1 Miles, B. N., Ivanov, A. P., Wilson, K. A., Doğan, F., Japrung, D. & Edel, J. B. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 15–28 (2013).
2 O’Hern, S. C., Jang, D., Bose, S., Idrobo, J.-C., Song, Y., Laoui, T., Kong, J. & Karnik, R. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).
3 Amadei, C. A., Montessori, A., Kadow, J. P., Succi, S. & Vecitis, C. D. Role of oxygen functionalities in graphene oxide architectural laminate subnanometer spacing and water transport. Environ. Sci. Technol. 51, 4280–4288 (2017).
4 Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V. & Liu, J. Enhanced CO2/N2 separation by porous reduced graphene oxide/pebax mixed matrix membranes. J. Membr. Sci. 520, 860–868 (2016).
5 Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).
6 Walker, M. I., Ubych, K., Saraswat, V., Chalklen, E. A., Braeuninger-Weimer, P., Caneva, S., Weatherup, R. S., Hofmann, S. & Keyser, U. F. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).
7 Caglar, M., Silkina, I., Brown, B. T., Thorneywork, A. L., Burton, O. J., Babenko, V., Gilbert, S. M., Zettl, A., Hofmann, S. & Keyser, U. F. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 14, 2729–2738 (2020).
8 Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N. R., Kis, A. & Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).
9 Zhang, Y., He, Y., Tsutsui, M., Miao, X. S. & Taniguchi, M. Short channel effects on electrokinetic energy conversion in solid-state nanopores. Sci. Rep. 7, 46661/1-14 (2017).
10 Wen, C. & Zhang, S.-L. “Fundamentals and potentials of solid-state nanopores: A review”, J. Phys. D 54, 023001/1-34 (2020).
11 Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003).
12 Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G. & Bashir, R, DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett. 4, 1551–1556 (2004).
13 Deng, T., Wang, Y., Chen, Q., Chen, H. & Liu, Z. Massive fabrication of silicon nanopore arrays with tunable shapes. Appl. Surf. Sci. 390, 681–688 (2016).
14 Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M. D., Venta, K., Luo, Z., Johnson, A. T. C. & Drndić, M. DNA Translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).
15 Feng, J., Liu, K., Bulushev, R. D., Khlybov, S., Dumcenco, D., Kis, A. & Radenovic, A. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).
16 Bafna, J. A. & Soni, G. V. Fabrication of low noise borosilicate glass nanopores for single molecule sensing. Ed. M. Wanunu, PLoS ONE 11, e0157399 (2016).
17 Arjmandi-Tash, H., Bellunato, A., Wen, C., Olsthoor, R., Scheicher, R., Zhang, S.-L. & Schneider, G.F. Zero-depth interfacial nanopore capillaries. Adv. Mater. 30, 1703602 (2018).
18 Choi, J., Lee, C. C. & Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 5, 12/1-10 (2019).
19 Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J. & Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).
20 Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).
21 Goto, Y., Yanagi, I., Matsui, K., Yokoi, T. & Takeda, K. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction. Sci. Rep. 6, 31324/1-8 (2016).
22 Feng, J., Liu, K., Graf, M., Lihter, M., Bulushev, R. D., Dumcenco, D., Alexander, D. T. L., Krasnozhon, D., Vuletic, T., Kis, A. & Radenovic, A. Electrochemical reaction in single layer MoS2: Nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).
23 Ahmadi, A. G., Peng, Z., Hesketh P. J. & Nair, S. Wafer-scale process for fabricating arrays of nanopore devices. J. Micro/Nanolithography, MEMS, and MOEMS 9(3), 033011 (2010).
24 Zeng, S., Wen, C., Solomon, P., Zhang, S.-L. & Zhang, Z. Rectification of protein translocation in truncated pyramidal nanopores. Nat. Nanotechnol. 14, 1056–1062 (2019).
25 Di Fiori, N., Squires, A., Bar, D., Gilboa, T., Moustakas, T.D. & Meller, A. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nature Nanotechnol. 8, 946–951 (2013).
26 Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf D., Smeets, R. M. M., Lemay, S. G., Dekker, Ny. H. & Dekker, C. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2(7), 473-477 (2006).
27 German, S. R., Luo, L., White, H. S. & Mega, T. L. Controlling Nanoparticle Dynamics in Conical Nanopores J. Phys. Chem. C 117, 703–11 (2013)
28 Anderson, B. N., Muthukumar, M. & Meller, A. pH Tuning of DNA Translocation Time through Organically Functionalized Nanopores. ACS Nano 7, 1408–1414 (2013).
29 Kox, R. et al. Local solid-state modification of nanopore surface charges. Nanotechnol. 21, 335703 (2010).
30 Luan, B. & Stolovitzky, G. An electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation. Nanotechnol. 24, 195702 (2013).
31 Yao, Y., Wen, C., Pham, N. & Zhang, S.-L. On Induced Surface Charge in Solid-State Nanopores. Langmuir 36, 8874-8882 (2020).
32 Pabit, S. A., Qiu, X., Lamb J. S., Li L., Meisburger, S. P. & Pollack, L. Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Research 37(12), 3887–3896 (2009).
33 Plummer, J. D., Deal, M. D. & Griffin, P. B. Silicon VLSI Technology – Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, New Jersey, 2000).
34 Wen, C., Zhang, Z. & Zhang, S.-L. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement. ACS Sens. 2, 1523–1530 (2017).
35 Li, S., Zeng, S., Wen, C., Barbe, L., Tenje, M., Zhang, Z., Hjort, K. & Zhang, S.-L. Dynamics of DNA clogging in hafnium oxide nanopores. J. Phys. Chem. B 124, 11573-11583 (2020).
36 Tree, D. R., Muralidhar, A., Doyle, P. S. & Dorfman K. D. Is DNA a Good Model Polymer? Macromolecules 46(20), 8369–8382 (2013).
37 Guilbaud, S., Salome, L., Destainville, N., Manghi, M. & Tardin, C. Dependence of DNA Persistence Length on Ionic Strength and Ion Type. Phys. Rev. Lett. 122, 028102 (2019).
38 Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein M.l D., Venta, K.y, Luo, Z., A. T. Johnson, C. & Drndic, M. DNA Translocation through Graphene Nanopores. Nano Lett. 10, 2915–2921 (2010).
39 Carlsen, A. T., Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the Conductance Blockades of DNA Translocations through Solid-State Nanopores. ACS Nano 8(5), 4754–4760 (2014).
40 Larkin, J., Henley, R. Y., Muthukumar, M., Rosenstein, J. K. & Wanunu, M. High-Bandwidth Protein Analysis Using Solid-State Nanopores. Biophys. J. 106, 696–704 (2014).
41 Hatalis, M. K. & Greve, D. W. Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films. J. Appl. Phys. 63, 2260-2266 (1988).
42 Yuen, C. Y., Poon, M. C., Chan, W. Y. & Qin, M. Investigation of grain formation and growth in nickel-induced lateral crystallization process. J. Appl. Phys. 63, 2691-2695 (2002).
43 Wang, H., Chan, M., Jagar, S., Poon, V. M. C., Qin, M., Wang, Y., Ko, P. K. Super thin-film transistor with SOI CMOS performance formed by a novel grain enhancement method, IEEE Trans. Elec. Dev. 47, No. 8, 1580-1586 (2000).
44 Friedrich, J., Neudeck, G. Liu, S. Silicon selective and lateral overgrowth epitaxy: Growth and electrical evaluation for devices. J. de Phys. Coll. 49(C4), 71-74 (1988).
45 Neudeck, G. W., Pae, S., Denton, J. P. & Su, T.-c. Multiple layers of silicon-on-insulator for nanostructure devices. J. Vac. Sci. Technol. B 17(3), 994-998 (1999).