 (Dobon et al. 2016).

CGs identified during the present study also deserve to be discussed. In wheat, CGs underlying the MQTLs
were also identified for several traits including drought tolerance (Kumar et al. 2020), tan spot resistance
(Liu et al. 2020) and fusarium head blight resistance (Venske et al. 2019). However, the strategy used by
us was novel and not used in any of these earlier reports. For instance, in most of the earlier reports, the
complete physical interval of the MQTL regions was considered for identification of CGs. However, in the
present study, we calculated the exact physical position of the MQTL based on the MQTL peak position
available from the BioMercator software. The 1 Mb interval on either sides of the MQTL peak was
considered for identification of genes, which were used for identification of CGs responsible for stripe rust
resistance.

Important differentially expressed CGs identified in the present study are presented in Figure 4. Fifty-nine
(59) CGs out of the total 409 CGs were available in breeder’s MQTL indicating that these CGs are more
important. Out of the 59 CGs, 32 CGs also showed differential expression and encoded important R
genes, S/TPK, SLC transporter, Mitogen-activated protein (MAP) kinase, UDP-glucosyltransferases, S1/P1
nuclease, etc. The role of some of the important CGs (shown in Figure 4) during disease resistance can
be summarised as follows: (i) Earlier, STPK-V, a member of Pm1 gene was reported to confer powdery
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mildew resistance in wheat (Cao et al. 2011). (ii) NBS-LRR domain containing genes are the protein
products of the cloned Yr genes like Yr10, Yr5, etc. as mentioned earlier (Liu et al. 2014; Marchal et al.
2018). (iii) TaMAPK4, a type of MAPK gene is reported to act as a positive regulator of stripe rust
resistance in wheat (Wang et al. 2018). (iv) The above transporters may also possibly encode Yr genes
similar to Yr46 which was shown to encode for hexose transporter (Moore et al 2015). (v) UDP-
glucosyltransferases were earlier reported to show differential expression due to stripe rust infection in
wheat genotypes indicating their role in Yr39 mediated stripe rust resistance (Coram et al. 2008). Some
other important CGs like those encoding for WRKY domains, Ankyrin repeat and F-box domain containing
genes were also identified in different MQTLs, although the expression data was not available for these
genes. WRKY and Ankyrin repeat domain containing genes were recently found to encode for proteins of
cloned YrU gene (Wang et al. 2020). Similarly, F-box domain containing gene was identified as a CGs
underlying the YrR39 locus in wheat and it was shown to upregulate due to stripe rust infection (Yin et al.
2018).

In summary, the present study allowed us to identify 6 MQTLs and 4 MQTL hotspots to be used by
breeders particularly for high yielding wheat cultivars which are susceptible for stripe rust (Table 4). Four
of these 10 genomic regions also showed co-localization with known Yr genes. Some of the important
CGs which were identified during the present study may be further validated/edited using approaches like
gene editing, overexpression, gene knockout strategies or CG based association mapping (CGAM).
Reports are available where some of these strategies have been used for validation of genes for their role
in stripe rust resistance. For instance, overexpression of TaWRKY62 provided high temperature seedling
plant resistance to stripe rust by activating other genes encoding for PR proteins, salicylic and jasmonic
acid responsive genes and ROS associated genes (Wang et al. 2017b). Similarly, in another study
overexpression of TaLHY (a type pf MYB TF) in leaf blade and sheath reduced the negative impacts of
stripe rust on wheat plant (Zhang et al. 2015). This knowledge may prove to be useful for validating
similar CGs identified in this study.

Gene editing or mutation is still unexplored in case of stripe rust resistance except a single study where
the function of Yr15 gene (encoding wheat tandem kinase 1 or WKS1) in stripe rust resistance was
validated using mutation analysis (Klymiuk et al. 2020). EMS mutations were created in this gene in
resistant wheat lines to develop susceptible lines. The resulting susceptible lines showed point mutations
in the three amino acids,i.e. Gly54, Ala149 and Ala460 leading to disruption in gene function, thereby
validating the role of WSK1 in resistance. Therefore, a similar strategy may be certainly explored for at
least three cloned genes (Yr5/Yrsp, Yr7 and Yr10) which are co-located in two important MQTL regions
mentioned in Table 4 as well the important CGs shown in Figures 4a and 4b. Similarly, techniques
involving CRISPR/Cas9 or base editing may also be employed for the above cloned Yr genes as well as
the CGs after the identification of causal SNPs involved in providing stripe rust resistance through CGAM
approach. Similar report involving CRISPR/Cas9 for fusarium head blight are available where successful
editing (using CRISPR-Cas9) of three genes, TaABCC6, TaNFXL1, and TansLTP9 showed enhanced
resistance (Cui et al. 2017).
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No. of
lines
(range of
population
size; no. of
studies)

Parameters Pathotypes used Methods
of QTL
analysis

I. Recombinant inbred lines (RILs)

59 (92-
288; 47)

AUDPC, IT, DS, SR,
NDVI, LP, RT

CYR23, CYR29, CYR30, CYR31, CYR32, CYR33,
CYR34, CYR34(V26), PSTv-3, PSTv-4, PSTv-8,  PSTv-
11, PSTv-14, PSTv-17, PST-25, PST-29,  PST-35, PSTv-
37, PSTv-40, PSTv-41, PSTv-43,  PSTv-45, PSTv-49,
PSTv-48, PSTv-51, PSTv-53,  PST-54, PST-V26, PST-
100, PST-102, PST-114,  PST-115, PST-116, PST-127,
AB50-2, AB7-2,  G2214, Mex96.11, Mex08.13, 
Mex14.191, MX-94.11, V26/CH42, V26/Gui22-9,
Su11-7, 6E22A+,  6E16A-, 6E22A-, V2, 46S102,
46S103,  46S119,  134E16A+, 134E16A+Yr17+,
134E16A+J+T+, 237E141, 46S119, 237E141,
237E141V17

ICIM,
CIM,
SMA,
LOCO-
LMM,
MIM

II. Doubled haploid (DH)

19 (78-
1020; 14)

IT, DS, SR,
IR,AUDPC,RT,NDVI,
LAI

PSTv-37, C-PST-2,  C-PST-30, 6E22A+,  106E139,
CYR29, CYR31, CYR32, CYR33, Shui4, Shui5, Hy8, 
Shui4,  Shui6,  Hy6, Hy7, 6E22A+,  71/93,  08/97, 
70/99, 6E22A-, Mex96.11,  110E143A+

ICIM,
CIM

III.  F3 lines

7 (136-
326; 7)

IT, AUDPC, DS, SN CYR29, CYR31, CYR32, CYR33, PST-Su5, PST-CH42,
PST-Hy8, PST-V26WYR76/10, WYR92/1,  WYR68-1,
PST-1, PST-21, Shui4, Shui5, Hy8,  Shui6,  Hy6, Hy7

ICIM,
SIM,
CIM

RIL: recombinant inbred line, DH: doubled haploid, AUDPC: area under disease progress curve, IT:
infection type, DS: disease severity, SR: stripe rust response, NDVI: normalized difference vegetation
index, LP: latency period, RT: reaction type, IR: infection response, LAI: leaf area infected, SN: number of
stripes per 10 cm2 leaf area, ICIM: inclusive composite interval mapping, CIM: composite interval
mapping, SMA: single marker analysis, LOCO-LMM: leave one chromosome out-linear mixed model, MIM:
multiple interval mapping, SIM: simple interval mapping

Table 2. A summary of the results of MQTL analysis for stripe rust resistance in wheat. (For details, see
Table S2)
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MQTL-
Chromosome

Interval
(cM/Mb)

Peak pos.
(cM)/ Mean
R2

QTL studies; QTLs
represented by MQTL (no.
of pathotypes

Traits associated
with the MQTL

MQTL1-1A 8.90-
10.10/6.34-
584.36

9.48/9.6 4; 4 (3) DS,IT

MQTL2-1A 62-
71.80/483.52-
510.46

66.84/8.2 2; 2 (3) DS

MQTL3-1B 45.31-
48.99/660.56-
687.79

47.15/27.6 2; 2 (7) DS,IT

MQTL4-1B 58.91-
60.37/394.03-
394.33

59.64/15.15 3; 3 (5) IT,SR,IR,DS,NDVI

MQTL5-1B 64.41-
64.71/398.15-
571.19

64.56/23.94 6; 6 (12) IT,DS,AUDPC,NDVI

MQTL6-1B 94.73-
95.23/189.34-
678.74

94.98/27.35 3; 3 (7) DS,IT

MQTL7-1B 148.29-
148.93/667.21-
667.60

148.61/9.8 3; 3 (9) DS

MQTL8-1B 186.28-
189/439.01-
670.78

187.64/34.2 2; 2 (4) DS,IT

MQTL9-1D 0.08-2.93/7.84-
423.26

1.5/5.8 2; 2 (3) DS

MQTL10-2A 5.72-
13.22/2.50-
36.85

9.47/45 5; 5 (16) DS,IT

MQTL11-2A 54.38-
56.40/18.29-
27.44

55.39/14.15 5; 5 (8) AUDPC,DS

MQTL12-2A 91.70-
92.20/695.18-
715.29

91.95/13.3 3; 3 (7) RT,DS

MQTL13-2A 105.29-
106.87/30.87-
32.11

106.08/41 2; 2 (5) DS,AUDPC,IT

MQTL14-2B 14.02-
14.92/598.57-
680.77

14.47/17.9 2; 2 (3) DS
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MQTL15-2B 20.49-
25.64/562.26-
673.71

23.06/11.25 3; 3 (4) DS

MQTL16-2B 50.79-52/0.48-
16.83

51.4/45.8 2; 2 (3) DS,IT

MQTL17-2B 64.70-
65.58/42.28-
771.17

65.14/14.46 4; 5 (6) DS

MQTL18-2B 74.16-
75.98/764.90-
771.17

75.07/29.70 10; 10 (23) DS,AUDPC,IT,SR,IR

MQTL19-2B 81.76-
84.56/554.45-
763.84

83.16/21.6 4; 4 (8) DS,AUDPC,IT

MQTL20-2B 96.40-
98.14/687.47-
777.14

97.27/40.26 5; 5 (15) DS,IT,NDVI

MQTL21-2B 180.74-
183.64/29.04-
672.64

182.19/16.8 2; 2 (3) DS,IT

MQTL22-2D 71.28-
72.56/20.76-
26.34

71.92/10.2 2; 2 (3) AUDPC,DS

MQTL23-2D 96.53-
100.20/45.88-
57.26

98.37/48.1 2; 2 (2) LP,IT,DS

MQTL24-2D 124.65-
130.6/27.92-
132.52

127.62/47.2 3; 3 (6) AUDPC,DS,IT

MQTL25-3A 1.20-
2.76/10.14-
11.38

1.98/8.05 3; 3 (2) LP,IT,DS

MQTL26-3A 58.46-
59.39/24.61-
32.15

58.92/32.6 3; 3 (5) DS,IT

MQTL27-3B 0.12-0.70/5.59-
6.75

0.41/24.5 2; 2 (6) DS,IT

MQTL28-3B 3.69-
4.67/710.98-
773.05

4.18/35.7 3; 3 (2) DS,IT

MQTL29-3B 21.40-
23.70/2.89-
7.61

22.55/11.1 3; 3 (4) SR,IR,DS,RT

MQTL30-3B 32.05- 32.49/15.98 6; 6 (12) DS,AUDPC,IT
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32.94/15.05-
130.42

MQTL31-3B 42.55-
43.64/804.80-
811.89

43.09/6.825 3; 3 (9) IT,DS,NDVI

MQTL32-3B 56.95-
59.82/77.49-
822.58

58.38/8 4; 4 (10) DS,AUDPC,IT

MQTL33-3B 90.92-
91.48/5.59-
739.14

91.2/13.675 4; 5 (9) DS,AUDPC,IT

MQTL34-3B 152.56-
156.68/778.29-
814.63

154.62/35 2; 2 (4) DS

MQTL35-3D 107.50-
111.81/47.78-
603.46

109.65/11.7 2; 2 (8) DS,AUDPC,IT

MQTL36-4A 52.94-
56.52/591.70-
596.31

54.73/11.5 2; 3 (1) SR,IR,DS

MQTL37-4A 74.39-
75.54/615.94-
617.99

74.97/7 2; 2 (3) DS,IT

MQTL38-4A 104.42-
105.41/667.35-
673.97

104.91/3.5 2; 2 (2) DS,IT

MQTL39-4A 136.30-
140.09/719.18-
731.70

138.19/12.85 3; 3 (2) DS,IT

MQTL40-4B 6.11-
17.61/23.46-
646.14

11.86/48.5 3; 3 (3) DS,AUDPC,IT

MQTL41-4B 42.45-
43.32/149.04-
626.78

42.88/14.275 5; 5 (7) DS,IT

MQTL42-4D 52.82-
63.82/456.36-
488.50

58.32/22 2; 2 (10) DS,AUDPC,IT

MQTL43-5A 65.73-
71.43/445.28-
458.20

68.58/6.4 2; 2 (3) AUDPC,DS

MQTL44-5A 88.10-
88.97/57.92-
595.90

88.53/6.4 2; 2 (10) SR,AUDPC,DS
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MQTL45-5A 126.69-
137.69/499.45-
698.64

132.19/3.9 2; 2 (NA) DS,AUDPC,IT

MQTL46-5B 126.99-
130.34/8.19-
12.33

128.66/10.3 4; 4 (9) AUDPC,DS

MQTL47-5B 164.88-
171.45/44.47-
479.39

168.16/13.5 3; 3 (10) DS,IT

MQTL48-5B 199.02-
199.81/695.66-
695.79

199.41/6.7 2; 2 (2) DS

MQTL49-6A 16.18-
20.28/14.35-
18.71

18.23/4.6 3; 3 (4) DS,IT

MQTL50-6A 30.25-
34.82/17.90-
24.07

32.53/10.2 3; 3 (3) LP,IT,DS,AUDPC

MQTL51-6A 87.35-
87.37/448.22-
550.64

87.36/1.98 2; 2 (13) DS,IT

MQTL52-6B 5.80-
10.99/398.97-
418.14

8.39/4.53 4; 4 (15) AUDPC,DS

MQTL53-6B 27.23-
28.58/680.08-
705.29

27.9/21.33 4; 4 (10) DS,AUDPC,IT

MQTL54-6B 35.59-
39.53/690.96-
694.13

37.56/4.99 2; 2 (2) AUDPC

MQTL55-6B 51.48-
52.95/708.02-
720.98

51.95/25 2; 2 (1) DS,IT

MQTL56-6B 58.08-
63.99/465.68-
508.61

61.03/25.85 3; 3 (6) DS,AUDPC,IT

MQTL57-7A 13.85-
15.33/3.78-
4.47

14.59/6.3 1; 2 (NA) DS

MQTL58-7B 57.60-
61.61/41.10-
421.07

59.6/13.5 2; 2 (2) DS,IT

MQTL59-7B 97.51-
101.40/704.28-
709.00

99.45/8.86 5; 5 (8) AUDPC,DS
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MQTL60-7B 113.52-
116.40/365.38-
732.65

113.96/5.7 2; 2 (2) DS

MQTL61-7B 136.61-
138.42/716.65-
717.00

137.51/11.3 3; 3 (4) IT,DS

NA: not available, AUDPC: area under disease progress curve, IT: infection type, DS: disease severity, SR:
stripe rust response, NDVI: normalized difference vegetation index, LP: latency period, RT: reaction type,
IR: infection response

Table 3. Number of differentially expressed CGs identified through in silico expression analysis. (For
details of all CGs see Tables S3 and S4).

No. of differentially
expressed CGs per
MQTL

MQTL with a specific number of expressed CGs, ranging from 1-8

(number of total MQTL)

1 MQTL17, MQTL30, MQTL32, MQTL34, MQTL38, MQTL47, MQTL48,
MQTL53, MQTL61 (9)

2 MQTL10, MQTL19, MQTL20, MQTL28, MQTL31, MQTL50, MQTL51 (7)

3 MQTL1, MQTL2, MQTL4, MQTL5, MQTL18, MQTL23, MQTL25, MQTL29,
MQTL43, MQTL46, MQTL56, MQTL59, MQTL60 (13)

4 MQTL15, MQTL36, MQTL37 (3)

5 MQTL13, MQTL16, MQTL24, MQTL42, MQTL55, MQTL57 (6)

6 MQTL12, MQTL14, MQTL27 (3)

7 MQTL3, MQTL7 (2)

8 MQTL44 (1)

Table 4. Important MQTLs on the basis of PVE, number of races, traits, initial QTLs and co-located Yr
genes

Important MQTLs (PVE%) Important features  

MQTL10-2A (45), MQTL20-2B(40.26), MQTL24-2D(47.20),
MQTL40-4B(48.50)

Pathogen races ≥ 3 and initial QTL ≥
3 and traits ≥ 2

MQTL18-2B (Yr72), MQTL19-2B (Yr43, Yr44, Yrsp), MQTL20-
2B (Yr72, Yr5, Yr7), MQTL24-2D (Yr16)

PVE>20%,  pathogen races, initial
QTL and trait ≥ 3, co-located Yr
genes

MQTL4-1B and MQTL5-1B, MQTL14-2B and MQTL15-2B,
MQTL17-2B and MQTL18-2B, MQTL53-6B and MQTL54-6B

MQTL hotspots (MQTLs falling in
same physical interval and cM≤15
cM)
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Figures

Figure 1

Distribution of QTLs based on (a) chromosome, (b) traits (c) LOD score and (d) phenotypic variance
explained (PVE%). DS: disease severity, IT: infection type, AUDPC: area under disease progress curve, SR:
stripe rust response, RT: reaction type, IR: infection response, NDVI: normalized difference vegetation
index, LP: latency period, SN = stripe number per 10 cm2 leaf area, LAI: leaf area infected.
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Figure 2

Number of markers on each of the 21 individual wheat chromosomes based on the consensus map used
for MQTL analysis. * = chromosome length (in cM)/marker density (markers/cM).
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Figure 3

Distribution of 61 MQTLs on 18 of 21 chromosomes (cM) of wheat. The dark blue blocks inside each
chromosome indicate MQTL regions and the light blue vertical bars on the right of each chromosomes
indicate marker intervals. Marker intervals of QTL hotspots are shown by the shaded bars in green,
orange, black and pink colors. Only the flanking markers most closely associated with MQTLs have been
shown in the figure. The Yr genes co-located with the MQTLs are indicated in red font.
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Figure 4

Important candidate genes: (a) histogram showing frequencies of CGs encoding proteins with domains
involved in disease resistance; (b) heatmap showing 29 important differentially expressed CGs. C: control,
S: stress, E1: experiment 1, E2: experiment 2, E3: experiment 3. S-T/TyPK; serine-threonine/tyrosine
protein kinase, S/TPK; serine/threonine protein kinase, LRR; leucine rich repeats. Genes marked with
asterix (*) had FC≥5 or ≤-5.
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