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Abstract 7 

Newtown is a planned city built over a short time period. It is suitable for climate and thermal research, 8 

particularly formulating urban planning strategies to analyse problems such as urban heat islands 9 

(UHIs). Herein, a comprehensive approach was demonstrated for determining changes in UHI 10 

distribution during 1989–2048 in two Newtowns with different urban planning. A significant increase in 11 

built-up areas was observed from 1989 (< 5%) to 2018 (> 40%) in both Newtowns. However, this increase 12 

significantly varied (approximately 12.25%) with urban planning in the areas where UHIs occurred 13 

before and after development. Moreover, without effective mitigation, the built-up area in each Newtown 14 

is estimated to increase to approximately 60%, and the surface UHI intensity in most areas to increase by 15 

4 °C in 2048. Thus, these results combined with architectural assessment models can improve the 16 

understanding of thermal environmental impacts of urbanisation and help mitigate heat island hazards.  17 

Global population growth and urban expansion primarily cause land use and land cover (LULC) changes and 18 

increases in built-up area. In 2018, approximately 55.3% of the world’s population resided in cities, among 19 

which 60% will reside in cities with approximately 0.5 million inhabitants by 20301. Rapidly increasing 20 

economic development accelerates these changes, particularly in fast-growing urban areas, hindering sustainable 21 

development2. LULC changes induced by human activities lead to different local climates than in surrounding 22 

areas. This effect, termed as urban heat island (UHI), occurs worldwide3,4. UHIs primarily occur due to 23 

increased solar radiation absorption and trapping in new surface materials of various infrastructure5,6. The 24 

magnitude and extent of UHIs are highly positively correlated with urban area and population size in cities; 25 

thus, UHIs are significantly affected by urban expansion7. UHIs can be divided into two types: meteorological 26 

UHI, an increase in local air temperature8, and surface urban heat island (SUHI), an increase in urban skin 27 



temperature9. SUHI is particularly evident in spatial variations of upwelling thermal radiance caused by LULC 28 

changes and is commonly influenced by the surrounding sub-urban environment8,9. 29 

 Newtown, also called a planned city, is built in a short time period within a pre-determined boundary for 30 

specific purposes. Since the mid-to-late twentieth century, Newtowns have been constructed worldwide, 31 

contributing to population growth and inflation in large cities10,11. Newtowns facilitate climate and thermal 32 

research through formulation of urban planning strategies to analyse problems, such as UHIs, and by providing 33 

information on the urban temporal temperature variation mechanism12. Comparison of UHI changes in 34 

Newtowns have not yet been conducted. Carrying out comparative studies on climate effects of urbanisation 35 

under different urban planning conditions is particularly difficult because of different urban environments, 36 

economic situations, and climates, as well as inconsistent data.  37 

 Since 1990, 14 Newtowns have been repopulated or built in sub-urban areas in South Korea to manage 38 

population, transportation, and environmental concerns in several large cities. Urban planning in the first-39 

generation Newtowns, providing indiscriminate housing, was not systematic and resulted in negative impacts, 40 

such as unplanned urban expansion, environmental degradation, and low greenspace ratio in housing complexes. 41 

The second-generation Newtowns were developed through systematic and environmentally friendly urban 42 

planning, such as low-density urbanisation and expansion of green areas (Table 1). However, in both cases, an 43 

increase in UHI is estimated because of a rapid infrastructural development and vegetation loss. Moreover, the 44 

UHI phenomenon may intensify with further urban expansion.  45 

 Herein, expansion and intensification of UHI due to Newtown development was empirically analysed 46 

using satellite data in two different-generation Newtowns in South Korea (Fig. 1). The SUHI intensity of each 47 

Newtown is the difference between the temperatures of built-up and surrounding areas within the boundary4,13-48 

15. A Markov chain model, combined with the cellular automata method, determined the SUHI distribution with 49 

LULC changes in the two Newtowns. Notably, urban planning influenced the change patterns in the expansion 50 

and intensification of UHIs, despite urban expansion. Furthermore, the future SUHI intensities in Newtowns 51 

may significantly increase with changes in structural characteristics owing to renovation and additional urban 52 

expansion.  53 

Results 54 

LULC changes according to Newtown development. In the accuracy assessment of the three LULC 55 

classifications, the kappa coefficient in LULC classification areas for all the three years were greater than 0.8, 56 



verifying that these classifications were significant predictors of future LULC and SUHI distribution. LULC 57 

analysis showed that the extent and proportion of LULC types varied temporally, and significant 58 

transformations were observed between 1989 and 2018. The accumulation of built-up areas in the two 59 

Newtowns has been significantly increased during each development period (Fig. 2b and Fig. 3b). However, 60 

forest and agricultural areas had significantly declined. In 1989, most of the LULCs in Bundang Newtown and 61 

Pangyo Newtown were forest and agricultural areas, accounting for approximately 85% of the total area, while 62 

built-up areas accounted for less than 5%. After that, the highest built-up growth occurred in Bundang Newtown 63 

between 1989 and 2000, when the development phase of Bundang Newtown was over. The built-up areas 64 

increased from 1.47 km2 (4.39%) to 14.09 km2 (42.13%); however, agricultural areas significantly decreased 65 

from 13.90 km2 (41.55%) to 2.99 km2 (8.93%), and forests also considerably decreased from 44.19% to 33.88%. 66 

In addition, open spaces increased from 0.46% to 5.68%, which was due to the development of the Newtown, or 67 

because it was an area under development at that time (Fig. 2a). In Pangyo Newtown, very little change had 68 

occurred because Newtown development planning was not yet established. In the case of built-up areas, the 69 

proportion increased from 3.23% to 16.73%, which was confirmed by the construction of the main road within 70 

the boundary and unplanned and fragmented development (Fig. 3a). This also evidently increased the 71 

percentage of open spaces in this process.  72 

 In 2018, when the development of Pangyo Newtown was completed, the proportion of built-up areas in 73 

this Newtown considerably increased from 16.73% to 40.81%. Forest areas decreased from 8.17 km2 (46.38%) 74 

to 7.20 km2 (40.84%) and the remaining agricultural areas decreased to 1.96%, resulting in almost complete 75 

urbanisation. In the case of Bundang Newtown, urban expansion occurred through additional urban 76 

development and partial renovation between 2000 and 2018. The proportion of built-up areas increased by 7% 77 

but agricultural areas decreased by 1.71% (0.57 km2); indicating almost complete urbanisation. Open spaces that 78 

existed in both Newtowns in 2000 were also mostly urbanised in 2018. Due to the low resolution of images, the 79 

grass in the built-up areas could not be classified, but the proportion of grass was higher in Pangyo Newtown 80 

than in Bundang Newtown as recorded during urban planning. The actual ratio between the two Newtowns 81 

would be different. In the case of water bodies, there was no significant change in the areas between 1989 and 82 

2018, but fluctuations due to spectroscopic differences were observed. 83 

SUHI distribution changes according to Newtown development. The accumulation of higher SUHI 84 

intensity areas in both the Newtowns had increased with urban expansion (Fig. 2d and Fig. 3d). In 1989, there 85 



were no areas in both Bundang and Pangyo Newtowns with a SUHI intensity of six or higher. Most of the areas 86 

with evident SUHI phenomenon were agricultural areas and partially urbanised areas. Land surface temperature 87 

(LST) is sensitive to vegetation mass, and in Korea, May is an early growing season in agricultural areas that 88 

contain less vegetation mass compared to the surrounding forest16. This difference in vegetation mass led to a 89 

high temperature distribution in agricultural areas in both Newtowns. In 2000, the area with SUHI phenomenon 90 

increased by approximately 30% after the development of Bundang Newtown. The areas with SUHI occurrence 91 

in the range of 2 ℃–4 ℃ significantly increased from 3.4 km2 (10.18%) to 10.82 km2 (32.34%), and those with 92 

more than 4 °C, which were few in 1989, increased to approximately 3.03 km2 (9%) of the total area. In the case 93 

of Pangyo Newtown, the areas with the SUHI phenomenon increased by approximately 6.5%, and most of these 94 

were distributed across the built main road and surrounding areas. The area with SUHI occurrence in the range 95 

2 ℃–4 ℃ increased from 1.77 km2 (10.06%) to 3.23 km2 (18.33%), and those with more than 4 °C were less 96 

than 0.324 km2 (2%) (Fig. 2c). Compared to the developed Bundang Newtown, Pangyo Newtown showed a 97 

smaller overall increase in the SUHI phenomenon.  98 

 In 2018, when the development of Pangyo Newtown was completed, the areas experiencing the SUHI 99 

phenomenon increased by approximately 17%. The areas with SUHI occurrence in the range 2 ℃–4 ℃ 100 

increased from 3.23 km2 (18.33%) to 4.68 km2 (26.58%), and those in the range 4–6 ℃ significantly increased 101 

from 0.32 km2 (1.81%) to 2.51 km2 (14.23%). However, few areas were found that had temperatures greater 102 

than 6 °C, and none exceeded 8 °C. For Bundang Newtown, the areas with SUHI < 2 ℃ had decreased, and the 103 

areas with higher SUHI intensity had increased overall. The areas with SUHI in the range 4 ℃–6 ℃ increased 104 

from 2.76 km2 (8.25%) to 3.69 km2 11.03%, and those with more than 6 ℃ increased to approximately 2% of 105 

the entire Newtown. This implied that the increase in building density and building renovation through 106 

additional development may be the main causes of the intensified SUHI phenomenon in existing cities (Fig. 3c).  107 

 Buildings are responsible for more than 40% of the global energy consumption, and structural 108 

characteristics are related to the UHI intensity17,18. Renovation for outdated buildings, such as extension and 109 

new construction, intensify the UHI phenomenon18. The increase in area and intensity of the SUHI phenomenon 110 

before and after Pangyo Newtown development was evidently lower than that of Bundang Newtown. 111 

Furthermore, the area with SUHI in the range of 4 °C–6 °C increased higher than that of Bundang Newtown. 112 

This may also be due to differences in structural characteristics, such as the average building-to-land ratio, floor 113 

area ratio, and height of buildings built in Newtown. The average height and floor area ratio of buildings in the 114 



newly constructed housing complex was found to be higher than in Pangyo Newtown, which led to increased 115 

UHI intensity. 116 

Predicted LULC for 2028, 2038, and 2048. The cellular automata (CA)-Markov chain model (MCM) 117 

analysis predicted that the proportion of built-up areas would increase by approximately 10% from 16.44 km2 118 

(49.16%) to 19.78 km2 (59.12%) between 2018 and 2048 in Bundang Newtown (Fig 2a). Moreover, it predicted 119 

decreases in forest areas from 35.61% to 29.9% and the grass cover from 12.76% to 10.69%. As Newtown 120 

development in the past primarily occurred through transformation of agricultural areas to built-up areas, it was 121 

not predicted that a significant urban expansion would occur through deforestation. In addition, most of the 122 

buildings in the housing complex of Bundang Newtown were completed in 1990, over 25 years ago. Therefore, 123 

renovations are planned for most of these old apartment complexes to improve the poor residential environment 124 

and meet the latest urban housing requirements. Hence, most urban expansion was predicted to occur through 125 

renovation within the existing built-up areas and partial transformation of the forest surrounding the Newtown.  126 

 In the case of Pangyo Newtown, the proportion of urban expansion between 2018 and 2048 was 127 

predicted to be higher than that of Bundang Newtown. According to the CA-MCM prediction, built-up areas 128 

would increase by approximately 18.42% from 40.81% to 59.23%, the forest areas would decrease from 40.84% 129 

to 32.25%, and the grass cover including golf courses would decrease from 15.34% to 7.92% (Fig. 3a). The 130 

primary trend observed in the predicted urban expansion was that non-urban areas, such as forest and grass, 131 

surrounding the main road were transformed into built-up areas. In contrast with Bundang Newtown, Pangyo 132 

Newtown is public-transportation-oriented. During the past Newtown development, the areas surrounding the 133 

main road that existed outside the city were underdeveloped. However, if urban expansion occurs in the future, 134 

it would be evident primarily in areas with good road proximity. In addition, urban expansion due to the 135 

completion of development in the open spaces that were under development in 2018, and further development 136 

within the city was also predicted. In terms of agricultural area and water, both Newtowns were predicted to 137 

remain almost unchanged from 2018, with little fluctuation. 138 

Predicted SUHI distribution for 2028, 2038, and 2048. CA-MCM predicted the increase in area and 139 

intensity of the SUHI phenomenon in both Newtown and, unlike LULC prediction, a significant change was 140 

predicted. In Bundang Newtown, the areas where the SUHI phenomenon occurs would increase by 141 

approximately 5% between 2018 and 2048. For SUHI intensity distribution, the areas with SUHI ≤ 4 ℃ would 142 

decrease from 17.12 km2 (51.16%) to 11.44 km2 (34.21%). Simultaneously, the areas with SUHI > 4 ℃ was 143 



estimated to increase from 4.25 km2 (12.73%) to 10.68 km2 (34.71%), affecting the lower SUHI intensity areas. 144 

It is predicted that SUHI intensity would expand and increase from the existing residential area, which may 145 

reflect the renovation trend partially occurring between 2000 and 2018. Therefore, development of sustainable 146 

renovation guidelines is required such as thermal insulation, replacement of the insulation material, and 147 

improving the air tightness of the building envelope through renovation using insulation materials19. In addition, 148 

the areas with SUHI > 6 °C are predicted to increase from 0. 56 km2 (1.7%) to 2.77 km2 (8.28%). It has been 149 

observed that the higher the LST, the higher the frequency of heat waves at regional scales20. In the future, 150 

additional thermal environmental policies and energy policies are required for areas where SUHI intensity is 151 

expected to increase significantly (Fig. 3a).  152 

 In the case of Pangyo Newtown, the areas where the SUHI phenomenon occurred were predicted to 153 

increase by 20%. The affected areas are similar to those predicted to change from forests existing around the 154 

main road to built-up areas. For SUHI intensity distribution, the area with SUHI ≤ 4 ℃ would decrease from 155 

7.75 km2 (43.97%) to 5.08 km2 (28.83%). Moreover, the areas with SUHI > 4 ℃ would increase from 2.53 km2 156 

(14.34%) to 8.7 km2 (49.36%), and most areas were in the range 2 ℃–4 ℃ (49%) (Fig. 3c). Therefore, it can be 157 

predicted that urban features, such as structural characteristics, materials, and building disposition type would 158 

change according to the housing complex newly built through Newtown development. 159 

Discussion 160 

This study is the first attempt to simulate and compare the pattern of UHI occurrence according to Newtown 161 

development using remote sensing and GIS technology. This discussion focuses on the principal two 162 

contributions of the proposed research in comparison with previous studies. Afterwards, the limitations are 163 

discussed. 164 

 The main contribution of our study is that the different patterns of changes in land use land cover and 165 

SUHI phenomenon depending on urban planning were visually and quantitatively shown for the study sites 166 

excluding external influences. To provide some examples, Tran et al.7 and Clinton&Gong8 do comparative 167 

analysis of SUHI phenomenon between cities under different environment or urban situation. Tran et al.7 168 

examine the spatial patterns of SUHIs for Asian mega cities based on the season and relationship with surface 169 

properties. Clinton&Gong8 estimate the magnitude of SUHI for urban areas between latitudes 71 and – 55 for 170 

the year 2010 using MODIS datasets. The results of these studies were successful in demonstrating the 171 

contribution of urbanization to the SUHI effect as well as investigating the differences in SUHI between urban 172 



and surrounding areas. However, applying these methods could not provide insight into the effect of different 173 

urban development types or urban planning on UHI phenomenon. In addition, in terms of comparing the UHI 174 

phenomenon between cities, there were some limitations which may lower the reliability of comparison. They 175 

all used satellite images constructed at different times and the magnitude of SUHI depends on weather a single 176 

image or composite over a period of time is used14. In comparison with these previous studies, this research 177 

provides a significant contribution by quantifying the influence of the urban planning involved in the UHI 178 

phenomenon based on a scientific approach in condition which external influences are controlled. The 179 

developed LULC maps showed significant changes in LULC before and after the development of Newtown 180 

from 1989 to 2018. The primary driver for the development of both the Newtowns was the transformation of 181 

agricultural areas to built-up areas. Moreover, the increase in built-up areas evidently intensified the SUHI 182 

phenomenon of an entire Newtown. However, the areas where the SUHI phenomenon additionally occurred or 183 

the SUHI intensity increased, were different according to the urban plan. These differences indicated the 184 

requirement and importance of urban planning to maintain a sustainable thermal environment, even with rapid 185 

LULC changes.  186 

 Our research also improves on the predictive models previously developed to study and predict usually 187 

LULC patterns. Unlike previous studies, Cellular Automata Markov Chain model was used for prediction of 188 

LULC changes and SUHI distribution changes accordingly in study areas. In the case of existing studies, the 189 

LULC change was simply predicted using the same model, but there was a limitation in not examining the urban 190 

climate change or other possible effects24,45-47. Sha et al.22 and Traiq&Shu57 tried to examine the LST change 191 

according to the LULC change. However, it did not predict the change of the LST distribution according to the 192 

predicted future LULC, and as in previous studies, indirect prediction was performed by simply constructing a 193 

regression equation using the spectral index. In addition, the LST value may vary depending on the radiative and 194 

aerodynamic properties of the satellite image and it is difficult to confirm the relative temperature increase in the 195 

built-up areas according to urban growth using LST distribution14. In this study, the predicted results based on 196 

variations between 2000 and 2018 also showed a possible future pattern of further urban expansion and similar 197 

changes in SUHI distribution and intensity in both Newtowns. In addition, through prediction analysis, the 198 

importance of building renovation and structural characteristics in urban-level thermal environment changes was 199 

also suggested. When renovating old buildings in the future, sustainable renovation methods such as increasing 200 

the insulation of facades with new surfaces are required to minimise changes in the thermal environment.  201 



 While the presented study provides useful method and information regarding the current and future status 202 

of the UHI phenomenon, it is still faced some limitations. This study does not consider additional parameters 203 

typically influencing the urban growth because of the specificity of the study area. As mentioned, Newtown is 204 

the planned city where the physical and legal aspects of the site were reviewed through feasibility analysis 205 

beforehand, the complication associated with urban expansion is relatively low for Newtown. However, the 206 

factors for urbanisation are related to the complexity of the terrain, degree of socio-economic development, 207 

urban regulations, etc24. Therefore, it is necessary to consider additional factors for urban expansion when 208 

applying this methodology to a region other than Newtown in the future. In addition, a model that explains the 209 

detailed behaviour of UHI using a combination of building renovation and structural characteristics is still 210 

necessary. Future research studies should attempt to obtain structural and temporal data over the same period of 211 

time and develop models able to explain the change of UHI based on structural characteristics changed by 212 

building renovation.   213 

Conclusions 214 

Although the research methods and measures face certain conceptual and practical challenges, this study 215 

suggested a proximate causal relationship between urban expansion and SUHI phenomenon change according to 216 

urban planning. It is easy to apply for practitioners and the necessary data for application are available without 217 

complex acquisition procedures or unopened access datasets. Therefore, the proposed novel method may be 218 

applied to both existing and newly-built cities to predict future UHI distribution according to urban planning. 219 

Furthermore, the findings and methods constructed through this research can be useful to policy makers, urban 220 

planners, researchers, and citizens to adopt sustainable thermal environment management practices including 221 

adaptation and mitigation strategies for the city. 222 

Methods 223 

Data acquisitions and pre-processing.  Three Landsat images from May with an image quality of nine and 224 

cloud cover less than 2% were used to minimise the seasonal influence and cloud cover of each period: 1989, 225 

2000, and 2018. Two Landsat 5 thematic mapper (TM) and one Landsat 8 operational land imager/thermal 226 

infrared sensor (OLI/TIRS) images were obtained from the United States Geological Survey - Center for Earth 227 

Resources Observation and Science (USGS-EROS) (http://earthexplorer.usgs.gov/). The images were used for 228 

LULC classification and SUHI calculation, and each period showed the change trends before and after the 229 

Newtown development. The remotely sensed data is an indirect measurement considering the intervening 230 



atmosphere and the surface radiative properties that influence the emission and reflection of radiation within the 231 

spectral wavelengths detected by the sensor9. Atmospheric correction using the dark object subtraction (DOS) 232 

method and radiometric correction for pre-processing using the semi-automatic classification (SCP) plugin in 233 

QGIS 3.14, were applied to the images. Atmospheric scattering and absorption caused the imaging system to 234 

record a non-zero digital number (DN) value for dark objects. The DOS method subtracted the constant non-235 

zero DN value, DN haze, from the whole band, assuming that some objects under complete shadow must have 236 

zero reflectance21.  237 

Land use land cover classification.  A supervised classification technique was used with the maximum 238 

likelihood classifier (MLC) algorithm to generate LULC maps for each year using the SCP plugin in QGIS 3.14. 239 

The MLC-based supervised classification approach was comprehensively used and considered as an established 240 

technique in many previous studies for urban LULC classification, where the spatial heterogeneity of pixels is 241 

similarly high22-24. The MLC algorithm is based on probability density distribution functions (likelihood), 242 

includes all training inputs for each land cover class, and has been proven to be an accurate and robust algorithm 243 

because it does not overestimate the class values during the computational process23-25. In addition, there are 244 

some advantages of the MLC algorithm, such as (1) auto-allocation of pixels to the unclassified regions based 245 

on the surrounding values25, and (2) the variance and covariance values of the class signatures are considered 246 

within the class distribution26. The Landsat images of 1989, 2000, and 2018 were classified into six major 247 

LULC classes, (ⅰ) built-up areas, covering the buildings and concrete areas; (ⅱ) forest, covering coniferous and 248 

broadleaf forests; (ⅲ) grass, covering natural and artificial grass; (ⅳ) open spaces, covering natural and artificial 249 

bare areas; (ⅴ) agricultural areas, covering paddy field, dry field, etc.; and (ⅵ) water bodies, covering ponds, 250 

lakes, and wetlands.  251 

 Assessment of classification accuracy is necessary to ensure that classification data can detect changes; 252 

this was conducted on the resulting classified imagery through an error matrix and kappa index that enables 253 

differentiation between ground-truth and predicted classification24,27. High-resolution Google Earth data and 254 

aerial photographs provided by the National Geographic Information Institute (NGII) of South Korea were used 255 

to establish ground-truth regions for the evaluation of classification accuracy (http://map.ngii.go.kr/). High-256 

resolution data from Google Earth have been used as reference in many classification studies and national 257 

standardised land cover maps; NGII provides high-resolution aerial photographs captured since 1945, and can 258 

also be used for accuracy assessment22,24,28. The kappa coefficient was calculated using equation (1): 259 



 

 

(1) 

where i is the class number; n is the total number of points; nii is the number of pixels belonging to the actual 260 

data class i, which were classified as class i; Ci is the total number of classified pixels belonging to class i; and 261 

Gi is the total number of actual data belonging to class i. Fifty sample points per class for each Newtown, except 262 

water class, were selected automatically by QGIS 3.14. A minimum of 50 samples must be collected for each 263 

land cover class in the error matrix to avoid the risk of a biased sample during accuracy assessment29.  264 

LST estimation.  LST estimation using ArcMap 10.5 includes transforming DNs to radiance (Lλ), measuring 265 

radiance brightness temperatures (TB), and adjusting emissivity to extract surface temperature from brightness 266 

maps30. The LST values were obtained using thermal bands from Landsat TM (B6) and Landsat OLI/TIRS 267 

(B10) because of the USGS recommendation to avoid using TIRS band 11 because of its higher calibration 268 

uncertainty.  269 

 Every object on the Earth emits thermal electromagnetic radiation when its temperature is above absolute 270 

zero (K), and the signal received by the thermal sensors can be transformed to radiance (Lλ) using equation (2):  271 

  (2) 

where Lλ is the spectral radiance in W/(m2×sr×μm); ML is the radiance multiplicative scaling factor for the band; 272 

AL is the radiance additive scaling factor for the band; and Qcal is the level 1 pixel value in DN, whose values are 273 

obtained from the metadata of the Landsat images. After the DN value was converted to radiance, the radiance 274 

values were converted to TB using equation (3): 275 

  (3) 

where TB is the At-satellite brightness temperature and K1 and K2 represent the band-specific thermal conversion 276 

constants from the metadata. To obtain the temperature in Celsius, the radiant temperature is revised30. The final 277 

step in estimating the LST is to rectify the TB using land surface emissivity (LSE, ε) correction as shown in 278 

equation (4)31: 279 



 

 

(4) 

where λ is the wavelength of the emitted radiance (= 10.895 μm); ρ = h × c/σ (1.438 × 10-2 m K), where h is 280 

Planck’s constant (6.626 × 10–34 Js), c is the velocity of light (2.998 × 108 m/s), and σ is the Boltzmann 281 

constant (1.38 × 10–23 J/K); and ε is the emissivity30,32.  282 

 The obtained values of TB were referenced as a black body, whose properties are different from that of 283 

real objects on the Earth’s surface and would also be different from real LST33. The LST values across a city can 284 

have a wide range, and it depends on LULC states constructed within the city. Furthermore, LSE, which is 285 

essential for estimating the LST, has strong land use/land cover dependence34,35.  286 

 The LSE value is calculated conditionally using equation (5), and the condition is represented by the 287 

formula for each emissivity value36,37: 288 

  (5) 

where 𝜀v and 𝜀𝑠 are the vegetation and soil emissivity, respectively and C𝜆 is the surface roughness (C = 0 for 289 

homogeneous and flat surfaces), with a constant value of 0.00538. When the normal difference vegetation index 290 

(NDVI) is less than NDVIS = 0.2, it is classified as bare soil and its emissivity value is acquired from the 291 

reflectance values in the red region (ρR)39. The NDVI values between 0.2 and 0.5 are considered as mixtures of 292 

soil and vegetation surfaces, and equation (5) is used for extracting their emissivity values. In the equation, ελv is 293 

the emissivity value of vegetation (= 0.9863 μm) and ελs is emissivity value of soil (= 0.9668 μm) in this 294 

range40. When the NDVI value is larger than NDVIv = 0.5, it is considered as a vegetation surface and an 295 

emissivity value of 0.99 is assigned to it30. Visible red and near-infrared (NIR) bands were used for calculating 296 

NDVI using equation (6). In addition, NDVI values were used to evaluate the proportion of the vegetation (Pv) 297 

related to emissivity (ε) using equation (7)41,42. A method for calculating Pv using the NDVI values for 298 

vegetation soil, which can be applied in global conditions, was suggested in a previous study36.  299 

 
 

(6) 

 300 

 
 

(7) 



Urban expansion prediction. An integrated CA method combined with MCM was used for predicting urban 301 

expansion in 2028, 2038, and 2048 under the business-as-usual scenario of both Newtowns. The CA-MCM is a 302 

hybrid and robust algorithm in spatial and temporal dynamic modelling of LULC changes that includes the 303 

deterministic modelling framework, spatially explicit approach with stochastically based temporal 304 

framework43,44. In addition, CA-MCM analysis allows the user to add factors related to urban expansion into the 305 

model to improve accuracy, and it can be a support tool for land use planners and policy makers to establish 306 

future land use policies45. Furthermore, MCM is a tool used to evaluate adjustments in land use among cycles by 307 

a sequence of values that depend on the present state46. MCM defines the present temporal LULC change to 308 

predict future change, and equation (8) presents the calculation of land use change prediction47: 309 

  (8) 

 310 

where S(t) is the system state at time t, S (t+1) is the system state at time t+1, and Pij is the transition probability 311 

matrix in a state, which is calculated using equation (9).  312 

 

(0 ≤ Pij ≤ 1) 

(9) 

P is the Markov probability matrix, Pij is the probability of converting from current state i to another state j in 313 

prediction time, and PN is the state probability of any time. Low transition pixels have a low probability value 314 

near (0), and high-transition pixels have a high probability value near (1)47. The 2000 LULC map of the study 315 

area was used as the first base (t1), and the 2018 LULC map was used as the other (t2) to obtain the transition 316 

probability matrix in this study. However, MCM cannot completely predict the LULC change because it does 317 

not consider spatial knowledge distribution within each category, and transition probabilities are not constant 318 

among LULC states; therefore, it may suggest the appropriate degree of change but not the appropriate 319 

direction48.  320 

 CA is a dynamic process model used for land use cover change45. CA has the ability to change its state 321 

according to the principle that each cell with its own characteristics can represent parcels of land and self-322 

growth interactions as they are dynamic and can duplicate49. Land use changes for any location (cells) can be 323 

defined by the existing state and changes in the neighbouring cells, and the growth of objects is simulated in two 324 

directions45. Hence, CA-MCM, which incorporates the theories of Markov chain analysis and CA, has the 325 



advantages of forecasting in terms of utilising time series and space, and can achieve improved simulation for 326 

temporal and spatial patterns of land use changes50. Multi-criteria evaluation (MCE) was used to determine the 327 

LULC classes suitable for changing from the original state to another. MCE combines the factors driving urban 328 

growth and fuzzy systems analysis to construct transition suitability maps that show the probability that a pixel 329 

would change to another land cover class or remain unchanged51. The determinants and spatial expansion of 330 

urbanisation are related to the complexity of the terrain, degree of socio-economic development, urban 331 

regulations, etc24. However, in the case of Newtowns, as the physical and legal aspects of the site were reviewed 332 

through feasibility analysis, the complexity associated with urban expansion is relatively low.  333 

 In contrast, during urban planning in Newtowns, physical planning and transportation infrastructure are 334 

more important for large-scale development to generate housing sites within a short period. Transportation 335 

infrastructure, in particular, stimulates and guides urban growth by improving accessibility52-54. In addition, 336 

slope is an uncontrollable environmental factor that affects urban growth, because construction of buildings and 337 

development of cities on steep-slope terrain is difficult or sometimes impossible55. Hence, the distance to the 338 

main road, slope, and distance to the existing urban area were used to calculate transition suitability maps in this 339 

study. The maps of the road and digital elevation model (DEM) were obtained from National Spatial Data in 340 

Infrastructure Portal (NSDIP) (http://data.nsdi.go.kr/). Fuzzy membership functions were used to standardise 341 

suitability maps into 0–1, where 0 represents unsuitable locations and 1 represents ideal locations for 342 

urbanisation. The area of each land class to be transformed into another LULC class was estimated based on the 343 

transition probabilities. These areas were separated by the number of iterations performed for CA to predict the 344 

areas to be converted per iteration. The future assignment of each cell to an LULC class was based on the 345 

suitability of the cell for that LULC class and the similarity of the cell with neighbouring cells of the same class. 346 

A contiguity filter of 5×5 pixels was used to define the effect of neighbouring pixels on the central pixel.  347 

Mapping and prediction of the SUHI distribution. The UHI effect occurs due to the anthropogenic 348 

modification of natural landscapes in the city boundary layer, and as the urban area increases, the UHI intensity 349 

also increases14. In addition, LST and SUHI effects are particularly related to the surrounding sub-urban 350 

environment8,14. To analyse this trend, the SUHI intensity of each Newtown was defined as the difference 351 

between the temperatures of an urban area and its surrounding areas (LULC, excluding built-up area) within the 352 

boundary4,13,15. Thus, the SUHI intensity distribution maps for each Newtown and each period were constructed 353 

using two steps. (1) The SUHI intensity variation was calculated using equation (10): 354 



 SUHI intensity distribution = Ts – (T mean + 0.5 × δ) surrounding area (10) 

where Ts is the LST (℃) distribution of Newtown, and T mean and δ are the mean and standard deviation of LST 355 

in non-urban areas of Newtown. By subtracting the average temperature of non-urban areas from the 356 

temperature of the entire city, it may be verified that the actual SUHI effect was due to urban expansion, rather 357 

than the temporary LST value. In addition, the water bodies were excluded while calculating the SUHI intensity 358 

because it can irregularly influence the surface temperature (Lee et al, 2020). (2) The SUHI intensity variation 359 

was classified into six appropriate ranges: (ⅰ) value ≤ 0 ℃, (ⅱ) 0 ℃ < value ≤ 2 ℃, (ⅲ) 2 ℃ < value ≤ 4 ℃, (ⅳ) 360 

4 ℃ < value ≤ 6 ℃, (ⅴ) 6 ℃ < value ≤ 8 ℃, (ⅵ) 8 ℃ < value. Thus, the difference in distribution and intensity 361 

of the SUHI phenomenon can be compared according to the change in LULC for each Newtown at each time 362 

period. In addition, classes are divided into value ranges, to facilitate future SUHI intensity distribution 363 

prediction using CA-Markov analysis. The indices, which were positively and negatively correlated with LST, 364 

were used to develop transition suitability maps for predicting the SUHI distribution. The normalised difference 365 

built-up index (NDBI) was used as the index that highly correlated with LST56. NDBI is the most widely 366 

accepted tool for the identification of built-up areas and has shown a high surface temperature correlation in 367 

previous studies13,22,57. The NDBI value was calculated using equation (11): 368 

 
 

(11) 

Built-up areas are sensitive under the 1.55–1.75 wavelength range in the short-wave infrared (SWIR) band; 369 

however, they are less sensitive under the 0.79–0.90 wavelength range in the NIR band58. The NDBI values 370 

range from -1 to +1, and values near +1 generally represent highly dense built-up areas. Furthermore, NDVI was 371 

used as the index that weakly correlated with LST. NDVI is the most common index for vegetation extraction 372 

and has shown a strong negative correlation with LST in previous studies32,57,59. Fuzzy membership functions 373 

were also used to standardise the factor maps to 0–1, where 0 represents a low SUHI potential and 1 represents a 374 

high SUHI potential.  375 

Data availability 376 

Satellite images from 1989 to 2018 used in this study are freely available at httl://earthexplorer.usgs.gov/. Other 377 

datasets are available upon request from K. Lee (leedake@korea.ac.kr).  378 

 379 

mailto:leedake@korea.ac.kr


References 380 

1. United Nations. The World’s cities in 2018. Department of Economic and Social Affairs, Population Division, 381 

World Urbanization Prospects 1–34 (2018). 382 

2. Liping, C., Yujun, S., & Saeed, S. Monitoring and predicting land use and land cover changes using remote s383 

ensing and GIS techniques—A case study of a hilly area, Jiangle, China. PloS One 13(7), e0200493 (2018). 384 

3. Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan. 48(1–2), 31–44 (2000). 385 

4. Lee, K., Kim, Y., Sung, H. C., Ryu, J., & Jeon, S. W. Trend analysis of urban heat island intensity according386 

 to urban area change in Asian mega cities. Sustain. 12(1), 112 (2020). 387 

5. Grimmond, S. U. Urbanization and global environmental change: local effects of urban warming. Geogr. J. 173(388 

1), 83–88 (2007). 389 

6. Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the act390 

ual developments. Renew. Sustain. Energy Rev. 26, 224–240 (2013). 391 

7. Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. Assessment with satellite data of the urban heat island effec392 

ts in Asian mega cities. Int. J. Appl. Earth Obs. Geoinform. 8(1), 34–48 (2006). 393 

8. Clinton, N., & Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls394 

. Remote Sens. Environ. 134, 294–304 (2013). 395 

9. Voogt, J. A., & Oke, T. R. Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (396 

2003). 397 

10. Khammar, G. Analysis the Environmental Impacts of Pardis New Town By TOPSIS Model. Int. J. Manag. Sci.398 

 Bus. Res. 2(7), 134-141 (2013). 399 

11. Wakeman, R.. Practicing Utopia: An Intellectual History of the New Town Movement Ch. 2 (University of Chi400 

cago Press, 2016). 401 

12. Qaid, A., Lamit, H. B., Ossen, D. R., & Shahminan, R. N. R. Urban heat island and thermal comfort conditio402 

ns at micro-climate scale in a tropical planned city. Energy Build. 133, 577–595 (2016). 403 

13. Guha, S., Govil, H., Dey, A., & Gill, N. Analytical study of land surface temperature with NDVI and NDBI 404 

using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote Sens. 51(1), 667–678 (2405 

018). 406 

14. Oke, T., et al. Urban Climates Ch. 7 (Cambridge University Press, 2017) 407 

15. Zhou, B., Rybski, D., & Kropp, J. P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 40(20)408 

, 5486–5491 (2013). 409 

16. Raymond, W. H., Rabin, R. M., & Wade, G. S. Evidence of an agricultural heat island in the lower Mississip410 

pi River floodplain. Bull. Am. Meteorol. Soc. 75(6), 1019–1026 (1994). 411 

17. Huovila, P. Buildings and Climate Change: Status, Challenges, and Opportunities Ch. 1 (UNEP/Earthprint. 2007412 



). 413 

18. Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. On the influence of density and morphology on the Urban H414 

eat Island intensity. Nature Commun. 11(1), 1–9 (2020). 415 

19. Häkkinen, T., et al. Methods and Concepts for Sustainable Renovation of Building Ch. 4 (VTT Technical Resea416 

rch Centre of Finland: Espoo, Finland, 2012). 417 

20. Yeh, S. W., et al. The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon.418 

 Weather Rev. 146(5), 1463–1474 (2018). 419 

21. Nazeer, M., Nichol, J. E., & Yung, Y. K. Evaluation of atmospheric correction models and Landsat surface ref420 

lectance product in an urban coastal environment. Int. J. Remote Sens. 35(16), 6271–6291 (2014). 421 

22. Saha, P., Bandopadhyay, S., Kumar, C., & Mitra, C. Multi-approach synergic investigation between land surfac422 

e temperature and land-use land-cover. J. Earth Syst. Sci. 129(1), 1–21 (2020). 423 

23. Sun, J., Yang, J., Zhang, C., Yun, W., & Qu, J. Automatic remotely sensed image classification in a grid envi424 

ronment based on the maximum likelihood method. Math. Computer Model. 58(3–4), 573–581 (2013). 425 

24. Wang, S. W., Munkhnasan, L., & Lee, W. K. Land use and land cover change detection and prediction in Bh426 

utan's high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges. 2, 1427 

00017 (2020). 428 

25. Al-Ahmadi, F. S., & Hames, A. S. Comparison of four classification methods to extract land use and land cov429 

er from raw satellite images for some remote arid areas, Kingdom of Saudi Arabia. Earth 20(1), 167–191 (2009430 

). 431 

26. Erbek, F. S., Özkan, C., & Taberner, M. Comparison of maximum likelihood classification method with superv432 

ised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 25(9), 1733–1748 (2004). 433 

27. Yuan, D. A simulation comparison of three marginal area estimators for image classification. Photogramm. Eng.434 

 Remote Sens. 63(4), 385–391 (1997). 435 

28. Lee, K., et al. The Integration of Remote Sensing and Field Surveys to Detect Ecologically Damaged Areas fo436 

r Restoration in South Korea. Remote Sens. 12(22), 3687 (2020). 437 

29. Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. E438 

nviron. 37(1), 35–46 (1991). 439 

30. Avdan, U., & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 440 

8 satellite data. J. Sens. 2016, 1-8 (2016). 441 

31. Artis, D. A., & Carnahan, W. H. Survey of emissivity variability in thermography of urban areas. Remote Sens.442 

 Environ. 12(4), 313–329 (1982). 443 

32. Weng, Q., Lu, D., & Schubring, J. Estimation of land surface temperature–vegetation abundance relationship fo444 

r urban heat island studies. Remote Sens. Environ. 89(4), 467–483 (2004). 445 



33. Shen, H., Huang, L., Zhang, L., Wu, P., & Zeng, C. Long-term and fine-scale satellite monitoring of the urba446 

n heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study447 

 of the city of Wuhan in China. Remote Sens. Environ. 172, 109–125 (2016). 448 

34. Mallick, J., Singh, C. K., Shashtri, S., Rahman, A., & Mukherjee, S. Land surface emissivity retrieval based o449 

n moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int. J. Appl. Ea450 

rth Obs. Geoinform. 19, 348–358 (2012). 451 

35. Radhi, H., Fikry, F., & Sharples, S. Impacts of urbanisation on the thermal behaviour of new built up environ452 

ments: A scoping study of the urban heat island in Bahrain. Landsc. Urban Plan. 113, 47–61 (2013). 453 

36. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. Land surface temperature retrieval from LANDSAT TM 5454 

. Remote Sens. Environ. 90(4), 434–440 (2004). 455 

37. Wang, F., et al. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 th456 

ermal infrared sensor data. Remote Sens. 7(4), 4268–4289 (2015). 457 

38. Sobrino, J. A., & Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Applicatio458 

n to Morocco. Int. J. Remote Sens. 21(2), 353–366 (2000). 459 

39. Sekertekin, A., & Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: a460 

ssessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 12(2461 

), 294 (2020). 462 

40. Yu, X., Guo, X., & Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between rad463 

iative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 6(10), 9464 

829–9852 (2014). 465 

41. Carlson, T. N., & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area inde466 

x. Remote Sens. Environ. 62(3), 241–252 (1997). 467 

42. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Enviro468 

n. 8(2), 127–150 (1979). 469 

43. Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. Rural sustainability under threat in Zimbabwe–simulation o470 

f future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl. Geo471 

gr. 29(3), 435–447 (2009). 472 

44. Keshtkar, H., & Voigt, W. A spatiotemporal analysis of landscape change using an integrated Markov chain an473 

d cellular automata models. Model. Earth Syst. Environ. 2(1), 10 (2016). 474 

45. Hamad, R., Balzter, H., & Kolo, K. Predicting land use/land cover changes using a CA-Markov model under t475 

wo different scenarios. Sustain. 10(10), 3421 (2018). 476 

46. Aaviksoo, K. Simulating vegetation dynamics and land use in a mire landscape using a Markov model. Landsc.477 

 Urban Plan. 31(1-3), 129–142 (1995). 478 



47. Kumar, S., Radhakrishnan, N., & Mathew, S. Land use change modelling using a Markov model and remote s479 

ensing. Geomat. Nat. Hazards Risk 5(2), 145–156 (2014). 480 

48. Boerner, R. E., et al. Markov models of inertia and dynamism on two contiguous Ohio landscapes. Geogr. Ana481 

l. 28(1), 56–66 (1996). 482 

49. Brown, D. G., Walker, R., Manson, S., & Seto, K. Modeling land use and land cover change. In Land change 483 

science (pp. 395–409). (Springer, Dordrecht, 2012). 484 

50. Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. Simulation of land use spatial pattern of towns and villag485 

es based on CA–Markov model. Math. Computer Model. 54(3–4), 938–943 (2011). 486 

51. Myint, S. W., & Wang, L. Multicriteria decision approach for land use land cover change using Markov chain 487 

analysis and a cellular automata approach. Can. J. Remote Sens. 32(6), 390–404 (2006). 488 

52. Anas, A., Arnott, R., & Small, K. A. Urban spatial structure. J. Econ. Lit. 36(3), 1426–1464 (1998). 489 

53. Hu, Z., & Lo, C. P. Modeling urban growth in Atlanta using logistic regression. Computers Environ. Urban Sy490 

st. 31(6), 667–688 (2007). 491 

54. Kasraian, D., Maat, K., & van Wee, B. The impact of urban proximity, transport accessibility and policy on u492 

rban growth: A longitudinal analysis over five decades. Environ. Plan. B 46(6), 1000–1017 (2019). 493 

55. Kechebour, B. E. Relation between stability of slope and the urban density: case study. Proced. Eng. 114, 824–494 

831 (2015). 495 

56. Zha, Y., Gao, J., & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas f496 

rom TM imagery. Int. J. Remote Sens. 24(3), 583–594 (2003). 497 

57. Tariq, A., & Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land 498 

Cover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 12(20), 3402 (499 

2020). 500 

58. Bhatti, S. S., & Tripathi, N. K. Built-up area extraction using Landsat 8 OLI imagery. GIScience Remote Sens501 

. 51(4), 445–467 (2014). 502 

59. Sun, H., Chen, Y., & Zhan, W. Comparing surface-and canopy-layer urban heat islands over Beijing using MO503 

DIS data. Int. J. Remote Sens. 36(21), 5448–5465 (2015). 504 

 505 

  506 



Figures with legends 507 

 508 

Fig. 1 Map of study area. a. Geographical location of the two Newtowns. b. Enlarged image showing the 509 

Newtowns. c. Landsat OLI image acquired on May 09, 2018. 510 



 511 

Fig. 2 SUHI distribution according to LULC changes from 1989 to 2048 in Bundang Newtown. a. Areas of 512 

LULC in Bundang Newtown from 1989 to 2048. b. LULC maps of Bundang Newtown from 1989 to 2048. c. 513 

Areas of SUHI distribution in Bundang Newtown from 1989 to 2048. d. SUHI distribution maps of Bundang 514 

Newtown from 1989 to 2048. 515 



 516 

Fig. 3 SUHI distribution according to LULC changes from 1989 to 2048 in Pangyo Newtown. a. Areas of 517 

LULC in Pangyo Newtown from 1989 to 2048. b. LULC maps of Pangyo Newtown from 1989 to 2048. c. Areas 518 

of SUHI distribution in Pangyo Newtown from 1989 to 2048. d. SUHI distribution maps of Pangyo Newtown 519 

from 1989 to 2048.  520 

Tables 521 

Table 1. Development plan features for each Newtown 

Division (unit) Bundang Newtown Pangyo Newtown 

Generation of Newtown 1st generation 2nd generation 

Development period 1989–1996  2003–2017 

Whole area (km2) 33.45 17.62 

Development plan area (km2) 19.64 8.9 

Number of household (thousands) 97.6 29.3 

Population density (number/ha) 199 98 

Average greenspace ratio (%) 12–25 25–35 

Transportation infrastructure Vehicle-oriented  Public transportation-oriented 
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Figures

Figure 1

Map of study area. a. Geographical location of the two Newtowns. b. Enlarged image showing the
Newtowns. c. Landsat OLI image acquired on May 09, 2018. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.



Figure 2

SUHI distribution according to LULC changes from 1989 to 2048 in Bundang Newtown. a. Areas of LULC
in Bundang Newtown from 1989 to 2048. b. LULC maps of Bundang Newtown from 1989 to 2048. c.
Areas of SUHI distribution in Bundang Newtown from 1989 to 2048. d. SUHI distribution maps of
Bundang Newtown from 1989 to 2048. Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.



Figure 3

SUHI distribution according to LULC changes from 1989 to 2048 in Pangyo Newtown. a. Areas of LULC in
Pangyo Newtown from 1989 to 2048. b. LULC maps of Pangyo Newtown from 1989 to 2048. c. Areas of
SUHI distribution in Pangyo Newtown from 1989 to 2048. d. SUHI distribution maps of Pangyo Newtown
from 1989 to 2048. Note: The designations employed and the presentation of the material on this map do
not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.


