Amado IR, Vázquez JA, Pastrana L, Teixeira JA (2017) Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochem Eng J 117:181-187 doi:https://doi.org/10.1016/j.bej.2016.09.017
Beale D, Crosswell J, Karpe A, Metcalfe SS, Morrison P, Staley C, Ahmed W, Sadowsky M, Palombo E, Steven A (2018) Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach. Sci Total Environ 631:1328-1341 doi:https://doi.org/10.1016/j.scitotenv.2018.03.106
Beale DJ, Crosswell J, Karpe AV, Ahmed W, Williams M, Morrison PD, Metcalfe S, Staley C, Sadowsky MJ, Palombo EA, Steven ADL (2017) A multi-omics based ecological analysis of coastal marine sediments from Gladstone, in Australia's Central Queensland, and Heron Island, a nearby fringing platform reef. Sci Total Environ 609:842-853 doi:https://doi.org/10.1016/j.scitotenv.2017.07.184
Cao W, Cao W, Shen F, Luo J, Yin J, Qiao C, Yinhua W (2019a) Membrane-assisted β-poly(L-malic acid) production from bagasse hydrolysates by Aureobasidium pullulans ipe-1. Bioresour Technol 295:122260 doi:https://doi.org/10.1016/j.biortech.2019.122260
Cao W, Luo J, Qi B, Zhao J, Qiao C, Ding L, Su Y, Wan Y (2014) β-poly(l-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars. Eng Life Sci 14(2):180-189 doi:https://10.1002/elsc.201200189
Cao W, Wang Y, Shen F, Luo J, Yin J, Qiao C, Wan Y (2019b) Efficient β-poly(l-malic acid) production from Jerusalem artichoke by Aureobasidium pullulans ipe-1 immobilized in luffa sponge matrices. Bioresour Technol 288:121497 doi:https://doi.org/10.1016/j.biortech.2019.121497
Cavallo E, Nobile M, Cerrutti P, Foresti ML (2020) Exploring the production of citric acid with Yarrowia lipolytica using corn wet milling products as alternative low-cost fermentation media. Biochem Eng J 155:107463 doi:https://doi.org/10.1016/j.bej.2019.107463
Chi Z, Liu G-L, Liu C-G, Chi Z-M (2016) Poly(beta-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol 100(9):3841-3851 doi:https://doi.org/10.1007/s00253-016-7404-0
Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr Protoc Bioinf 68(1):e86 doi:https://doi.org/10.1002/cpbi.86
Culea M, Scrob S, Suvar S, Podea P, Haş I, Muste S (2015) Determination of Amino Acids in Corn Seed by Gas Chromatography–Mass Spectrometry. Anal Lett 48 doi:https://doi.org/10.1080/00032719.2014.930869
da Luz JA, Hans E, Frank D, Zeng A-P (2017) Analysis of intracellular metabolites of Corynebacterium glutamicum at high cell density with automated sampling and filtration and assessment of engineered enzymes for effective l-lysine production. Eng Life Sci 17(5):512-522 doi:https://doi.org/10.1002/elsc.201600163
Fukuwatari T, Morikawa Y, Hayakawa F, Sugimoto E, Shibata K (2001) Influence of Adenine-induced Renal Failure on Tryptophan-niacin Metabolism in Rats. Biosci, Biotechnol, Biochem 65(10):2154-2161 doi:https://doi.org/10.1271/bbb.65.2154
Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, Nguyen T, Ray J, Kuehl J, Arevalo B, Westenskow PD, Wang J, Arkin AP, Deutschbauer AM, Patti GJ, Siuzdak G (2014) Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses. Anal Chem 86(14):6931-6939 doi:https://doi.org/10.1021/ac500734c
He Y, Zhang Z, Ma P, Ji H, Lu H (2018) GC-MS Profiling of Leukemia Cells: An Optimized Extraction Protocol for Intracellular Metabolome. Anal Methods 10 doi:https://doi.org/10.1039/C7AY02578E
Jessica C, James F (2017) Purine Acquisition and Synthesis by Human Fungal Pathogens. Microorganisms 5(2):33 doi:https://doi.org/10.3390/microorganisms5020033
Kajiyama T, Kobayashi H, Taguchi T, Saito H, Kamatsu Y, Kataoka K, Tanaka J (2004) Synthesis of activated poly(α,β-malic acid) using N-hydroxysuccinimide and its gelation with collagen as biomaterials. Materials Science and Engineering: C 24:815-819 doi:https://doi.org/10.1016/j.msec.2004.08.023
Khan I, Nazir K, Wang Z-P, Liu G-L, Chi Z-M (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98(4):1539-1546 doi:https://doi.org/10.1007/s00253-013-5326-7
Klejdus B, Petrlova J, Potesil D, Adam V, Mikelová R, Vacek J, Kizek R, Kubáň V (2004) Simultaneous determination of water- and fat-soluble vitamins in pharmaceutical preparations by high-performance liquid chromatography coupled with diode array detection. Anal Chim Acta 520:57-67 doi:https://doi.org/10.1016/j.aca.2004.02.027
Lee BS, Maurer T, Kalbitzer HR, Holler E (1999) beta-Poly(L-malate) production by Physarum polycephalum - C-13 Nuclear magnetic resonance stwdies. Appl Microbiol Biotechnol 52(3):415-420 doi:https://doi.org/10.1007/s002530051540
Liu Y, Liu Q-S, Tay J-H (2005) Initial conditions-dependent growth kinetics in microbial batch culture. Process Biochem 40(1):155-160 doi:https://doi.org/10.1016/j.procbio.2003.11.052
Miller GAIL (1959) Use of Dinitrosalicylic Acid Reagent for Detection of Reducing Sugars. ANAL CHEM 31 doi:https://doi.org/10.1021/ac60147a030
Portilla-Arias J, García-Alvarez M, Martinez de Ilarduya A, Holler E, Muñoz S, Muñoz-Guerra S (2008) Synthesis, Degradability, and Drug Releasing Properties of Methyl Esters of Fungal Poly(β,L-malic acid). Macromol Biosci 8:540-50 doi:https://doi.org/10.1002/mabi.200700248
Vert M (1998) Chemical routes to poly(β-malic acid) and potential applications of this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polym Degrad Stabil 59(1):169-175 doi:https://doi.org/10.1016/S0141-3910(97)00158-4
Wang F, Hu J-H, Guo C, Liu C-Z (2014) Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresour Technol 166:602-605 doi:https://doi.org/10.1016/j.biortech.2014.05.068
Wang M, Toda K, Block A, Maeda H (2019) TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. J Biol Chem 294:jbc.RA118.006539 doi:https://doi.org/10.1074/jbc.RA118.006539
Yin H, Gao C, Ye K, Zhao T, Sun A, Qiao C (2019) Evaluation of surfactant effect on β-poly(L-malic acid) production by Aureobasidium pullulans. Biotechnol.Biotech.Equip. 33(1):954-966 doi:https://doi.org/10.1080/13102818.2019.1631718
Zeng W, Zhang B, Liu Q, Chen G, Liang Z (2019) Analysis of the L-malate biosynthesis pathway involved in poly(-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors. J Microbiol 57(4):281-287 doi:https://doi.org/10.1007/s12275-019-8424-0
Zheng J, Zhao W, Guo N, Lin F, Tian J, Wu L, Zhou H (2012) Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. Bioresour Technol 118:257-264 doi:https://doi.org/10.1016/j.biortech.2012.05.065
Zou X, Cheng C, Feng J, Song X, Lin M, Yang S-T (2019) Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol 39(3):408-421 doi:https://doi.org/10.1080/07388551.2019.1571008