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Abstract

The sequential recommendation task based on the multi-interest framework
aims to model multiple interests of users from different aspects to predict their
future interactions. However, researchers rarely consider the differences in fea-
tures between the interests generated by the model. In extreme cases, all interest
capsules have the same meaning, leading to the failure of modeling users with
multiple interests. To address this issue, we propose the High-level Preferences
as positive examples in Contrastive Learning for multi-interest Sequence Recom-
mendation framework (HPCL4SR), which uses contrastive learning to distinguish
differences in interests based on user item interaction information. In order to find
high-quality comparative examples, this paper introduces the category informa-
tion to construct a global graph, learning the association between categories for
high-level preference interest of users. Then, a multi-layer perceptron is used to
adaptively fuse the low-level preference interest features of the user’s items and
the high-level preference interest features of the categories. Finally, user multi-
interest contrastive samples are obtained through item sequence information and
corresponding categories, which are fed into contrastive learning to optimize
model parameters and generate multi-interest representations that are more in
line with the user sequence. In addition, when modeling the user’s item sequence
information, in order to increase the differentiation between item representations,
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the category of the item is used to supervise the learning process. Extensive exper-
iments on three real datasets demonstrate that our method outperforms existing
multi-interest recommendation models.

Keywords: Multi-interest learning, Sequential recommendation, Category
information, Contrastive learning

1 Introduction

The sequence recommendation (SR) [1, 2] task treats the interaction between users
and items as a dynamic sequence, capturing interests of user over time by modeling
sequence dependencies, and predicting future user interactions. Sequence recommen-
dation provides services in many aspects of daily life, such as e-commerce [3, 4], news
media [5, 6], video music [7], and social networks [8].

Hence, a variety of SR models, including both shallow and deep models, have been
proposed to improve the performance of sequential recommendations. Specifically,
Recurrent Neural Networks built on Gate Recurrent Units (GRU) have been employed
to model the long- and short-term point-wise sequential dependencies over user-item
interactions for next-item recommendations [9, 10]. Convolutional Neural Network
(CNN) [11], self-attention [12, 13] and Graph Neural Network [14, 15] models have been
incorporated into sequential recommendation systems for capturing more complex
sequential dependencies for further improving the performance.

When modeling user interests using the above structure, it is common to represent
user interests as low dimensional embeddings, which contradicts the fact that each user
may have multiple interests in reality [16]. Some studies [3, 17–19] propose capturing
multiple user interest vectors from different aspects instead of a single vector. These
methods explicitly generate users’ diverse interest representations from their behav-
ior sequences, breaking the representation bottleneck of using a single generic user
embedding. Although these solutions have achieved significant performance improve-
ments, they have not taken into account the differences between multiple interests.
In the worst-case scenario, all interest capsules have the same meaning and cannot
reflect the diversity of user interests. Recent work has further improved the model-
ing ability of multiple user interests through routing regularization [20]. However, as
shown in Figure 1, we calculated the similarity between multiple interest feature vec-
tors generated by REMI and HPCL4SR model on the Amazon-Clothing dataset, and
randomly selected 128 users for statistical analysis. We found that although REMI
models can also represent multiple interests of users, the representation of user inter-
ests has great similarity, and HPCL4SR significantly reduces the similarity between
multiple interests of users. In other words, our model can better represent multiple
different interests of users, increasing the diversity between interests.

Concretely, we propose a novel multi-interest sequence recommendation frame-
work (named HPCL4SR). HPCL4SR models users’ high-level preference interests by
constructing a global graph of categories, and feeding them as positive examples into
contrastive learning, optimizing multiple interest representations of users. Specifically,
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Fig. 1 The similarity between multiple interests of users is randomly selected from 128 users for
statistical purposes. The horizontal axis represents the range of similarity values, and the vertical
axis represents the percentage of similarity values in the corresponding interval.

based on the item sequence behavior of all users, the categories of items are constructed
as global graph information for high-level preference interest modeling. In this pro-
cess, in order to alleviate the imbalance problem in class interaction, attention weights
are used to reconstruct the adjacency matrix, and multi-hop aggregation is performed
on categories that are not directly connected to each other, reducing the sparsity of
the interaction matrix and increasing the correlation between classes. For the user’s
item sequence, the context information of the sequence is obtained by encoding the
position of the item and fusing attention weights. Then, capsule networks are used
to learn the item sequence information for low-level interest preference modeling. In
order to further enhance the vector representation ability of items, the network model
parameters are reverse optimized using the category information of items as labels.
Naturally, we will integrate high-level and low-level preference interest to generate
multiple interest features for users. Contrastive learning can maximize the similarity
between related samples and minimize the similarity between unrelated samples. This
paper draws inspiration from this idea but distinguishes multiple interests of users
through learning while not treating interests as completely unrelated and preserving
the hidden correlation information between interests. Therefore, we use low-level pref-
erence interest corresponding to the fused features of high-level preference interest
as positive examples, and other preference interest as negative examples to learn the
differences between user interests.

To summarize, the contributions of this paper are as follows:

• We propose a new novel interest sequence recommendation framework (HPCL4SR),
which solves the problem of existing methods not being able to represent the multiple
interests of users.

• We construct a global graph based on the category information of items to model
the user’s high-level preference interest. In addition, using it as a positive example
in contrastive learning is a relatively optimal approach.

• We conduct extensive experiments on three real-world datasets to verify the effec-
tiveness of the HPCL4SR. Further analysis has demonstrated that the proposed
method can more reasonably model the diversity of multiple interests of users.
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2 Related Work

This paper mainly uses category information as positive examples to solve the prob-
lem of differences among multiple interests in sequence recommendation through
contrastive learning. Therefore, this section briefly overviews representative efforts rel-
evant to our work from Multi-Interest Sequence Recommendation, Large Language
Models for Recommendation, and Contrastive Learning.

2.1 Multi-Interest Sequence Recommendation

In practical scenarios, users’ historical behavior has complex interaction patterns, and
modeling interests as a single vector using the above methods is not sufficient to
accurately reflect users’ true multi preference interest. Therefore, studying sequential
recommendation models based on multiple interests has become more important and
practical.

MIND [17] proposes a multi-interest extractor layer based on the capsule rout-
ing mechanism, which is applicable for clustering historical behaviors and extracting
diverse interests. SDM [21] uses a multi head attention mechanism in encoding behav-
ior sequences to capture multiple interests of the user. SIN [22] adaptively infers user
interaction interests from a large number of interest pools and outputs multiple interest
embeddings, and then uses the attention weights of items to generate multiple inter-
est embeddings that best match user characteristics. ComiRec [18] is based on multi
head attention based multi-interest routing to capture multiple interests of users and
introduce controllable factors to achieve diverse recommendations. PIMI [23] models
the periodic features of temporal information between user behaviors and the inter-
active features between sequence items, respectively, and uses their representations to
describe users’ multiple interests. DuoRec [24] designes contrastive regularization to
reshape the distribution of sequence representations and selectes sequences with the
same target item as hard positive samples, alleviating the problem of representation
degradation in multi-interest sequence recommendation tasks. UMI [25] believes that
the interests of a user are not only reflected in their historical behavior, but also inher-
ently regulated by the profile information. Therefore, the user profiles are introduced
as a source of multi-interest features for users. REMI [20] first mitigates the prob-
lem of easy negatives with an ideal interest-aware hard negative sampling distribution
and an approximation method to achieve the goal at a negligible computational cost.
REMI also incorporates a novel routing regularization to avoid routing collapse and
further improve the modeling capacity of multi-interest models.

2.2 Large Language Models for Recommendation

Recent years have witnessed the wide adoption of large language models (LLMs) in
different fields, especially natural language processing and computer vision. Such a
trend can also be observed in recommendation systems (RS). However, due to the
huge number of items in real-world systems, traditional RS usually takes the two-stage
filtering paradigm of the matching stage (It aims to extract a small subset of items from
the extensive corpus with lightweight models, ensuring low computational costs.) and
ranking (It utilities more sophisticated models to rerank the retrieved items), advanced
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recommendation algorithms are not applied to all items, but only a few hundred
of items. [26]. Therefore, existing large language models (LLMs) (e.g., ChatGPT)
methods [27–29] focus on the sorting stage that utilities more Sophisticated models to
rerank the retrieved items. We focus on improving the effectiveness of the matching
stage, which serves as a crucial foundation for the recommendation systems. To our
knowledge, there is currently no research on the application of the LLMs methods in
the matching stage. But, in the experimental section, we will attempt to analyze the
performance of ChatGPT (ChatGPT 3.5-Turbo-1106 & ChatGPT 4-Turbo) in the
matching stage.

2.3 Contrastive Learning

Contrastive learning has been widely applied in the field of computer vision. In con-
trastive learning, methods such as CPC [30, 31] and DIM [32] feed the encoding of
the same image at different scales as positive samples, while MoCo [33], SimSiam [34],
CaCo [35] and other methods use multiple image enhancements as positive samples for
contrastive learning. In the field of text information processing, some studies use dif-
ferent data-transforming methods or strategies, such as dropout and mask, to change
the parameters and structure of the encoder to improve the model’s ability to perform
sentence representation [36–38]. The introduction of contrastive learning in sequence
recommendation systems mainly solves the problems of sparse user-item interaction
and noise. Scholars improve recommendation performance by designing auxiliary tasks
or loss functions [39]. CBiT [40] combines the cloze task mask and the dropout mask
to generate high-quality positive samples and perform multi-pair contrastive learning.
ICLRec [41] models user intentions through clustering of item sequences, maximiz-
ing the agreement between a view of the sequence and its corresponding intentions
to improve recommendation performance. DCRec [39] employs contrastive learning
to learn consistent perception enhancement representations from sequential pattern
encoding and global collaborative relationship modeling.

Although researchers are trying to describe users’ various interests in different
ways, they rarely consider the issue of diversity in interests. In the worst case, all
interest capsules have the same meaning, or all items may activate the same inter-
est capsule, which makes it difficult to express multiple interests. ComiRec [18] uses
controllable factors to recommend diverse user interests, but the paper also mentions
that increasing diversity can lead to a decrease in recall rates. REMI [20] observe
that the interests tend to over-focus on single items in the behavior sequence, which
impacts the expressiveness of multi-interest representations. They introduce the vari-
ance regularizer on the routing weights to eliminate sparsity and effectively address
the problem. MIRACLE [19] forces interest capsules to satisfy orthogonality, which
clearly provides each user with K unrelated interests. However, such K interests can
cause unnecessary item recommendations for users, which goes against our common
sense that there may be implicit correlations between interests. Therefore, it is neces-
sary and meaningful for multi-interest sequence recommendations to preserve implicit
correlation information while ensuring the difference between interests. We attempt
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to solve the above problem through contrastive learning, which distinguishes the dif-
ferences in interests through self-supervised learning of data features and maintains
the correlation information between the representations of interests.

3 Problem Formulation

Assume U denotes a set of users, X denotes a set of items, and C is a set of categories.
Each item xi has its corresponding category ci. Given a user u ∈ U , we have his/her
chronological item interaction sequence Su

x = {xu
1 , x

u
2 , . . . , x

u
N} and a corresponding

category interaction sequence Su
c = {cu1 , c

u
2 , . . . , c

u
N}, where xu

t ∈ X and cut ∈ C repre-
sents the item and its category that user u interacted with at time step t, respectively.
N is the maximum sequence length. The candidate matching stage in RS aims to effi-
ciently retrieve a subset of items the user is likely to interact with from the huge item
corpus X.

4 Method

In this section, we propose the High-level Preferences as positive examples
in Contrastive Learning for multi-interest Sequence Recommendation framework
(HPCL4SR), as shown in Figure 2. There are three parts: high-level preference interest
extraction module, low-level preference interest extraction module, and multi-interest
contrastive learning module.

Fig. 2 An Overview of Multi-interest Sequential Recommendation (HPCL4SR) framework.
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Fig. 3 Sparsity analysis on Amazon-Clothing and Tmall-Buy datasets. The horizontal axis repre-
sents 1000 randomly selected items in the dataset, and the vertical axis represents the number of
times items interact in the dataset.

4.1 High-level preference interest extraction module

Experiments in numerous fields of contrastive learning applications have shown that
selecting good positive and negative samples is the key to the effectiveness of con-
trastive learning. In sequence recommendation tasks, most models use methods such
as pruning sequences, dropout, and mask to construct contrastive samples. As shown
in Figure 3, the user’s historical interaction is extremely sparse, and such operations
will not fully represent the user’s interests and may even result in errors. A large
amount of excellent work has proven that taking side information (user profile, cate-
gory, brand, description, price, position, rating, etc.) into recommendation sequences
can better capture user preference information [25, 42, 43]. In real scenarios, item cat-
egory information is the easiest to obtain and is a high-level conceptual representation
of the item. Therefore, in this paper, we will use item category information as a con-
trastive sample. In fact, even though the number of categories is much smaller than
the number of items, the interaction between categories is still sparse. So the method
proposed in this paper does not directly take the category sequence corresponding to
the item as the user’s high-level preference, but instead models the user’s high-level
preference interest by constructing a category global graph, learning more preference
interest correlation information from the user.

For user Category sequences Su
c = {cu1 , c

u
2 , . . . , c

u
N}, we calculate the number of

interactions between cui and cuj . And a category global graph (A1) is constructed based

on the historical interaction category sequence {S1
c , S

2
c , . . . , S

|U |
c } of all users, where

the initial weight of the edges between the two nodes is the total number of interactions
between the two categories aij .

However, such a category global graph (A1) still has two obvious problems: (1) By
analyzing the interaction frequency of categories, it was found that due to the signif-
icant difference in the number of items contained in different categories, there is an
imbalance in the interaction between categories, which will lead to recommendation
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results biased towards items in popular categories. (2) The method of constructing a
graph through sequential interaction only considers the relationship between adjacent
item categories, while ignoring the interaction between non directly adjacent cate-
gories. In fact, certain categories that are not adjacent often appear together in the
user’s sequence.

In order to alleviate the imbalance of category interaction and avoid the impact of
popular items on recommendation results, the adjacency matrix is redefined as follows:

A2(i, j) =
aij

√

|ai + 1||aj + 1|
(1)

where aij denotes the number of interactions with category ci and category cj , ai are
the number of interactions category ci with others, and aj is similar to ai.

To learn the correlation between non-adjacent categories, we adapt the Multi-hop
Attention Diffusion [44] method to aggregate information further. The attention score
of multi-hop neighbors is calculated by:

A =

∞
∑

i=0

θiA
i
2 (2)

where
∑∞

i=0 θi = 1(θi > 0), θi is the attention decay factor, θi > θi+1, i is the power of
the adjacency matrix A2 which represents the farthest length of the diffusion relation
path and also represents the farthest length of the graph diffusion relation path.

Assume H(0) ∈ R|C|×d denotes the initial embedding matrix of the category, and
d represents the dimension of the node embedding. We use GCN to aggregate the
features of neighbors as a new representation of the target node, and introduce residual
connections in this process. The message-passing process is as follows:

H(l) = W (AH(l−1)) +H(l−1) (3)

where l is the number of GCN layers, W is trainable parameter matrices.
The final graph representation Ĥ ∈ R|C|×d is obtained by:

Ĥ = −
1

L

L
∑

i=0

H(l) (4)

Based on the category information of user historical interactions, category node
embedding representation Hg is selected from the graph:

Hg = selecte(Ĥ)[n, :], n = 1, . . . , N (5)

where, Hg ∈ RN×d, N is the sequence length of user interaction.
Finally, the user’s high-level preference interest vector Qu calculated as follows:

Qu = WHg (6)

where, Qu ∈ R
K×d, K is the number of preference interests.
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4.2 Low-level preference interest extraction module

In sequence recommendation, positional information can explicitly reflect contextual
information between items. Therefore, in this paper, the attention mechanism is first
used to encode sequence information:

Xi = Eemb
i + E

pos
i (7)

where Eemb
i , E

pos
i is the embedding of the i-th item, and the positional embed-

ding, respectively, Xi is an item embedding representation with sequence position
information.

αij =
exp(XiX

T
j )

∑N
n=1 exp(XiXT

n )
(8)

where αij is the attention weight of item j to item i, We use neural networks to make
each item in the sequence perceive the entire contextual information.

Xi = W (Xi +

N
∑

j=1

αijXj) (9)

In multi-interest recommendation tasks, the effectiveness of Capsule Network [45]
has been verified, so we directly draw on the above method to extract user low-level
preference interests Pu ∈ R

K×d.

Pu = CapsNet([X1, X2, . . . , XN ]) (10)

In addition, in order to enable the network model to learn the differences between
items, category can be used as a good supervised label. Specifically, we use the first
layer information of the Capsule Network as the feature Z = {z1, z2, . . . , zN} of the
item, and use the fully connected layer as the classifier. The output result Ẑ ∈ R

N×d

can be represented as follows:

Ẑ = softmax(WZ + b) (11)

Category Sc = {c1, c2, . . . , cN} is used as a label, and the cross entropy loss function
calculates the loss of the classifier:

Lclass = −

N
∑

n=1

(cn log ẑn + (1− cn) log (1− ẑn)) (12)

4.3 Multi-interest contrastive learning module

The differentiation processing between interests is the key to achieving multi-interest
sequence recommendations. Existing methods rarely consider the differences between
interest capsules, resulting in user sequence interest capsules having the same mean-
ing in extreme cases. This paper uses a contrastive learning approach to distinguish
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between interests while preserving their implicit correlation information. The sequence
information is used to represent the true interests of the user in an adaptive fusion.

We assume that the high-level preference interests of the category sequence (Qu)
are consistent with the low-level preference interests of the item sequence (Pu). We
use fully connected layers to adaptively fuse them, and obtain the final multi-interest
representation (Mu) of the user. Finally, Pu and Mu are selected as two views for
contrastive learning.

Mu = W (cat[Qu, Pu]) (13)

where Mu ∈ R
K×d

Most existing contrastive learning methods are based on InfoNCE:

Lcl = − log
e(hi·hi∗/τ)

e(hi·hi∗/τ) +
∑

j ̸=i∗ e
(hi·hj/τ)

(14)

where τ is a temperature hyperparameter, (hi , hi∗) is positive pair, (hi , hj ̸=i∗) is
negative pair.

However, due to a lack of decision margin, a small perturbation around the deci-
sion boundary may lead to an incorrect decision. To overcome the problem, inspired
by ArcFace [46], we propose a new training objective for multi-interest contrastive
learning by adding an additive angular margin m between positive pair ei and ei∗ .
Therefore, equation (14) can be rewritten as follows:

Lcl = − log
ecos(θi,i∗+m)/τ

ecos(θi,i∗+m)/τ +
∑

j ̸=i∗ e
cos(θi,j)/τ

(15)

where m is additive angular margin.

θi,j = arccos

(

e⊤i ej

∥ei∥ ∗ ∥ej∥

)

(16)

To some extent, more negative samples can lead to better performance in con-
trastive learning. In this paper, we set {i ∈ M i

u, i
∗ ∈ P i

u} or {i ∈ P i
u, i

∗ ∈ M i
u},

j ∈ {Pu ∪Mu}. In this way, for a sequence, any i will have (2K−2) negative samples,
and the contrastive loss of multi-interest sequences recommended function is:

LmulCL = −
∑

i

log
ecos(θi,i∗+m)/τ
∑

j ̸=i e
cos(θi,j)/τ

(17)

4.4 Model Training

For the given target item embedding y, we use an argmax operator to obtain the
interest that is the most related to the target item through equation (18):

mu = Mu

[

:, argmax
(

M⊤
u y

)]

(18)

The loss function between the predicted results of the model and the given target
is :
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Lrec = − log
exp(muy

T )
∑

j∈X′ exp(muy
T
j )

(19)

where X
′

is the item obtained through sampling softmax objective [47].
The joint loss is defined as a linear combination of these three losses :

L = Lrec + λ1Lclass + λ2LmulCL (20)

where λ1 and λ2 are the hyperparameters to control the impact of different losses.

5 Experiments

5.1 Experimental Settings

Dataset. We consider three real-world e-commerce datasets. The specific statistics
are shown in Table 1.

Table 1 Statistics of the three datasets.

Datasets Amazon-Clothing Tmall-Buy Tafeng

Users 129,827 356,795 17,590
Items 293,446 311,746 10,176
Categories 499 1,442 1,297
Interactions 3,046,500 35,012,248 674,685
Sparsity 99.99% 99.97% 99.62%

• Amazon-Clothing1. The Amazon Review Dataset is a classic data set commonly
used in recommender systems, which records product reviews. We use the Clothing
Shoes and Jewelry subset in our experiment.

• Tmall-Buy2. The Tmall dataset is collected by Tmall.com, which is an online
shopping website. It contains users’ shopping history for about six months. We
retain users’ purchase behaviors as a subset for experiments.

• Tafeng3. The Tafeng dataset collects user transaction behavior data from November
2000 to February 2001. The dataset covers everything from food and office supplies
to furniture.

Baselines. We compare our model with some sequential recommendation meth-
ods.

• GRU4Rec [48]. GRU4Rec is a representative recommendation model that first
introduces recurrent neural networks into sequence recommendation.

• MIND [16]. MIND is one of the first frameworks to model users’ multiple interests
based on dynamic routing algorithms.

1https://nijianmo.github.io/amazon/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
3https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
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• ComiRec [18]. ComiRec is a representative baseline for the multi-interest recom-
mendation. It uses two methods to represent user interests: attention mechanism
and dynamic routing.

• PIMI [23]. Considering the limitations of ComiRec, PIMI introduces the study of
periodicity and interactivity of item sequences, capturing both global and local item
features.

• REMI [20]. REMI consists of an Interest-aware Hard Negative mining strategy and
a Routing Regularization method to solve the issues of increased easy negatives and
routing collapse during the training process.

Evaluation Metrics. We use three common accuracy metrics for perfor-
mance evaluation: Recall, Normalized Discounted Cumulative Gain(NDCG), and Hit
Rate(HR). Metrics computation relies on the top 20/50 recommended candidates (e.g.,
Recall@20). For the three metrics, higher scores demonstrate better recommendation
performance.

Implement Details. For each dataset, we partition all users into the training,
validation, and test sets with a ratio of 8:1:1. The maximum sequence length of the
Amazon-Clothing and Tafeng datasets is set to 30, and the maximum sequence length
of Tmall-Buy dataset is 20. The user sequence whose length exceeds the maximum
value is truncated, and the user sequence whose length is insufficient is filled with 0.
We filter users/items with fewer than 12 interactions to guarantee the length of recent
sequences. All parameters are set as follows if not otherwise noted: following[20], the
learning rate is 0.001, the mini-batch size is 128, the embedding size is set to 64, the
interest number K = 4, and Adam is used as a gradient optimizer. We analyze in detail
the effects of other hyperparameters in 5.4 and ultimately determined their values as
λ1 = 0.1, λ2 = 1, τ = 0.05, m = 10, respectively.

5.2 Performance Evaluation

To demonstrate the recommendation performance of our model HPCL4SR, we com-
pare it with other multi-interest models. The experimental results of three datasets
are presented in Table 2. We have the following observations.

First, although the three datasets have different characteristics, HPCL4SR con-
sistently yields the best performance, indicating the robustness of our model. By
modeling users’ diverse interests through contrastive learning, even for the Tafeng
dataset with limited user interests, we can still fully use the limited information to
capture user interests and make optimal recommendations. It proves the effectiveness
of finer-grained characterization of user persona contained in a user sequence. Over-
all, we model the high-level preference interests and low-level preference interests of
user sequences, and distinguish the feature representations between interests through
contrastive learning, which can more finely characterize users. Considering the mean-
ing behind different user behaviors, that is, the real users of each interaction project,
we mine and utilize the information in the user behavior sequence to understand
users’ interests from the perspective of project usage, which helps to model users more
accurately.
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Table 2 Model comparison results on three benchmark datasets (%). The bold and underlined
numbers represent the best and second-best results, respectively.

Datasets Metric GRU4Rec MIND ComiRec PIMI UMI REMI HPCL4SR Improv.

Amazon-
Clothing

R@20 10.3255 11.3067 11.1502 11.1995 11.2153 11.7424 12.8135 +9.12%
R@50 12.6394 12.8059 13.1319 12.6933 12.4681 12.7248 13.9153 +5.97%

NDCG@20 16.9736 13.7823 14.7854 14.6619 14.4982 15.5834 18.4271 +8.56%
NDCG@50 17.1947 14.2741 15.2312 15.1364 16.0716 18.0857 19.2631 +6.51%
HR@20 22.1212 20.4652 21.2663 21.8285 21.8462 22.4385 23.4534 +4.52%
HR@50 25.6489 23.4383 23.9775 24.5860 24.7258 25.8605 29.5961 +6.71%

Tmall-
Buy

R@20 6.9243 7.6904 8.4168 9.1229 9.1502 9.2118 9.8637 +7.08%
R@50 9.3749 10.6973 10.8794 11.9598 11.8167 12.4578 13.6973 +9.95%

NDCG@20 12.1815 12.3772 13.9452 14.6609 14.5167 15.8735 17.1652 +8.14%
NDCG@50 13.1349 13.7061 14.9777 15.9583 15.7438 16.2381 18.0591 +11.21%
HR@20 19.8836 22.0929 23.4026 24.5271 24.8307 25.8650 27.9468 +8.05%
HR@50 25.5854 29.4087 29.2764 31.2211 32.1578 32.3058 33.6805 +4.26%

Tafeng

R@20 5.6437 4.6833 5.5811 9.9490 9.9618 9.9304 10.3804 +4.20%
R@50 9.9867 8.1007 9.6806 15.4121 15.8671 16.3140 17.1385 +5.05%

NDCG@20 12.5107 12.1007 12.9474 21.3443 21.4849 21.7319 22.8653 +5.22%
NDCG@50 15.3459 14.7493 15.5079 23.4896 22.6093 24.6194 26.1562 +6.24%
HR@20 29.5696 25.0142 29.9034 45.0256 45.7518 46.4991 48.3451 +2.88%
HR@50 44.6076 38.1467 43.7180 58.4423 58.5316 59.8437 62.2735 +4.06%

Next, judging from the performance of sequential recommendation models, The
performance of PIMI, UMI, and HPCL4SR models on three datasets is superior to
most models, such as ComiRec and MIND, indicating that adding side information is
beneficial for user modeling.

Finally, on the Tafeng dataset with a small number of items (10,176), models that
use a single vector to model user interests (GRU4Rec) outperform simple multi-vector
models (MIND and ComiRec). However, the model performance is still worse than the
PIMI model using time information and the HPCL4SR model the category information
we proposed. The multi-interests model is better than the single interests model on the
Amazon-Clothing and Tmall-Buy datasets with many users and items. In addition, the
results of the REMI model indicate that selecting high-quality negative samples can
bring surprises, but this requires a significant time cost in screening negative samples.
Overall, modeling users’ interests from different aspects are better than using only one
vector to model users’ overall interests. Because the multi-interest models can provide
users with more mixed recommendation results, thereby improving the accuracy of
recommendations.

5.3 Ablation Study

In this section, we select the Amazon Clothing dataset to analyze the effectiveness
of our proposed method (HPCL4SR). Firstly, we refer to the method in HPCL4SR
that only uses item information as the base and the method that uses category as
the supervised signal as the base(w Lclass). Then, After constructing a global graph
based on category to obtain user high-level preference interest information, we fur-
ther attempted three methods of integrating high-level preference interest (Qu) and
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low-level preference interests (Pu): addition, multiplication, and adaptive fusion, rep-
resented as HPCL4SR(w ’+’), HPCL4SR(w ’*’), HPCL4SR, respectively. Finally,
we analyze and consider the contribution of differences in interests to multi-interest
sequence recommendation. We not only attempt to replace the multi-interest con-
trastive learning module with Capsule Regulation [19], denoted as HPCL4SR(w CR),
but also analyze the impact of the lack of additive angle margin m, denoted as
HPCL4SR(w/o m). The experimental results on three data sets are shown in Table 3.
From the table, it can be seen that category, as a supervisory signal, improves cer-
tain performance by optimizing the representation of items. When combined with Qu,
the performance improvement is significant, especially when using the MLP method.
The experiment confirms that the difference between interests is the main reason for
affecting the performance of sequence recommendation, and the contrastive learning
method shows greater advantages than the Capsule Regularization form due to its
ability to distinguish the differences between interests while preserving the correlation
information between them.

Table 3 Ablation study on Amazon-Clothing dataset.

Amazon-Clothing

@20 @50

Recall NDCG Hit Rate Recall NDCG Hit Rate

base 11.4263 14.8396 20.4735 12.8437 15.3571 24.6158
base(w Lclass) 11.5174 14.9467 20.9148 12.9166 15.7637 25.1097
HPCL4SR(w ’+’) 11.8457 15.3918 21.5617 13.2094 16.8463 25.9168
HPCL4SR(w ’*’) 11.8704 15.3493 21.6869 13.2275 17.1951 26.2942
HPCL4SR(w CR) 12.2387 16.0857 22.7928 13.5469 18.3674 27.0805
HPCL4SR(w/o m) 12.4064 17.6431 23.0348 13.6918 18.8762 27.1506
HPCL4SR 12.8135 18.4271 23.4534 13.9153 19.2631 27.5961

5.4 Hyper-parameter Study

λ1 and λ2 are hyperparameters of the joint loss function during the training pro-
cess, which directly affect the optimization of model parameters. We selected λ1 ∈
{0.01, 0.05, 0.1, 0.5, 1}, λ2 ∈ {0.01, 0.1, 1, 5, 10}, and conducted experiments on three
datasets using NDCG@50 as the evaluation metric. As shown in the left side of Figure
4, we can see that the best performance is achieved when λ1 = 0.1. This matches our
intuition since using category as the supervisory signal for items is effective, but exces-
sive weight can cause recommendation loss and reduce model performance. As shown
in the right side of Figure 4, an increase in the weight λ2 of the comparison loss can
help distinguish the differences between multiple interests, but if λ2 is too large, it
can also mask the recommendation loss and reduce the model’s recommendation task
ability. Therefore, a reasonable value λ2 = 1 is needed.

The temperature τ and angular margin m in the multi-interest contrastive learning
module affect its effectiveness. For τ , we carry out an experiment with τ varying from
0.01 to 0.1 with an interval of 0.01. The results are shown in the left side of Figure 5.
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Fig. 4 Study on balance parameter λ1 and λ2. We show NDCG@50 on three datasets.

Fig. 5 Study on balance parameter τ and m. We show NDCG@50 on three datasets.

On Amazon-Clothing and Tmall-Buy datasets, the performance is best when τ = 0.05,
and on the Tafeng dataset, the result is best when τ = 0.03 (however, the performance
difference between it and τ = 0.05 is small). Taking all factors into consideration, we
chose τ = 0.05 for all our experiments. For m, as shown in the right side of Figure 5,
we selected m ∈ {0, 5, 10, 15, 20}. Although the performance is best on the Tmall-Buy
dataset when m = 15, it is best on the other two datasets when m = 10. Therefore,
we set m = 10 during the experiment.

5.5 Case Study

We analyze the proposed model’s effectiveness in solving the multi-interest recom-
mendation problem by showing the model’s recommendation results. Because the
Amazon-Clothing dataset contains detailed information such as items and item cate-
gories, while the Tmall-Buy only gives the data number, we use the item to represent
the recommendation results of the datasets.
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Figure 6 shows the recommendation results of the proposed HPCL4SR model for
a certain user behavior sequence. It can be seen from the figure that the user is more
interested in baby boy suits and boy socks, but the PIMI model only recommends
items related to men and women and does not learn the interests of the two demand
sides of baby boys and boys. The HPCL4SR models both high-level and low-level
preference interests of users, and diversifies the interests to recommend the ”baby
suit” and ”socks” that users want. Moreover, in the list of recommended items given
by the HPCL4SR model, the ”baby suit” item that the user actually interacts with
ranks higher. That is, the ranking quality of the list of recommended items provided
by the model is higher. In addition, the HPCL4SR model not only learns the interests
of boys but also captures the preferences of boys, and at the same time, learns other
categories such as socks and shoes.

User
Interaction
Sequence

Recomme
nded

Items of 
PIMI

Label

Recomm 
ended 

Items of 
HPCL4SR

Fig. 6 A case study on Amazon-Clothing dataset.

Table 4 shows the Top-20 recommendation results of the PIMI and HPCL4SR
models on the randomly selected user behavior numbered 68079 in the Tmall-Buy
dataset. As can be seen from the table, the HPCL4SR model correctly predicts the
items that two users interact with (the number is bold). Compared with the PIMI
model, item ID 31744 in the recommendation result list given by the HPCL4SR model
ranks higher. Therefore, the HPCL4SR model exceeds the performance of the PIMI
model.
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Table 4 A case study on Tmall-Buy dataset.

Item ID
User

Interaction
Sequence

96 → 2231 → 7885 → 109 → 1373 → 1373 → 9748 → 9956

Label 674 → 31477 → 4067

Recommended
Items of PIMI

15104, 9956, 23972, 518, 4039, 14666, 109, 7885, 5421, 4877, 208, 206, 2931,
9748, 4820, 10614, 789, 31477, 7600, 797

Recommended
Items of HPCL4SR

12097, 4067, 9956, 134, 15991, 28140, 4877, 19128, 7600, 31477, 7184,
9393, 9748, 34005, 10614, 696, 2071, 4820, 4948, 1021

Table 5 The result of recommendation compared with ChatGPT

Prompt model Amazon-Clothing

You are a recommender system now:
Input: Here is the purchase Item

history of a user: {User History item}.
Based on this history, please

recommend the user prefer items next.
Answer a sequence must contain 50 Item.

ChatGPT 3.5-Turbo-1106 HR@50 = 4.3

ChatGPT 4-Turbo HR@50 = 7.0

You are a recommender system now:
Input: Here is the purchase Item

history of a user: {User History item}.
Based on this history, please

recommend the user prefer items from
Candidate Item. Answer a selected
sequence must contain 20 Item.

ChatGPT 3.5-Turbo-1106 HR@50 = 17.0

ChatGPT 4-Turbo HR@50 = 23.0

/ HPCL4SR HR@50 = 29.6

5.6 vs. ChatGPT

In order to compare the recommendation ability of HPCL4SR and large-scale lan-
guage models in the matching stage, we use two prompt methods and have ChatGPT
(ChatGPT 3.5-Turbo-1106 & ChatGPT 4-Turbo) provide recommended items based
on user interaction information. The first method is to input user historical interaction
information and prompt ChatGP to generate 50 items of interest to the user. The sec-
ond method is to input user interaction history information and input the user’s next
real item as well as randomly selected items, prompting ChatGPT to select items that
the user may be interested in from the existing 50 items based on interaction history.
The experimental details and results are shown in the table 5. It can be seen that The
performance of ChatGPT 4-Turbo is better than that of ChatGPT 3.5-Turbo-1106,
but the results of both far lower than our model and even many existing models. This
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indicates that the current general LLMs still cannot be well applied to specific task
domains [26, 49].

6 Conclusion

In this paper, we propose a novel framework named HPCL4SR for multi-interest
sequence recommendation. In order to achieve the representation of multiple user
interests, HPCL4SR uses contrastive learning methods to differentiate interests, while
preserving their correlation information, which is more in line with user behavior in
real scenarios. We verify the effectiveness of the proposed method through experi-
ments on three datasets. Additionally, we compare the recommendation ability of our
approach in a task-specific domain with LLMs (ChatGPT 3.5-Turbo-1106 & ChatGPT
4-Turbo), further showcasing the superiority of HPCL4SR in multi-interest sequen-
tial recommendation. In the future, we consider enhancing the interpretability of
recommendation tasks based on multi-interest recommendation models.
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