1 Pan, Y. et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 30, 3306-3309, doi:10.1007/s00330-020-06731-x (2020).
2 World Health Organization. Novel coronavirus (2019-nCoV). Situation report 87. Geneva, Switzerland: World Health Organization; 2020. . https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200416-sitrep-87-covid-19.pdf?sfvrsn=9523115a_2 (Published on April 16, 2020).
3 Fang, Y. et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 0, 200432, doi:10.1148/radiol.2020200432 (2020).
4 Xie, X. et al. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 0, 200343, doi:10.1148/radiol.2020200343 (2020).
5 Ai, T. et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 0, 200642, doi:10.1148/radiol.2020200642 (2020).
6 Wang, Y. et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology, 200843, doi:10.1148/radiol.2020200843 (2020).
7 Shi, H. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20, 425-434, doi:10.1016/S1473-3099(20)30086-4 (2020).
8 Pan, F. et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 295, 715-721, doi:10.1148/radiol.2020200370 (2020).
9 Zhao, W., Zhong, Z., Xie, X., Yu, Q. & Liu, J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol 214, 1072-1077, doi:10.2214/AJR.20.22976 (2020).
10 Wu, J. et al. Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features. Invest Radiol 55, 257-261, doi:10.1097/RLI.0000000000000670 (2020).
11 Li, K. et al. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Invest Radiol 55, 327-331, doi:10.1097/RLI.0000000000000672 (2020).
12 National Health Commission of the People’s Republic of China. Diagnosis and treatment protocols of pneumonia caused by a novel coronavirus (trial version 7). http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf (Published on March 3, 2020).
13 World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. https://apps.who.int/iris/rest/bitstreams/1272156/retrieve (Published on March 13, 2020).
14 Franquet, T. Imaging of pulmonary viral pneumonia. Radiology 260, 18-39, doi:10.1148/radiol.11092149 (2011).
15 Koo, H. J. et al. Radiographic and CT Features of Viral Pneumonia. Radiographics : a review publication of the Radiological Society of North America, Inc 38, 719-739, doi:10.1148/rg.2018170048 (2018).
16 Hansell, D. M. et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 246, 697-722, doi:10.1148/radiol.2462070712 (2008).
17 Chang, Y. C. et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: evaluation with thin-section CT. Radiology 236, 1067-1075, doi:10.1148/radiol.2363040958 (2005).
18 Ronneberger, O., Fischer, P. & Brox, T. in medical image computing and computer assisted intervention. 234-241.
19 Long, J., Shelhamer, E. & Darrell, T. in computer vision and pattern recognition. 3431-3440.
20 Rezatofighi, H. et al. in computer vision and pattern recognition. 658-666.
21 Kitsos, C. & Toulias, T. Hellinger Distance Between Generalized Normal Distributions. British Journal of Mathematics & Computer Science 21, 1-16 (2017).
22 Cohen, J. G. et al. Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. Eur Radiol 26, 4465-4474, doi:10.1007/s00330-016-4317-3 (2016).
23 Lin-Yu, T. & Li-Chin, H. in AFRICON 2009. 1-5.
24 Pu, J. et al. Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32, 452-462, doi:10.1016/j.compmedimag.2008.04.005 (2008).
25 Epidemiology Working Group for Ncip Epidemic Response, C. C. f. D. C. & Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 41, 145-151, doi:10.3760/cma.j.issn.0254-6450.2020.02.003 (2020).
26 Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382, 1708-1720, doi:10.1056/NEJMoa2002032 (2020).
27 Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, doi:10.1001/jama.2020.1585 (2020).