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Abstract: 
Modeling and predicting the dynamics of multiphysics and multiscale systems with hidden physics methods is 

often costly, requiring different formulations and complex computer codes. There has been significant progress in 
solving differential equations using physical information embedded in neural networks, but solving and generalizing 
for differential equations with time-varying inputs is still an open problem. In this paper, we design a PINN-TI 
network structure and a Step-by-Step Forward (SSF) algorithm. It enables the network to predict the results of 
ordinary differential equations under different initial values or boundary conditions and different time-varying inputs 
(including segmented functions) after one training. Our approach can extend the time domain of the solution to a 
larger range. We validated our model using a variant of Vander Pol’s equation, which contains one or two external 
inputs. The results show that our network can handle the prediction and generalization problem of ordinary 
differential equations under time-varying inputs well. Our method provides a new solution for solving and 
generalizing differential equations under time-varying inputs. 
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1. Introduction 

Differential equations are essential for modeling the dynamics of complex systems in both the spatial and time 
domains [1, 2]. Methods for solving Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs) 
using classical analytical or computational tools, such as finite difference, finite elements, spectral, and even meshless 
methods, are well established. However, there are still many problems in modeling and predicting the evolution of 
nonlinear multiscale systems with inhomogeneous cascades-of-scales, such as high computational cost, difficulty in 
solving the noise problem, inability to fuse the observed data, and poor solution results under higher-order problems 
[3, 4]. In contrast to conventional numerical algebraic solvers, learning-based neural solvers (physics-driven deep 
learning methods) can integrate observational data and physical information. These neural solvers combine physics 
with the flexibility of deep learning by building neural networks in domain knowledge. Neural solvers have been 
applied to solve differential equations in various fields, including computational fluid dynamics [5, 6], 
thermodynamic prediction [7, 8], rigid chemical kinetics, Eikonal equations, and so on [9-11]. In the modeling of 
mechanical dynamics, continuous time can also be modeled by neural ordinary differential equations [10, 12]. 

Physics-based learning integrates noisy data and mathematical models and is implemented through neural 
networks or other kernel-based regression networks [13, 14]. Relevant outstanding research results mainly include 
Physics-informed neural networks (PINNs) [3], Deep operator networks (DeepONet) [15], and Fourier Neural 
Operator (FNO) [16, 17]. There are some significant common features of these models, i.e., they incorporate a lot of 
existing and correct prior knowledge (e.g., physical principles, constraints, symmetries, computational simulations), 
which makes the models more accurate, robust, reliable, and explanatory [18]. These methods seamlessly integrate 
data and abstract mathematical operators, including ODEs or PDEs with or without missing physical information 
[19]. With this prior knowledge constraint, deep learning is more interpretable and can be robust in the presence of 
imperfect data (e.g., omissions or noisy values, outliers), even for extrapolation or generalization tasks. Other relevant 
studies include RK-NET [20], Vandermonde Neural Operators (VNO) [21], and Deep CORAL [22]. 

Although the above methods have made a great contribution to the solution of differential equations, they still have 
significant limitations in specific applications. The PINN method requires retraining after replacing initial values or 
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boundary conditions and cannot handle the generalization problem of solving differential equations with time-varying 
inputs [23]. DeepONet belongs to the category of operator learning, and its branch network achieves generalization 
under different inputs by sampling time-varying inputs at fixed sensor locations. However, for input fluctuations 
under non-sensor locations do not affect the final result output of DeepONet. The FNO method implements operator 
learning via Fourier transform and Fourier inverse transform, but it is also incapable of handling the problem of stable 
generalization to systems containing time-varying inputs. 

We named our model as PINN-TI, signifying the use of the idea of Physical Information embedded in Neural 
Networks to solve ordinary differential equations with Time-varying Inputs. PINN-TI extends the application of 
neural networks to solve differential equations with time-varying external inputs. It is not only able to fit the solution 
of differential equations with different initial values for any time-invariant input, but also able to solve differential 
equations with time-varying external inputs using only the training data of differential equations with time-invariant 
inputs. The advantage of our model is that the trained network can solve differential equations with arbitrary initial 
values, boundary conditions, and arbitrary time-varying input, which are not possible with existing PINNs and 
DeepONet. Compared to DeepONet, our model is equally sensitive to segmented time-varying inputs. This property 
helps to apply the model to control areas such as vibration suppression control, model predictive control, etc. 

The loss functions of the PINN-TI model include differential equation structure loss, boundary or initial value 
condition loss, recursive loss, and measurement data loss. Compared to the loss function structure of PINN, our model 
adds a recursive loss, which is set for our proposed Step-by-Step Forward (SSF) algorithm, which solves the 
differential equation with time-varying inputs by step-by-step iteration. The SSF method is inspired by traditional 
numerical iterative solution methods. The SSF method can predict the results of differential equations over a time 
range much larger than the time range set during training. We verified our algorithm using two ordinary differential 
equations. The second example of an ordinary differential equation contains two external time-varying inputs. The 
results show that our network can well handle the problem of differential equation prediction and generalization 
under time-varying inputs. 

The main structure of the article is as follows, in section 2, we introduce the fundamentals of PINN and DeepONet. 
In section 3, we design a network structure and loss function which can be generalized to the solution of differential 
equations under different initial conditions, different constant values of external inputs or arbitrary time-varying 
external inputs after a single training session. Section 4 is the experimental section, we used two examples to validate 
our model and algorithm. Section 5 and 6 present the results and discussion, respectively. 
 

2. Preliminary 

2.1 Original PINNs 

PINNs can integrate information from measurements and the partial differential equations themselves by 
embedding partial differential equations into the loss function of neural networks using automatic differentiation [2, 
24, 25]. This method can be applied to integer-order PDEs, integro-differential equations, fractional PDEs or 
stochastic PDEs [19]. More information on PINNs can be found in Ref. [3]。PINN is mainly used for data-driven 
solutions of general form PDEs (1). We will only introduce the continuous time model here. 
 [ ] 0, , [0, ],

t
y y x t T+ =  N  (1) 

where, ( , )y t x  denotes the hidden solution, ( )N  is a nonlinear differential operator, and   is a subset of DR . 

In a simpler case, y   can be simply a function of time t  , independent of x  , represented as ( )y t  , which is 
simulated in Example 1 of Section 4. 

Construct ( , )f t x  by the equation: 

 : [ ]
t

f y y= + N , (2) 

where, ( , )y t x  is approximated through multilayer perceptrons or other forms of deep neural networks, [ ]yN  can 
be derived by applying the chain rule for differentiating compositions of functions using automatic differentiation. 



( , )y t x and [ ]yN  share network parameters, such as weights and biases, but have different activation functions due 

to the presence of differential operators N . The update of network parameters is achieved by minimizing mean 
square error (MSE) loss, 
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where, the calculation of the loss 
yMSE   depends on the initial or boundary training data 

1{ , , } uNi i i

u u i
t x y =  , the loss 

fMSE  enforces the structure imposed by equation (1) at a finite set of collocation points 1{ , } fNi i

f f i
t x = , which is specify 

the collocations points for ( , )f t x . Some variants of PINNs have increased the fusion of measurement data, which 

adds m
MSE  to the total loss, 
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where, ( , )i i

m y y
y t x  represents the actual measured value at { , }i i

y y
t x . The loss of m

MSE  represents the loss between 

the measurement data and the neural network fitting data. Introducing this loss can help neural networks learn random 
errors, or parts of the system that cannot be modeled or are not accurately modeled.  

 

2.2 DeepONet 

DeepONet can learn parameterized PDEs, ODEs, convective equations, diffusion reaction equations, and a host of 
other physics-driven Maxwell equation solvers. DeepONets have been demonstrated as a powerful tool to learn 
nonlinear operators in a supervised data-driven manner [26-28]. DeepONet define that G  represents the operator 
and ( )G u  represents the output function of the input function u . The output ( )( )G u y  is a real number, where y  

is any point in the domain of ( )G u . The idea of DeepONet is similar to the Universal Approximation Theorem for 
Operator 

 
1 1 1

( )( ) ( ) ( )
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k k k
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trunk
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G u y c u x y      
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 
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 
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where, 0  ,  is a continues non-polynomial function, constants , , ,k k k

i ij i k
c    R , d

k
 R . 

The generalized universal approximation theorem for operators generalizes Eq. (7) to  

 
{1 2( )( ) ( ( ), ( ),..., ( )) , ( )

m

trunkbranch

G u y u x u x u x y − g f
1 4 4 4 4 2 4 4 4 4 3

, (8) 

where, ( )g  and ( )f  represents continues vector functions, which can be represented by multilayer perceptron, 
convolutional neural network, etc. From Eq. (8), we can see that the architecture of DeepONet can be divided into 
two parts: branch and trunk. A large number of different input functions u  are required as training inputs in branch 
section, which chooses two function spaces Gaussian random field (GRF)  

 1 2(0, ( , ))
l

u k x xG: , (9) 

where the convariance kernel 2 2
1 2 1 2( , ) exp( || || /2 )

l
k x x x x l= − −   is the radial-basis function (RBF) kernel with a 

length-scale parameter 0l  , and Chebyshev polynomials 
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where, i
T  are Chebyshev polynomials of the first kind, and 0M  . Sensors 1 2[ , ,..., ]

m
x x x  represent the sampling 

point in the input function u , i.e., using 1 2[ ( ), ( ),..., ( )]
m

u x u x u x  instead of u . More detailed explanations can be 
found in [15]. 
 

2.3 Deficiencies 

The original PINNs algorithm can only fit the solution process of a differential equation under certain initial 
conditions, and it trains the network by minimizing the loss through gradient-based optimizers, such as Adam [29] 
and L-BFGS [30], until the loss is less than a threshold  . If the initial conditions of the differential equation change, 
the network needs to be retrained, and the PINNs do not have the ability to generalize. For a constant input function 
u  or constant U , it is possible to solve the differential equation by encoding it equivalently to the initial conditions 
of the differential equation with only a few adjustments to the structure of the original PINNs. At the same time, by 
encoding the initial conditions into the inputs of the PINNs network, it is possible to solve the problem of achieving 
generalization with different initial conditions. The external inputs to systems in a large number of physical control 
domains are often time-varying, and PINNs are not able to generalize time-varying external inputs, or rather, they 
can only be solved for some definite time-varying external input. 

DeepONet is an operator learning that can solve differential equations under different time-varying inputs. The 
training process requires collecting results under different basis functions, which are represented by sensor 
information under a fixed position. One fatal flaw in this network structure is its inability to handle input function 
variations at non-sensor locations. Although the input function domain can be covered as much as possible by 
encrypting the location of the sensor, it increases the computer arithmetic consumption super-linearly and does not 
fundamentally address the insensitivity to input fluctuations at non-sensors. DeepONet works ineffectively when 
dealing with external inputs as a segmented function, because sampling based on sensor position tends to lose a lot 
of information. One of the fatal drawbacks of DeepONet is that the positions of the sensors in its training and usage 
phases cannot be varied, which results in the inability of the DeepONet network to scale the results to a longer 
duration of the input function.  

  

3. PINN-TI 

3.1 PINN-TI Network structure 

The ordinary differential equation with continuous time-varying input can be expressed as:  

 [ ] ( ), [0, ],
t

y y u t t T+ = N  (11) 

where, ( )u t   represents the time-varying external input. In contrast to the DeepONet method where the 
generalization problem of solving differential equations with time-varying inputs is achieved by arranging a large 
number of sensors to sample under multiple input basis functions, our network only needs to sample the results of 
differential equations under constant external inputs U  during the training phase. The differential equation with 
constant external input can be expressed as:  

 [ ] , [0, ],
t

y y U t T+ = N  (12) 

We first start by constructing a fully-connected neural network with an output ŷ  that will be used as a proxy 
model for solving differential equations. In PINN, the ODE or PDE information is encoded as constraints into the 
loss function of the neural network for training, and the initial and boundary conditions do not appear in the input 
data of the neural network. In contrast to PINN, boundary conditions, initial conditions, and constant inputs U  are 
added to the inputs of our network, which is equivalent to expanding the input dimension of the network. The input 
to our network can be expressed as 0{ , }Y t , 0Y  is the set of initial conditions, boundary conditions.  



 0 0 0 0{ , , ,...}Y y y y =  (13) 

where, 0y  represents the initial or boundary condition for each x-dimension at 0t = , 0y   and 0y  represent the 
set of initial conditions for all first and second order derivatives at 0t = , respectively. The network structure of 
PINN-TI is shown in Fig. 1. 

   
Fig. 1. The network structure of PINN-TI. The external input U  to the neural network during the training phase is 

a constant. When the external input is time-varying ( )u t , the solution of the differential equation is realized by 
calling the trained net PINN-TI. 

By introducing 0Y   into the input part of the neural network, the trained neural network can fit solutions to 
differential equations with constant external time-invariant input U   for arbitrary initial values or boundary 
conditions. Derivatives of compositions involving differentiable functions can be found using the chain rule. 
Therefore, when we assume that the current moment is the 0t =  moment, based on the existing network structure 
and network parameters, the corresponding initial values and boundary conditions in the current state can be derived. 
In contrast to the DeepONet method, our proposed solution to the problem of solving differential equations with 
arbitrary time-varying inputs is to discretize the time-varying inputs and use multiple constant inputs for equivalence. 
Using t  as the time window or sampling step, the corresponding initial values and initial boundary conditions are 
updated sequentially, while the time-invariant input U  is updated using the results of discretization of the time-
varying input ( )u t  at the global time. This enables the prediction of the results of the time-varying input ( )u t  using 
a network trained on the constant external input U . A schematic of the process is shown in Fig. 2. 

PINN-TI
Time-varying Input

loss
Minimize

Initial or
boundary data

Constant
external input

PINN-TI

discretization



   
Fig. 2. Solution procedure for differential equations with time-varying external inputs.  

In Fig. 2(a), the 0Q  point represents the y-value at the moment 0t = . The curve represents the relationship of y  

with time t  under 0 0 0{ , | }
t

U Y = , and point 0Q  is transferred to point 1Q  after t  moment. Fig. 2(b) represents 

the relationship between y   and time t   for the initial value of point 1Q   under the action of t
U   and 

0{ , | }
t t t

U Y = . Continue the above operation until the end of the whole simulation cycle. For ease of description, we 
name this method as the Step-by-Step Forward (SSF) algorithm. The pseudo-code of the SSF algorithm is shown in 
Algorithm 1. The SSF method is also applicable to the solution of differential equations under time-invariant inputs. 
Although it is possible to directly solve differential equations with time-invariant inputs by changing the value of t , 
the prediction range of t  is often limited due to the presence of the activation function. The SSF method predicts at 
any moment with a smaller prediction step size, which can significantly expand the prediction range. 

 

Algorithm 1: Step-by-Step Forward  

Initialize t , 0Y , T , and a trained PINN-TI network NET  

Generate external inputs ( )u t  

Discretize ( )u t  as 0[ , ,..., ]
t T

U U U  

0 0Y Y  

for 1:i N=  

0( , , )
i t

y NET U Y t=   

2

0 2
[ , ,...]
dy d y

Y
dt dt

  

    ( )
out

y i y=  

end for 

 

Our approach remains applicable to the problem of solving ordinary differential equations when the external inputs 
to the system are high-dimensional. Consider a more general form for ordinary differential equations with high-
dimensional external time-varying inputs:  

 ( ), [ ], ( ) 0, [0, ]
t p

G y y u t t T= N , (14) 

Time-varying Input

  

(a)

(b)

(c)

Initial or
boundary data

equivalent initial
condition



where, ( )pu t  represents the p-th external time-varying input. In the training phase, the U  to be sampled contains 
1 2( , ,..., )p

U U U . When solving with the SSF algorithm, it is only necessary to discretize ( )pu t  separately for each 

dimension.  

 

3.2 Data generation 

  The data generation phase is similar to PINN data generation in that only U , 0Y , and t  need to be sampled and 
no computation of y   is required. To make the neural network more responsive to the differential equations 
themselves, t   is also performed using sampling. In this way, the final trained network can be adapted to the 
prediction problem at different time steps.  

 

3.3 Loss function of PINN-TI 

The loss function of PINN-TI consists of four main parts, the loss of the structure of the differential equation d
loss , 

the loss of the boundary or initial value condition b
loss , the recursive loss r

loss  and the loss of the measured data 

m
loss .  

 1 2 3 4d b r m
loss loss loss loss loss   = + + +  (15) 

where, 1 2 3 4{ , , , }     represents the weights between the loss functions. 
The structure of the differential equation can be expressed as 

 
2

2

ˆ ˆ
( , , ; , ,...) 0

d

dy d y
f y t U

dt dt
=  (16) 

where, y  is a function of t , and U  is the input function. 

Then d
loss  is calculated as follows: 

 
2

2
1

1 n
i

d d

i

loss f
n =

= − 0  (17) 

where, n  is the number of sampled data. 
The boundary or initial value condition constraints can be expressed as: 

 
2

2

ˆ ˆ
( , , ; , ,...) 0,

b c

dy d y
f y t U x

dt dt
=   (18) 

where, 0
c

t =  represents the boundary or initial condition constraints. 

Then b
loss  is calculated as follows: 

 
2

2
1

1 n
i

b b

ib

loss f
n =

= − 0  (19) 

where, b
n  is the number of data sampled at the initial value and boundary conditions. 

The recursive constraint is the difference between using the neural network to directly predict the outcome at 
t t+   and using the neural network first to predict the outcome at moment t  , updating the initial values and 
boundary conditions and then further predicting the output after the t  moment.  

 0| ( , , ) | ( , , )
t

y U Y t t y U Y t+  =   (20) 
Fig. 3. illustrates the computation of recursive loss.  

 



   
Fig. 3. Calculation Process of the recursive loss. 

Then r
loss  is calculated by: 

 
2

0 2
1

1 ˆ ˆ( , , ) ( , , )
r

i

n

i i

r i i i i t i

ir

loss y U Y t t y U Y t
n =

= + −   (21) 

where, r
n  is the number of sampled data, 

i

i

t
Y  represents the corresponding state at time i

t , including the equivalent 

initial value, boundary conditions, derivatives of each order, etc. The parameter i
t  is not a constant value, its also 

sampled randomly within a certain range. 
Measurement data loss m

loss  is the MSE between the real measurement data and the neural network fitted data. 

 
2

0 0 2
1

1 ˆ ( , , ) ( , , )
mn

i i

m i i i i

im

loss y U Y t y U Y t
n =

= −  (22) 

where, 0
ˆ ( , , )i

i i
y U Y t  represents the computation of the neural network, 0( , , )i

i i
y U Y t  represents actual measurement, 

m
n  is the number of sampled data. Considering that the cumulative error will be gradually aggravated with time, we 
added time-based weights to the data on the basis of the above loss function. It makes the weight of the data close to 
the initial moment high and the weight of the data far from the initial moment low. In this paper, data weights t

  
are assigned using a simple linear variation, i.e. 
 max 1

t
at = − +  (23) 

 

4. Experimental 
In the experimental part, we choose a variant of the Vander Pol’s equation as a case study to analyze the fitting 

effect of our method under fixed inputs, time-varying inputs, and segmented function inputs. The effectiveness of the 
model's solution fluctuates as the difficulty of the ordinary differential equation changes, but it is applicable to 
arbitrary ordinary differential equations of similar form.  

Example 1: A variant of the Vander Pol’s equation 

Consider a second-order system: 
 2( ) (1 ( )) ( ) ( ) 0y t y t y t y t− − + =&& &  (24) 
with 

 0 0(0) , (0)y y y v= =&  (25) 
where 0 t T  . The differential equation (24) has no external input, we modify the equation to add an external 
input u  . Here the external input can be a constant value U  , or a time-varying value ( )u t  . For descriptive 

convenience, ( )u t  is used throughout the following. The modified equation is as follows 

 2( ) (1 ( )) ( ) ( ) ( )y t y t y t y t u t− − + = −&& &  (26) 

where, ( )u t  is time-varying is an external input to the system. In the control domain, ( )u t  can be an external force 

or torque. The differential equation (24) can be regarded as a special case of the Eq. (26), i.e. ( ) 0u t   . This 

differential equation is a simple example without x-dimension, and its inputs are only 0Y  and t . 
The activation function chosen in PINN-TI is tanh, and the properties of the activation function limit the input t. 

loss of recursive



During training, we sample time t within 0-2 seconds, too large ( 5)t t   will result in an activation that is infinitely 
close to 1 and thus fail. The learning rate is 0.001 and the number of iterations is 500000. The exact solution of the 
differential equation is taken to be computed by the 4th order Runge-Kutta method with the step size set to 0.0001.  

 
Fig. 4 Comparison of results for solving differential equations with time-invariant input. Fig. 4(a) shows the results 

solved using the PINN-TI model, and fig. 4(b) shows the results solved using the original PINN. The initial 
conditions are set to (0) 0.5y = , (0) 0.5y =& , ( ) 0.5u t  . 

Table. 1. MSE of prediction results with time-invariant external inputs 

t  0-1s 0-2s 0-5s 0-10s 

0.05 1.9565e-5 

8.2221e-6 

3.9754e-5 

1.5541e-5 

1.6168e-3 

1.7807e-3 

3.3053e-3 

5.4552e-3 

0.10 5.9063e-6 

1.0271e-6 

9.3016e-6 

2.5844e-6 

3.6125e-4 

3.9845e-4 

7.4362e-4 

1.1757e-3 

0.20 1.8133e-6 

2.8208e-8 

1.8485e-6 

1.8912e-7 

7.3896e-5 

7.9226e-5 

1.8441e-4 

2.3864e-4 

0.40 3.7711e-7 

2.5422e-7 

3.4812e-7 

2.1081e-7 

1.3716e-5 

7.9170e-6 

4.0757e-5 

6.0483e-5 

In Fig. 4 and Table 1. we show only the solution results of our model under a single initial value condition and a 
single constant input. Our model can fit the results under any initial value and any constant input (within a predefined 
range) after one training. Our model can extend the prediction range from 0-2 seconds to 0-20 seconds, while the 
original PINN, see Fig. 4(b), can fit the solution of differential equations within 0-2 seconds with high accuracy, but 
the results are poor when extended to 2-20s. The original PINN network needs to be retrained when the initial 
conditions and external inputs are changed. 

PINN-TI model can fit the results of differential equations with arbitrary time-varying external inputs. Assuming 
that the time-varying external input is  

 ( ) 0.8*sin( ) 0.57u t t= + . (27) 

The initial or boundary conditions are set to (0) 0.5y = , (0) 0.5y =& . Based on the previously trained network, the 
solution of the differential equation under this time-varying input is predicted using the SSF method.  



 
Fig. 5. Comparison of results for solving differential equations with time-varying input. The steps in fig. 5(a), fig. 
5(b), fig. 5(c) and fig. 5(d) are 0.05, 0.10, 0.20, and 0.40, respectively. The blue line represents the results of the 

RK-4 solution and the red line represents the results of the PINN-TI solution. 
 

Table. 2. MSE of prediction results with time-variant external inputs 

t  0-1s 0-2s 0-5s 0-10s 

0.05 3.6989e-6 

3.7238e-4 

3.3250e-4 

3.5658e-4 

1.5172e-3 

3.8928e-4 

5.8392e-3 

7.6342e-3 

0.10 3.7689e-5 

4.9394e-4 

3.5190e-4 

4.1039e-4 

3.2095e-4 

7.2399e-4 

2.0487e-3 

4.4076e-3 

0.20 1.6872e-4 

2.1361e-4 

8.9548e-4 

9.7549e-4 

3.1608e-3 

5.0838e-3 

9.0212e-3 

2.4878e-2 

0.40 1.4598e-4 

2.2246e-3 

3.2161e-3 

3.0276e-3 

9.2460e-3 

1.6812e-2 

4.6327e-2 

1.2358e-1 

 

Fig. 5 and Table 2 illustrates the results of the PINN-TI network fitting under time-varying inputs at different step 
sizes. As the time horizon of the prediction expands, the cumulative error accumulates and the accuracy of the 
prediction decreases. The MSE of the fitted results and exact solutions of the PINN-TI network under time-varying 
inputs with different step sizes and different time scales are shown in Table 2. The increase of the time step leads to 
the loss of more information about the time-varying inputs, and the error shows an increasing trend as the time step 
increases. In order to verify the results of our method under different time-varying inputs, we sampled 100 different 
time-varying inputs ( )u t , i.e. 

 ( ) *sin( ) *cos( )u t a t b t c= + +  (28) 

where, the coefficients a, b and c are all constants, , , [0,1]a b c . Different combinations of coefficients represent 
different time-varying inputs. The results are shown in Fig. 6. The MSE of the prediction results for all four t  in 



the range of 0-2 seconds is less than 0.001. The MSE tends to increase as the prediction time range and the prediction 
step size increase.  

 
Fig. 6 Box plots of MSE of prediction results for multiple time-varying input. (a) is the box plot of the MSE 

between the predicted y  and the true value. (b) is the box plot of the MSE between the predicted y   and the true 
value. 

PINN-TI model is also applicable to the process of solving differential equations with arbitrary segmented function 
inputs. Assume that the external input for the required solution is 

 
0.5*sin( ) 0.57,sin( ) 0

( )
0.5*cos( ) 0.57,sin( ) 0

t t
u t

t t

+ 
=  − 

. (29) 

The initial or boundary conditions in Eq. (26) are set to (0) 0.45y = , (0) 0.45y =& . 

 
Fig. 7. Solution results under external inputs in the form of segmented functions.  

 

Table. 3. MSE of prediction results with segmented functions inputs 

t  0-1s 0-2s 0-5s 0-10s 

0.05 3.6509e-5 

4.5375e-6 

2.1417e-5 

1.0376e-4 

1.5029e-3 

1.6717e-3 

8.2687e-3 

2.4337e-2 

0.10 6.0028e-6 

5.2618e-5 

1.7867e-4 

8.0780e-4 

1.6999e-3 

4.2223e-3 

8.2221e-3 

2.5952e-2 

0.20 9.2288e-6 

2.1068e-4 

9.8015e-4 

3.2419e-3 

7.4652e-3 

1.7701e-2 

3.2853e-2 

8.4991e-2 

 

Table. 4. MSE of predicted results using DeepONet 



 0-1s 0-2s 0-5s 0-10s 

MSE 5.7133 

4.2936 

6.5323 

6.4292 

6.2422 

9.4711 

9.3231 

8.4421 

 

Fig. 7 and Table 3 show the prediction results of our model under the segmented function input. We also used the 
DeepONet model and trained the DeepONet model with 100 sensors selected uniformly over a period of 0-10 seconds. 
The trained network predicts the results under this segmented function input and the MSE between the predicted 
results and the exact solution is shown in Table 4. The DeepONet model is unable to handle similar model prediction 
problems under segmented function inputs, and input fluctuations at non-sensor locations do not affect the model's 
prediction results. 

 

Example 2: Multiple external inputs 

This example is used to simulate the applicability of our method when there are multiple external inputs. We 
modify Eq. (26) to the following form 

 2
2 1( ) (1 ( ) ( )) ( ) ( ) ( )y t y t u t y t y t u t− − − + = −&& &  (30) 

where, 1( )u t  and 2 ( )u t  are both external inputs. Corresponding to our PINN-TI model, the model input U  needs 

to be sampled in two dimensions, 1u  and 2u . Such systems with multiple external inputs are more common in 
practical applications such as rope-driven parallel robots [31], multi-stage vibration suppression platforms, etc.  

Assume that the time-varying inputs 1u  and 2u  are respectively: 

 1

2

( ) 0.8*sin(2 ) 0.57

( ) 0.9*cos( / 2) 0.15

u t t

u t t

= +
= +

 (31) 

The hyperparameters for model training are set as in example 1. The initial or boundary conditions are set to 
(0) 0.37y = , (0) 0.48y =& . The range of sampling time set during network training is 0-1 second.  



 
Fig. 8 Comparison of results for solving differential equations with two time-varying inputs.  

 

Table. 5. MSE of prediction results with two external inputs 

t  0-1s 0-2s 0-5s 

0.05 5.6228e-4 

5.2391e-5 

1.5000e-3 

2.6295e-4 

2.6575e-3 

1.7052e-3 

0.10 1.5432e-5 

1.6366e-4 

2.5624e-4 

1.5274e-4 

1.9450e-3 

2.0812e-3 

0.15 2.7886e-5 

6.6643e-4 

7.3140e-5 

7.4457e-4 

2.5833e-3 

3.5791e-3 

0.20 1.6506e-4 

1.2766e-3 

2.1720e-4 

1.6776e-3 

3.6601e-3 

5.7699e-3 

 

  Fig. 8 and Table 5 show the results of solving the ordinary differential equation (30) with an external input of 
(31). Our prediction time is set to 0-10 seconds, which is 10 times the range of the training time. The results of the 
MSE of the prediction results at different sampling steps within 0-5 seconds are shown in Table 5, in which the MSE 
is minimized at a sampling step of 0.1 within 0-1 seconds, and in the range of 0-2 seconds, the MSE is minimized at 
a sampling step of 0.15. Sampling 1( )u t   and 2 ( )u t   100 times using Eq. (28) verifies the effectiveness of our 
trained model under different time-varying inputs. The results of the MSE are shown in Fig. 9. 



 
Fig. 9. Box plots of MSE of prediction results. (a) is the box plot of the MSE between the predicted y  and the 

true value. (b) is the box plot of the MSE between the predicted y   and the true value. 
As shown in Fig. 9, our model predicts y-value in 0-1 seconds with MSEs of the order of 1e-4 at a sampling step 

of 0.1. When the sampling step size is 0.2, its prediction result for y   has a large error, due to the loss of time-
varying input information for a large sampling step size. 

 

5. Conclusion 

  We propose a PINN-TI model and SSF algorithm which can be trained once to realize the problem of solving 
ordinary differential equations under different initial values or boundary conditions and different time-varying inputs. 
Our method can handle the solution of differential equations under segmented function inputs, which is not possible 
with PINN and DeepONet networks. Also our network can make predictions for time-varying inputs of arbitrary 
duration, whereas DeepONet is affected by the location of the sensors and its required external inputs must be of 
fixed duration. Our approach provides a new solution and idea for the problem of solving and generalizing differential 
equations containing time-varying inputs. 
 

6. Discussion 

Our solution scheme is based on the same idea of discretizing the time-varying inputs as in traditional numerical 
solution methods, while embedding the physical information into the neural network during the training process. We 
have only considered the solution process for arbitrary variable inputs in a continuous time model and have not 
extended it to discrete environments. In the future, we will extend the network to discrete environments. This 
discretization idea to solve time-varying input differential equations can also be combined with DeepONet and FNO, 
and is one of the main research directions in the future. In terms of network structure, MLP can be extended to CNN 
or RNN in order to be applicable to different problems and is a major future research direction. Our model has some 
challenges in applying it to partial differential equations and is a viable research direction. 
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